%PDF- %PDF-
Direktori : /usr/lib/python3/dist-packages/sympy/vector/tests/ |
Current File : //usr/lib/python3/dist-packages/sympy/vector/tests/test_dyadic.py |
from sympy import sin, cos, symbols, pi, ImmutableMatrix as Matrix, \ simplify from sympy.vector import (CoordSys3D, Vector, Dyadic, DyadicAdd, DyadicMul, DyadicZero, BaseDyadic, express) A = CoordSys3D('A') def test_dyadic(): a, b = symbols('a, b') assert Dyadic.zero != 0 assert isinstance(Dyadic.zero, DyadicZero) assert BaseDyadic(A.i, A.j) != BaseDyadic(A.j, A.i) assert (BaseDyadic(Vector.zero, A.i) == BaseDyadic(A.i, Vector.zero) == Dyadic.zero) d1 = A.i | A.i d2 = A.j | A.j d3 = A.i | A.j assert isinstance(d1, BaseDyadic) d_mul = a*d1 assert isinstance(d_mul, DyadicMul) assert d_mul.base_dyadic == d1 assert d_mul.measure_number == a assert isinstance(a*d1 + b*d3, DyadicAdd) assert d1 == A.i.outer(A.i) assert d3 == A.i.outer(A.j) v1 = a*A.i - A.k v2 = A.i + b*A.j assert v1 | v2 == v1.outer(v2) == a * (A.i|A.i) + (a*b) * (A.i|A.j) +\ - (A.k|A.i) - b * (A.k|A.j) assert d1 * 0 == Dyadic.zero assert d1 != Dyadic.zero assert d1 * 2 == 2 * (A.i | A.i) assert d1 / 2. == 0.5 * d1 assert d1.dot(0 * d1) == Vector.zero assert d1 & d2 == Dyadic.zero assert d1.dot(A.i) == A.i == d1 & A.i assert d1.cross(Vector.zero) == Dyadic.zero assert d1.cross(A.i) == Dyadic.zero assert d1 ^ A.j == d1.cross(A.j) assert d1.cross(A.k) == - A.i | A.j assert d2.cross(A.i) == - A.j | A.k == d2 ^ A.i assert A.i ^ d1 == Dyadic.zero assert A.j.cross(d1) == - A.k | A.i == A.j ^ d1 assert Vector.zero.cross(d1) == Dyadic.zero assert A.k ^ d1 == A.j | A.i assert A.i.dot(d1) == A.i & d1 == A.i assert A.j.dot(d1) == Vector.zero assert Vector.zero.dot(d1) == Vector.zero assert A.j & d2 == A.j assert d1.dot(d3) == d1 & d3 == A.i | A.j == d3 assert d3 & d1 == Dyadic.zero q = symbols('q') B = A.orient_new_axis('B', q, A.k) assert express(d1, B) == express(d1, B, B) expr1 = ((cos(q)**2) * (B.i | B.i) + (-sin(q) * cos(q)) * (B.i | B.j) + (-sin(q) * cos(q)) * (B.j | B.i) + (sin(q)**2) * (B.j | B.j)) assert (express(d1, B) - expr1).simplify() == Dyadic.zero expr2 = (cos(q)) * (B.i | A.i) + (-sin(q)) * (B.j | A.i) assert (express(d1, B, A) - expr2).simplify() == Dyadic.zero expr3 = (cos(q)) * (A.i | B.i) + (-sin(q)) * (A.i | B.j) assert (express(d1, A, B) - expr3).simplify() == Dyadic.zero assert d1.to_matrix(A) == Matrix([[1, 0, 0], [0, 0, 0], [0, 0, 0]]) assert d1.to_matrix(A, B) == Matrix([[cos(q), -sin(q), 0], [0, 0, 0], [0, 0, 0]]) assert d3.to_matrix(A) == Matrix([[0, 1, 0], [0, 0, 0], [0, 0, 0]]) a, b, c, d, e, f = symbols('a, b, c, d, e, f') v1 = a * A.i + b * A.j + c * A.k v2 = d * A.i + e * A.j + f * A.k d4 = v1.outer(v2) assert d4.to_matrix(A) == Matrix([[a * d, a * e, a * f], [b * d, b * e, b * f], [c * d, c * e, c * f]]) d5 = v1.outer(v1) C = A.orient_new_axis('C', q, A.i) for expected, actual in zip(C.rotation_matrix(A) * d5.to_matrix(A) * \ C.rotation_matrix(A).T, d5.to_matrix(C)): assert (expected - actual).simplify() == 0 def test_dyadic_simplify(): x, y, z, k, n, m, w, f, s, A = symbols('x, y, z, k, n, m, w, f, s, A') N = CoordSys3D('N') dy = N.i | N.i test1 = (1 / x + 1 / y) * dy assert (N.i & test1 & N.i) != (x + y) / (x * y) test1 = test1.simplify() assert test1.simplify() == simplify(test1) assert (N.i & test1 & N.i) == (x + y) / (x * y) test2 = (A**2 * s**4 / (4 * pi * k * m**3)) * dy test2 = test2.simplify() assert (N.i & test2 & N.i) == (A**2 * s**4 / (4 * pi * k * m**3)) test3 = ((4 + 4 * x - 2 * (2 + 2 * x)) / (2 + 2 * x)) * dy test3 = test3.simplify() assert (N.i & test3 & N.i) == 0 test4 = ((-4 * x * y**2 - 2 * y**3 - 2 * x**2 * y) / (x + y)**2) * dy test4 = test4.simplify() assert (N.i & test4 & N.i) == -2 * y