%PDF- %PDF-
Direktori : /usr/lib/python3/dist-packages/sympy/series/tests/ |
Current File : //usr/lib/python3/dist-packages/sympy/series/tests/test_limitseq.py |
from sympy import (symbols, Symbol, oo, Sum, harmonic, exp, Add, S, binomial, factorial, log, fibonacci, subfactorial, sin, cos, pi, I, sqrt, Rational, gamma) from sympy.series.limitseq import limit_seq from sympy.series.limitseq import difference_delta as dd from sympy.testing.pytest import raises, XFAIL from sympy.calculus.util import AccumulationBounds n, m, k = symbols('n m k', integer=True) def test_difference_delta(): e = n*(n + 1) e2 = e * k assert dd(e) == 2*n + 2 assert dd(e2, n, 2) == k*(4*n + 6) raises(ValueError, lambda: dd(e2)) raises(ValueError, lambda: dd(e2, n, oo)) def test_difference_delta__Sum(): e = Sum(1/k, (k, 1, n)) assert dd(e, n) == 1/(n + 1) assert dd(e, n, 5) == Add(*[1/(i + n + 1) for i in range(5)]) e = Sum(1/k, (k, 1, 3*n)) assert dd(e, n) == Add(*[1/(i + 3*n + 1) for i in range(3)]) e = n * Sum(1/k, (k, 1, n)) assert dd(e, n) == 1 + Sum(1/k, (k, 1, n)) e = Sum(1/k, (k, 1, n), (m, 1, n)) assert dd(e, n) == harmonic(n) def test_difference_delta__Add(): e = n + n*(n + 1) assert dd(e, n) == 2*n + 3 assert dd(e, n, 2) == 4*n + 8 e = n + Sum(1/k, (k, 1, n)) assert dd(e, n) == 1 + 1/(n + 1) assert dd(e, n, 5) == 5 + Add(*[1/(i + n + 1) for i in range(5)]) def test_difference_delta__Pow(): e = 4**n assert dd(e, n) == 3*4**n assert dd(e, n, 2) == 15*4**n e = 4**(2*n) assert dd(e, n) == 15*4**(2*n) assert dd(e, n, 2) == 255*4**(2*n) e = n**4 assert dd(e, n) == (n + 1)**4 - n**4 e = n**n assert dd(e, n) == (n + 1)**(n + 1) - n**n def test_limit_seq(): e = binomial(2*n, n) / Sum(binomial(2*k, k), (k, 1, n)) assert limit_seq(e) == S(3) / 4 assert limit_seq(e, m) == e e = (5*n**3 + 3*n**2 + 4) / (3*n**3 + 4*n - 5) assert limit_seq(e, n) == S(5) / 3 e = (harmonic(n) * Sum(harmonic(k), (k, 1, n))) / (n * harmonic(2*n)**2) assert limit_seq(e, n) == 1 e = Sum(k**2 * Sum(2**m/m, (m, 1, k)), (k, 1, n)) / (2**n*n) assert limit_seq(e, n) == 4 e = (Sum(binomial(3*k, k) * binomial(5*k, k), (k, 1, n)) / (binomial(3*n, n) * binomial(5*n, n))) assert limit_seq(e, n) == S(84375) / 83351 e = Sum(harmonic(k)**2/k, (k, 1, 2*n)) / harmonic(n)**3 assert limit_seq(e, n) == S.One / 3 raises(ValueError, lambda: limit_seq(e * m)) def test_alternating_sign(): assert limit_seq((-1)**n/n**2, n) == 0 assert limit_seq((-2)**(n+1)/(n + 3**n), n) == 0 assert limit_seq((2*n + (-1)**n)/(n + 1), n) == 2 assert limit_seq(sin(pi*n), n) == 0 assert limit_seq(cos(2*pi*n), n) == 1 assert limit_seq((S.NegativeOne/5)**n, n) == 0 assert limit_seq((Rational(-1, 5))**n, n) == 0 assert limit_seq((I/3)**n, n) == 0 assert limit_seq(sqrt(n)*(I/2)**n, n) == 0 assert limit_seq(n**7*(I/3)**n, n) == 0 assert limit_seq(n/(n + 1) + (I/2)**n, n) == 1 def test_accum_bounds(): assert limit_seq((-1)**n, n) == AccumulationBounds(-1, 1) assert limit_seq(cos(pi*n), n) == AccumulationBounds(-1, 1) assert limit_seq(sin(pi*n/2)**2, n) == AccumulationBounds(0, 1) assert limit_seq(2*(-3)**n/(n + 3**n), n) == AccumulationBounds(-2, 2) assert limit_seq(3*n/(n + 1) + 2*(-1)**n, n) == AccumulationBounds(1, 5) def test_limitseq_sum(): from sympy.abc import x, y, z assert limit_seq(Sum(1/x, (x, 1, y)) - log(y), y) == S.EulerGamma assert limit_seq(Sum(1/x, (x, 1, y)) - 1/y, y) is S.Infinity assert (limit_seq(binomial(2*x, x) / Sum(binomial(2*y, y), (y, 1, x)), x) == S(3) / 4) assert (limit_seq(Sum(y**2 * Sum(2**z/z, (z, 1, y)), (y, 1, x)) / (2**x*x), x) == 4) def test_issue_9308(): assert limit_seq(subfactorial(n)/factorial(n), n) == exp(-1) def test_issue_10382(): n = Symbol('n', integer=True) assert limit_seq(fibonacci(n+1)/fibonacci(n), n) == S.GoldenRatio def test_issue_11672(): assert limit_seq(Rational(-1, 2)**n, n) == 0 def test_issue_16735(): assert limit_seq(5**n/factorial(n), n) == 0 def test_issue_19868(): assert limit_seq(1/gamma(n + S.One/2), n) == 0 @XFAIL def test_limit_seq_fail(): # improve Summation algorithm or add ad-hoc criteria e = (harmonic(n)**3 * Sum(1/harmonic(k), (k, 1, n)) / (n * Sum(harmonic(k)/k, (k, 1, n)))) assert limit_seq(e, n) == 2 # No unique dominant term e = (Sum(2**k * binomial(2*k, k) / k**2, (k, 1, n)) / (Sum(2**k/k*2, (k, 1, n)) * Sum(binomial(2*k, k), (k, 1, n)))) assert limit_seq(e, n) == S(3) / 7 # Simplifications of summations needs to be improved. e = n**3*Sum(2**k/k**2, (k, 1, n))**2 / (2**n * Sum(2**k/k, (k, 1, n))) assert limit_seq(e, n) == 2 e = (harmonic(n) * Sum(2**k/k, (k, 1, n)) / (n * Sum(2**k*harmonic(k)/k**2, (k, 1, n)))) assert limit_seq(e, n) == 1 e = (Sum(2**k*factorial(k) / k**2, (k, 1, 2*n)) / (Sum(4**k/k**2, (k, 1, n)) * Sum(factorial(k), (k, 1, 2*n)))) assert limit_seq(e, n) == S(3) / 16