%PDF- %PDF-
Direktori : /usr/lib/python3/dist-packages/sympy/stats/tests/ |
Current File : //usr/lib/python3/dist-packages/sympy/stats/tests/test_mix.py |
from sympy import (Symbol, Eq, Ne, simplify, sqrt, exp, pi, symbols, Piecewise, factorial, gamma, IndexedBase, Add, Pow, Mul, Indexed, Integer, Integral, DiracDelta, Dummy, Sum, oo) from sympy.functions.elementary.piecewise import ExprCondPair from sympy.stats import (Poisson, Beta, Exponential, P, Multinomial, MultivariateBeta) from sympy.stats.crv_types import Normal from sympy.stats.drv_types import PoissonDistribution from sympy.stats.compound_rv import CompoundPSpace, CompoundDistribution from sympy.stats.joint_rv import MarginalDistribution from sympy.stats.rv import pspace, density from sympy.testing.pytest import ignore_warnings def test_density(): x = Symbol('x') l = Symbol('l', positive=True) rate = Beta(l, 2, 3) X = Poisson(x, rate) assert isinstance(pspace(X), CompoundPSpace) assert density(X, Eq(rate, rate.symbol)) == PoissonDistribution(l) N1 = Normal('N1', 0, 1) N2 = Normal('N2', N1, 2) assert density(N2)(0).doit() == sqrt(10)/(10*sqrt(pi)) assert simplify(density(N2, Eq(N1, 1))(x)) == \ sqrt(2)*exp(-(x - 1)**2/8)/(4*sqrt(pi)) assert simplify(density(N2)(x)) == sqrt(10)*exp(-x**2/10)/(10*sqrt(pi)) def test_MarginalDistribution(): a1, p1, p2 = symbols('a1 p1 p2', positive=True) C = Multinomial('C', 2, p1, p2) B = MultivariateBeta('B', a1, C[0]) MGR = MarginalDistribution(B, (C[0],)) mgrc = Mul(Symbol('B'), Piecewise(ExprCondPair(Mul(Integer(2), Pow(Symbol('p1', positive=True), Indexed(IndexedBase(Symbol('C')), Integer(0))), Pow(Symbol('p2', positive=True), Indexed(IndexedBase(Symbol('C')), Integer(1))), Pow(factorial(Indexed(IndexedBase(Symbol('C')), Integer(0))), Integer(-1)), Pow(factorial(Indexed(IndexedBase(Symbol('C')), Integer(1))), Integer(-1))), Eq(Add(Indexed(IndexedBase(Symbol('C')), Integer(0)), Indexed(IndexedBase(Symbol('C')), Integer(1))), Integer(2))), ExprCondPair(Integer(0), True)), Pow(gamma(Symbol('a1', positive=True)), Integer(-1)), gamma(Add(Symbol('a1', positive=True), Indexed(IndexedBase(Symbol('C')), Integer(0)))), Pow(gamma(Indexed(IndexedBase(Symbol('C')), Integer(0))), Integer(-1)), Pow(Indexed(IndexedBase(Symbol('B')), Integer(0)), Add(Symbol('a1', positive=True), Integer(-1))), Pow(Indexed(IndexedBase(Symbol('B')), Integer(1)), Add(Indexed(IndexedBase(Symbol('C')), Integer(0)), Integer(-1)))) assert MGR(C) == mgrc def test_compound_distribution(): Y = Poisson('Y', 1) Z = Poisson('Z', Y) assert isinstance(pspace(Z), CompoundPSpace) assert isinstance(pspace(Z).distribution, CompoundDistribution) assert Z.pspace.distribution.pdf(1).doit() == exp(-2)*exp(exp(-1)) def test_mix_expression(): Y, E = Poisson('Y', 1), Exponential('E', 1) k = Dummy('k') expr1 = Integral(Sum(exp(-1)*Integral(exp(-k)*DiracDelta(k - 2), (k, 0, oo) )/factorial(k), (k, 0, oo)), (k, -oo, 0)) expr2 = Integral(Sum(exp(-1)*Integral(exp(-k)*DiracDelta(k - 2), (k, 0, oo) )/factorial(k), (k, 0, oo)), (k, 0, oo)) assert P(Eq(Y + E, 1)) == 0 assert P(Ne(Y + E, 2)) == 1 with ignore_warnings(UserWarning): ### TODO: Restore tests once warnings are removed assert P(E + Y < 2, evaluate=False).rewrite(Integral).dummy_eq(expr1) assert P(E + Y > 2, evaluate=False).rewrite(Integral).dummy_eq(expr2)