%PDF- %PDF-
Direktori : /usr/lib/python3/dist-packages/sympy/geometry/tests/ |
Current File : //usr/lib/python3/dist-packages/sympy/geometry/tests/test_curve.py |
from sympy import Symbol, pi, symbols, Tuple, S, sqrt, asinh, Rational from sympy.geometry import Curve, Line, Point, Ellipse, Ray, Segment, Circle, Polygon, RegularPolygon from sympy.testing.pytest import raises, slow def test_curve(): x = Symbol('x', real=True) s = Symbol('s') z = Symbol('z') # this curve is independent of the indicated parameter c = Curve([2*s, s**2], (z, 0, 2)) assert c.parameter == z assert c.functions == (2*s, s**2) assert c.arbitrary_point() == Point(2*s, s**2) assert c.arbitrary_point(z) == Point(2*s, s**2) # this is how it is normally used c = Curve([2*s, s**2], (s, 0, 2)) assert c.parameter == s assert c.functions == (2*s, s**2) t = Symbol('t') # the t returned as assumptions assert c.arbitrary_point() != Point(2*t, t**2) t = Symbol('t', real=True) # now t has the same assumptions so the test passes assert c.arbitrary_point() == Point(2*t, t**2) assert c.arbitrary_point(z) == Point(2*z, z**2) assert c.arbitrary_point(c.parameter) == Point(2*s, s**2) assert c.arbitrary_point(None) == Point(2*s, s**2) assert c.plot_interval() == [t, 0, 2] assert c.plot_interval(z) == [z, 0, 2] assert Curve([x, x], (x, 0, 1)).rotate(pi/2) == Curve([-x, x], (x, 0, 1)) assert Curve([x, x], (x, 0, 1)).rotate(pi/2, (1, 2)).scale(2, 3).translate( 1, 3).arbitrary_point(s) == \ Line((0, 0), (1, 1)).rotate(pi/2, (1, 2)).scale(2, 3).translate( 1, 3).arbitrary_point(s) == \ Point(-2*s + 7, 3*s + 6) raises(ValueError, lambda: Curve((s), (s, 1, 2))) raises(ValueError, lambda: Curve((x, x * 2), (1, x))) raises(ValueError, lambda: Curve((s, s + t), (s, 1, 2)).arbitrary_point()) raises(ValueError, lambda: Curve((s, s + t), (t, 1, 2)).arbitrary_point(s)) @slow def test_free_symbols(): a, b, c, d, e, f, s = symbols('a:f,s') assert Point(a, b).free_symbols == {a, b} assert Line((a, b), (c, d)).free_symbols == {a, b, c, d} assert Ray((a, b), (c, d)).free_symbols == {a, b, c, d} assert Ray((a, b), angle=c).free_symbols == {a, b, c} assert Segment((a, b), (c, d)).free_symbols == {a, b, c, d} assert Line((a, b), slope=c).free_symbols == {a, b, c} assert Curve((a*s, b*s), (s, c, d)).free_symbols == {a, b, c, d} assert Ellipse((a, b), c, d).free_symbols == {a, b, c, d} assert Ellipse((a, b), c, eccentricity=d).free_symbols == \ {a, b, c, d} assert Ellipse((a, b), vradius=c, eccentricity=d).free_symbols == \ {a, b, c, d} assert Circle((a, b), c).free_symbols == {a, b, c} assert Circle((a, b), (c, d), (e, f)).free_symbols == \ {e, d, c, b, f, a} assert Polygon((a, b), (c, d), (e, f)).free_symbols == \ {e, b, d, f, a, c} assert RegularPolygon((a, b), c, d, e).free_symbols == {e, a, b, c, d} def test_transform(): x = Symbol('x', real=True) y = Symbol('y', real=True) c = Curve((x, x**2), (x, 0, 1)) cout = Curve((2*x - 4, 3*x**2 - 10), (x, 0, 1)) pts = [Point(0, 0), Point(S.Half, Rational(1, 4)), Point(1, 1)] pts_out = [Point(-4, -10), Point(-3, Rational(-37, 4)), Point(-2, -7)] assert c.scale(2, 3, (4, 5)) == cout assert [c.subs(x, xi/2) for xi in Tuple(0, 1, 2)] == pts assert [cout.subs(x, xi/2) for xi in Tuple(0, 1, 2)] == pts_out assert Curve((x + y, 3*x), (x, 0, 1)).subs(y, S.Half) == \ Curve((x + S.Half, 3*x), (x, 0, 1)) assert Curve((x, 3*x), (x, 0, 1)).translate(4, 5) == \ Curve((x + 4, 3*x + 5), (x, 0, 1)) def test_length(): t = Symbol('t', real=True) c1 = Curve((t, 0), (t, 0, 1)) assert c1.length == 1 c2 = Curve((t, t), (t, 0, 1)) assert c2.length == sqrt(2) c3 = Curve((t ** 2, t), (t, 2, 5)) assert c3.length == -sqrt(17) - asinh(4) / 4 + asinh(10) / 4 + 5 * sqrt(101) / 2 def test_parameter_value(): t = Symbol('t') C = Curve([2*t, t**2], (t, 0, 2)) assert C.parameter_value((2, 1), t) == {t: 1} raises(ValueError, lambda: C.parameter_value((2, 0), t)) def test_issue_17997(): t, s = symbols('t s') c = Curve((t, t**2), (t, 0, 10)) p = Curve([2*s, s**2], (s, 0, 2)) assert c(2) == Point(2, 4) assert p(1) == Point(2, 1)