%PDF- %PDF-
Direktori : /usr/lib/python3/dist-packages/sympy/calculus/tests/ |
Current File : //usr/lib/python3/dist-packages/sympy/calculus/tests/test_euler.py |
from sympy import Symbol, Function, Derivative as D, Eq, cos, sin from sympy.testing.pytest import raises from sympy.calculus.euler import euler_equations as euler def test_euler_interface(): x = Function('x') y = Symbol('y') t = Symbol('t') raises(TypeError, lambda: euler()) raises(TypeError, lambda: euler(D(x(t), t)*y(t), [x(t), y])) raises(ValueError, lambda: euler(D(x(t), t)*x(y), [x(t), x(y)])) raises(TypeError, lambda: euler(D(x(t), t)**2, x(0))) raises(TypeError, lambda: euler(D(x(t), t)*y(t), [t])) assert euler(D(x(t), t)**2/2, {x(t)}) == [Eq(-D(x(t), t, t), 0)] assert euler(D(x(t), t)**2/2, x(t), {t}) == [Eq(-D(x(t), t, t), 0)] def test_euler_pendulum(): x = Function('x') t = Symbol('t') L = D(x(t), t)**2/2 + cos(x(t)) assert euler(L, x(t), t) == [Eq(-sin(x(t)) - D(x(t), t, t), 0)] def test_euler_henonheiles(): x = Function('x') y = Function('y') t = Symbol('t') L = sum(D(z(t), t)**2/2 - z(t)**2/2 for z in [x, y]) L += -x(t)**2*y(t) + y(t)**3/3 assert euler(L, [x(t), y(t)], t) == [Eq(-2*x(t)*y(t) - x(t) - D(x(t), t, t), 0), Eq(-x(t)**2 + y(t)**2 - y(t) - D(y(t), t, t), 0)] def test_euler_sineg(): psi = Function('psi') t = Symbol('t') x = Symbol('x') L = D(psi(t, x), t)**2/2 - D(psi(t, x), x)**2/2 + cos(psi(t, x)) assert euler(L, psi(t, x), [t, x]) == [Eq(-sin(psi(t, x)) - D(psi(t, x), t, t) + D(psi(t, x), x, x), 0)] def test_euler_high_order(): # an example from hep-th/0309038 m = Symbol('m') k = Symbol('k') x = Function('x') y = Function('y') t = Symbol('t') L = (m*D(x(t), t)**2/2 + m*D(y(t), t)**2/2 - k*D(x(t), t)*D(y(t), t, t) + k*D(y(t), t)*D(x(t), t, t)) assert euler(L, [x(t), y(t)]) == [Eq(2*k*D(y(t), t, t, t) - m*D(x(t), t, t), 0), Eq(-2*k*D(x(t), t, t, t) - m*D(y(t), t, t), 0)] w = Symbol('w') L = D(x(t, w), t, w)**2/2 assert euler(L) == [Eq(D(x(t, w), t, t, w, w), 0)]