%PDF- %PDF-
Direktori : /usr/lib/python3/dist-packages/sympy/polys/matrices/tests/ |
Current File : //usr/lib/python3/dist-packages/sympy/polys/matrices/tests/test_normalforms.py |
from sympy.testing.pytest import raises from sympy import Symbol, sympify from sympy.polys.matrices.normalforms import invariant_factors, smith_normal_form from sympy.polys.domains import ZZ, QQ from sympy.polys.matrices import DomainMatrix def test_smith_normal(): def DM(elems, domain): conv = lambda e: domain.from_sympy(sympify(e)) elems = [[conv(e) for e in row] for row in elems] return DomainMatrix(elems, (len(elems), len(elems[0])), domain) m = DM([[12, 6, 4, 8], [3, 9, 6, 12], [2, 16, 14, 28], [20, 10, 10, 20]], ZZ) smf = DM([[1, 0, 0, 0], [0, 10, 0, 0], [0, 0, -30, 0], [0, 0, 0, 0]], ZZ) assert smith_normal_form(m).to_dense() == smf x = Symbol('x') m = DM([[x-1, 1, -1], [ 0, x, -1], [ 0, -1, x]], QQ[x]) dx = m.domain.gens[0] assert invariant_factors(m) == (1, dx-1, dx**2-1) zr = DomainMatrix([], (0, 2), ZZ) zc = DomainMatrix([[], []], (2, 0), ZZ) assert smith_normal_form(zr).to_dense() == zr assert smith_normal_form(zc).to_dense() == zc assert smith_normal_form(DM([[2, 4]], ZZ)).to_dense() == DM([[2, 0]], ZZ) assert smith_normal_form(DM([[0, -2]], ZZ)).to_dense() == DM([[-2, 0]], ZZ) assert smith_normal_form(DM([[0], [-2]], ZZ)).to_dense() == DM([[-2], [0]], ZZ) m = DM([[3, 0, 0, 0], [0, 0, 0, 0], [0, 0, 2, 0]], ZZ) snf = DM([[1, 0, 0, 0], [0, 6, 0, 0], [0, 0, 0, 0]], ZZ) assert smith_normal_form(m).to_dense() == snf raises(ValueError, lambda: smith_normal_form(DM([[1]], ZZ[x])))