%PDF- %PDF-
| Direktori : /usr/lib/python3/dist-packages/pythran/pythonic/include/numpy/fft/ |
| Current File : //usr/lib/python3/dist-packages/pythran/pythonic/include/numpy/fft/hfft.hpp |
#ifndef PYTHONIC_INCLUDE_NUMPY_FFT_HFFT_HPP
#define PYTHONIC_INCLUDE_NUMPY_FFT_HFFT_HPP
#include "pythonic/include/utils/functor.hpp"
#include "pythonic/include/types/ndarray.hpp"
/**
* **Noteable difference to numpy.fft.hfft:**
* In contrast to numpy.fft.hfft this implementation preserves precision
* of floating point and complex inputs, i.e. complex<float> input yields
* complex<float> output. numpy.fft.fft always returns complex<double>, even for
* long double input. This follows the same reasoning as given by numpy compiled
* with intel_mkl (see here: https://github.com/IntelPython/mkl_fft/issues/10).
* Conversion to double precision causes code to be slower and hurts use cases
* where single precision preservation is desired, e.g. when interacting with
*GPUs
* or instruments. Moreover for the case of long double inputs, this avoids
* loss of precision.
**/
PYTHONIC_NS_BEGIN
namespace numpy
{
namespace fft
{
template <class T, class pS>
types::ndarray<T, types::array<long, std::tuple_size<pS>::value>>
hfft(types::ndarray<std::complex<T>, pS> const &a, long n = -1,
long axis = -1, types::str const &norm = {});
template <class T, class pS>
types::ndarray<T, types::array<long, std::tuple_size<pS>::value>>
hfft(types::ndarray<std::complex<T>, pS> const &a, types::none_type n,
long axis, types::str const &norm);
template <class T, class pS>
types::ndarray<T, types::array<long, std::tuple_size<pS>::value>>
hfft(types::ndarray<std::complex<T>, pS> const &a, long n, long axis,
types::none_type norm);
template <class T, class pS>
types::ndarray<T, types::array<long, std::tuple_size<pS>::value>>
hfft(types::ndarray<std::complex<T>, pS> const &a, types::none_type n,
long axis = -1, types::none_type norm = types::none_type{});
template <class T, class pS>
types::ndarray<typename std::enable_if<
!types::is_complex<T>::value,
typename std::conditional<std::is_integral<T>::value,
double, T>::type>::type,
types::array<long, std::tuple_size<pS>::value>>
hfft(types::ndarray<T, pS> const &a, long n = -1, long axis = -1,
types::str const &norm = {});
template <class T, class pS>
types::ndarray<typename std::enable_if<
!types::is_complex<T>::value,
typename std::conditional<std::is_integral<T>::value,
double, T>::type>::type,
types::array<long, std::tuple_size<pS>::value>>
hfft(types::ndarray<T, pS> const &a, types::none_type n, long axis,
types::str const &norm);
template <class T, class pS>
types::ndarray<typename std::enable_if<
!types::is_complex<T>::value,
typename std::conditional<std::is_integral<T>::value,
double, T>::type>::type,
types::array<long, std::tuple_size<pS>::value>>
hfft(types::ndarray<T, pS> const &a, long n, long axis,
types::none_type norm);
template <class T, class pS>
types::ndarray<typename std::enable_if<
!types::is_complex<T>::value,
typename std::conditional<std::is_integral<T>::value,
double, T>::type>::type,
types::array<long, std::tuple_size<pS>::value>>
hfft(types::ndarray<T, pS> const &a, types::none_type n, long axis = -1,
types::none_type norm = types::none_type{});
NUMPY_EXPR_TO_NDARRAY0_DECL(hfft);
DEFINE_FUNCTOR(pythonic::numpy::fft, hfft);
}
}
PYTHONIC_NS_END
#endif