%PDF- %PDF-
Direktori : /usr/lib/python3/dist-packages/sympy/functions/special/tests/ |
Current File : //usr/lib/python3/dist-packages/sympy/functions/special/tests/test_mathieu.py |
from sympy import (sqrt, sin, cos, diff, conjugate, mathieus, mathieuc, mathieusprime, mathieucprime) from sympy.abc import a, q, z def test_mathieus(): assert isinstance(mathieus(a, q, z), mathieus) assert mathieus(a, 0, z) == sin(sqrt(a)*z) assert conjugate(mathieus(a, q, z)) == mathieus(conjugate(a), conjugate(q), conjugate(z)) assert diff(mathieus(a, q, z), z) == mathieusprime(a, q, z) def test_mathieuc(): assert isinstance(mathieuc(a, q, z), mathieuc) assert mathieuc(a, 0, z) == cos(sqrt(a)*z) assert diff(mathieuc(a, q, z), z) == mathieucprime(a, q, z) def test_mathieusprime(): assert isinstance(mathieusprime(a, q, z), mathieusprime) assert mathieusprime(a, 0, z) == sqrt(a)*cos(sqrt(a)*z) assert diff(mathieusprime(a, q, z), z) == (-a + 2*q*cos(2*z))*mathieus(a, q, z) def test_mathieucprime(): assert isinstance(mathieucprime(a, q, z), mathieucprime) assert mathieucprime(a, 0, z) == -sqrt(a)*sin(sqrt(a)*z) assert diff(mathieucprime(a, q, z), z) == (-a + 2*q*cos(2*z))*mathieuc(a, q, z)