%PDF- %PDF-
Direktori : /usr/lib/python3/dist-packages/sympy/functions/special/tests/ |
Current File : //usr/lib/python3/dist-packages/sympy/functions/special/tests/test_spherical_harmonics.py |
from sympy import Symbol, sqrt, pi, sin, cos, cot, exp, I, diff, conjugate from sympy.functions.special.spherical_harmonics import Ynm, Znm, Ynm_c def test_Ynm(): # https://en.wikipedia.org/wiki/Spherical_harmonics th, ph = Symbol("theta", real=True), Symbol("phi", real=True) from sympy.abc import n,m assert Ynm(0, 0, th, ph).expand(func=True) == 1/(2*sqrt(pi)) assert Ynm(1, -1, th, ph) == -exp(-2*I*ph)*Ynm(1, 1, th, ph) assert Ynm(1, -1, th, ph).expand(func=True) == sqrt(6)*sin(th)*exp(-I*ph)/(4*sqrt(pi)) assert Ynm(1, 0, th, ph).expand(func=True) == sqrt(3)*cos(th)/(2*sqrt(pi)) assert Ynm(1, 1, th, ph).expand(func=True) == -sqrt(6)*sin(th)*exp(I*ph)/(4*sqrt(pi)) assert Ynm(2, 0, th, ph).expand(func=True) == 3*sqrt(5)*cos(th)**2/(4*sqrt(pi)) - sqrt(5)/(4*sqrt(pi)) assert Ynm(2, 1, th, ph).expand(func=True) == -sqrt(30)*sin(th)*exp(I*ph)*cos(th)/(4*sqrt(pi)) assert Ynm(2, -2, th, ph).expand(func=True) == (-sqrt(30)*exp(-2*I*ph)*cos(th)**2/(8*sqrt(pi)) + sqrt(30)*exp(-2*I*ph)/(8*sqrt(pi))) assert Ynm(2, 2, th, ph).expand(func=True) == (-sqrt(30)*exp(2*I*ph)*cos(th)**2/(8*sqrt(pi)) + sqrt(30)*exp(2*I*ph)/(8*sqrt(pi))) assert diff(Ynm(n, m, th, ph), th) == (m*cot(th)*Ynm(n, m, th, ph) + sqrt((-m + n)*(m + n + 1))*exp(-I*ph)*Ynm(n, m + 1, th, ph)) assert diff(Ynm(n, m, th, ph), ph) == I*m*Ynm(n, m, th, ph) assert conjugate(Ynm(n, m, th, ph)) == (-1)**(2*m)*exp(-2*I*m*ph)*Ynm(n, m, th, ph) assert Ynm(n, m, -th, ph) == Ynm(n, m, th, ph) assert Ynm(n, m, th, -ph) == exp(-2*I*m*ph)*Ynm(n, m, th, ph) assert Ynm(n, -m, th, ph) == (-1)**m*exp(-2*I*m*ph)*Ynm(n, m, th, ph) def test_Ynm_c(): th, ph = Symbol("theta", real=True), Symbol("phi", real=True) from sympy.abc import n,m assert Ynm_c(n, m, th, ph) == (-1)**(2*m)*exp(-2*I*m*ph)*Ynm(n, m, th, ph) def test_Znm(): # https://en.wikipedia.org/wiki/Solid_harmonics#List_of_lowest_functions th, ph = Symbol("theta", real=True), Symbol("phi", real=True) assert Znm(0, 0, th, ph) == Ynm(0, 0, th, ph) assert Znm(1, -1, th, ph) == (-sqrt(2)*I*(Ynm(1, 1, th, ph) - exp(-2*I*ph)*Ynm(1, 1, th, ph))/2) assert Znm(1, 0, th, ph) == Ynm(1, 0, th, ph) assert Znm(1, 1, th, ph) == (sqrt(2)*(Ynm(1, 1, th, ph) + exp(-2*I*ph)*Ynm(1, 1, th, ph))/2) assert Znm(0, 0, th, ph).expand(func=True) == 1/(2*sqrt(pi)) assert Znm(1, -1, th, ph).expand(func=True) == (sqrt(3)*I*sin(th)*exp(I*ph)/(4*sqrt(pi)) - sqrt(3)*I*sin(th)*exp(-I*ph)/(4*sqrt(pi))) assert Znm(1, 0, th, ph).expand(func=True) == sqrt(3)*cos(th)/(2*sqrt(pi)) assert Znm(1, 1, th, ph).expand(func=True) == (-sqrt(3)*sin(th)*exp(I*ph)/(4*sqrt(pi)) - sqrt(3)*sin(th)*exp(-I*ph)/(4*sqrt(pi))) assert Znm(2, -1, th, ph).expand(func=True) == (sqrt(15)*I*sin(th)*exp(I*ph)*cos(th)/(4*sqrt(pi)) - sqrt(15)*I*sin(th)*exp(-I*ph)*cos(th)/(4*sqrt(pi))) assert Znm(2, 0, th, ph).expand(func=True) == 3*sqrt(5)*cos(th)**2/(4*sqrt(pi)) - sqrt(5)/(4*sqrt(pi)) assert Znm(2, 1, th, ph).expand(func=True) == (-sqrt(15)*sin(th)*exp(I*ph)*cos(th)/(4*sqrt(pi)) - sqrt(15)*sin(th)*exp(-I*ph)*cos(th)/(4*sqrt(pi)))