%PDF- %PDF-
Direktori : /usr/include/xsimd/math/ |
Current File : //usr/include/xsimd/math/xsimd_rem_pio2.hpp |
/*************************************************************************** * Copyright (c) Johan Mabille, Sylvain Corlay, Wolf Vollprecht and * * Martin Renou * * Copyright (c) QuantStack * * * * Distributed under the terms of the BSD 3-Clause License. * * * * The full license is in the file LICENSE, distributed with this software. * ****************************************************************************/ #include <cmath> #include <cstdint> #include <cstring> namespace xsimd { namespace detail { /* origin: boost/simd/arch/common/scalar/function/rem_pio2.hpp */ /* * ==================================================== * copyright 2016 NumScale SAS * * Distributed under the Boost Software License, Version 1.0. * (See copy at http://boost.org/LICENSE_1_0.txt) * ==================================================== */ #if defined(_MSC_VER) #define ONCE0 \ __pragma(warning(push)) \ __pragma(warning(disable : 4127)) while (0) \ __pragma(warning(pop)) /**/ #else #define ONCE0 while (0) #endif /* * ==================================================== * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. * * Developed at SunPro, a Sun Microsystems, Inc. business. * Permission to use, copy, modify, and distribute this * software is freely granted, provided that this notice * is preserved. * ==================================================== */ #if defined(__GNUC__) && defined(__BYTE_ORDER__) #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ #define XSIMD_LITTLE_ENDIAN #endif #elif defined(_WIN32) // We can safely assume that Windows is always little endian #define XSIMD_LITTLE_ENDIAN #elif defined(i386) || defined(i486) || \ defined(intel) || defined(x86) || defined(i86pc) || \ defined(__alpha) || defined(__osf__) #define XSIMD_LITTLE_ENDIAN #endif #ifdef XSIMD_LITTLE_ENDIAN #define LOW_WORD_IDX 0 #define HIGH_WORD_IDX sizeof(std::uint32_t) #else #define LOW_WORD_IDX sizeof(std::uint32_t) #define HIGH_WORD_IDX 0 #endif #define GET_HIGH_WORD(i, d) \ do \ { \ double f = (d); \ std::memcpy(&(i), reinterpret_cast<char*>(&f) + \ HIGH_WORD_IDX, \ sizeof(std::uint32_t)); \ } \ ONCE0 \ /**/ #define GET_LOW_WORD(i, d) \ do \ { \ double f = (d); \ std::memcpy(&(i), reinterpret_cast<char*>(&f) + \ LOW_WORD_IDX, \ sizeof(std::uint32_t)); \ } \ ONCE0 \ /**/ #define SET_HIGH_WORD(d, v) \ do \ { \ double f = (d); \ std::uint32_t value = (v); \ std::memcpy(reinterpret_cast<char*>(&f) + \ HIGH_WORD_IDX, \ &value, sizeof(std::uint32_t)); \ (d) = f; \ } \ ONCE0 \ /**/ #define SET_LOW_WORD(d, v) \ do \ { \ double f = (d); \ std::uint32_t value = (v); \ std::memcpy(reinterpret_cast<char*>(&f) + \ LOW_WORD_IDX, \ &value, sizeof(std::uint32_t)); \ (d) = f; \ } \ ONCE0 \ /**/ /* * __kernel_rem_pio2(x,y,e0,nx,prec,ipio2) * double x[],y[]; int e0,nx,prec; int ipio2[]; * * __kernel_rem_pio2 return the last three digits of N with * y = x - N*pi/2 * so that |y| < pi/2. * * The method is to compute the integer (mod 8) and fraction parts of * (2/pi)*x without doing the full multiplication. In general we * skip the part of the product that are known to be a huge integer ( * more accurately, = 0 mod 8 ). Thus the number of operations are * independent of the exponent of the input. * * (2/pi) is represented by an array of 24-bit integers in ipio2[]. * * Input parameters: * x[] The input value (must be positive) is broken into nx * pieces of 24-bit integers in double precision format. * x[i] will be the i-th 24 bit of x. The scaled exponent * of x[0] is given in input parameter e0 (i.e., x[0]*2^e0 * match x's up to 24 bits. * * Example of breaking a double positive z into x[0]+x[1]+x[2]: * e0 = ilogb(z)-23 * z = scalbn(z,-e0) * for i = 0,1,2 * x[i] = floor(z) * z = (z-x[i])*2**24 * * * y[] ouput result in an array of double precision numbers. * The dimension of y[] is: * 24-bit precision 1 * 53-bit precision 2 * 64-bit precision 2 * 113-bit precision 3 * The actual value is the sum of them. Thus for 113-bit * precison, one may have to do something like: * * long double t,w,r_head, r_tail; * t = (long double)y[2] + (long double)y[1]; * w = (long double)y[0]; * r_head = t+w; * r_tail = w - (r_head - t); * * e0 The exponent of x[0] * * nx dimension of x[] * * prec an integer indicating the precision: * 0 24 bits (single) * 1 53 bits (double) * 2 64 bits (extended) * 3 113 bits (quad) * * ipio2[] * integer array, contains the (24*i)-th to (24*i+23)-th * bit of 2/pi after binary point. The corresponding * floating value is * * ipio2[i] * 2^(-24(i+1)). * * External function: * double scalbn(), floor(); * * * Here is the description of some local variables: * * jk jk+1 is the initial number of terms of ipio2[] needed * in the computation. The recommended value is 2,3,4, * 6 for single, double, extended,and quad. * * jz local integer variable indicating the number of * terms of ipio2[] used. * * jx nx - 1 * * jv index for pointing to the suitable ipio2[] for the * computation. In general, we want * ( 2^e0*x[0] * ipio2[jv-1]*2^(-24jv) )/8 * is an integer. Thus * e0-3-24*jv >= 0 or (e0-3)/24 >= jv * Hence jv = max(0,(e0-3)/24). * * jp jp+1 is the number of terms in PIo2[] needed, jp = jk. * * q[] double array with integral value, representing the * 24-bits chunk of the product of x and 2/pi. * * q0 the corresponding exponent of q[0]. Note that the * exponent for q[i] would be q0-24*i. * * PIo2[] double precision array, obtained by cutting pi/2 * into 24 bits chunks. * * f[] ipio2[] in floating point * * iq[] integer array by breaking up q[] in 24-bits chunk. * * fq[] final product of x*(2/pi) in fq[0],..,fq[jk] * * ih integer. If >0 it indicates q[] is >= 0.5, hence * it also indicates the *sign* of the result. * */ inline int32_t __kernel_rem_pio2(double* x, double* y, int32_t e0, int32_t nx, int32_t prec, const int32_t* ipio2) { static const int32_t init_jk[] = {2, 3, 4, 6}; /* initial value for jk */ static const double PIo2[] = { 1.57079625129699707031e+00, /* 0x3FF921FB, 0x40000000 */ 7.54978941586159635335e-08, /* 0x3E74442D, 0x00000000 */ 5.39030252995776476554e-15, /* 0x3CF84698, 0x80000000 */ 3.28200341580791294123e-22, /* 0x3B78CC51, 0x60000000 */ 1.27065575308067607349e-29, /* 0x39F01B83, 0x80000000 */ 1.22933308981111328932e-36, /* 0x387A2520, 0x40000000 */ 2.73370053816464559624e-44, /* 0x36E38222, 0x80000000 */ 2.16741683877804819444e-51, /* 0x3569F31D, 0x00000000 */ }; static const double zero = 0.0, one = 1.0, two24 = 1.67772160000000000000e+07, /* 0x41700000, 0x00000000 */ twon24 = 5.96046447753906250000e-08; /* 0x3E700000, 0x00000000 */ int32_t jz, jx, jv, jp, jk, carry, n, iq[20], i, j, k, m, q0, ih; double z, fw, f[20], fq[20], q[20]; /* initialize jk*/ jk = init_jk[prec]; jp = jk; /* determine jx,jv,q0, note that 3>q0 */ jx = nx - 1; jv = (e0 - 3) / 24; if (jv < 0) jv = 0; q0 = e0 - 24 * (jv + 1); /* set up f[0] to f[jx+jk] where f[jx+jk] = ipio2[jv+jk] */ j = jv - jx; m = jx + jk; for (i = 0; i <= m; i++, j++) f[i] = (j < 0) ? zero : (double)ipio2[j]; /* compute q[0],q[1],...q[jk] */ for (i = 0; i <= jk; i++) { for (j = 0, fw = 0.0; j <= jx; j++) fw += x[j] * f[jx + i - j]; q[i] = fw; } jz = jk; recompute: /* distill q[] into iq[] reversingly */ for (i = 0, j = jz, z = q[jz]; j > 0; i++, j--) { fw = (double)((int32_t)(twon24 * z)); iq[i] = (int)(z - two24 * fw); z = q[j - 1] + fw; } /* compute n */ z = std::scalbn(z, q0); /* actual value of z */ z -= 8.0 * std::floor(z * 0.125); /* trim off integer >= 8 */ n = (int32_t)z; z -= (double)n; ih = 0; if (q0 > 0) { /* need iq[jz-1] to determine n */ i = (iq[jz - 1] >> (24 - q0)); n += i; iq[jz - 1] -= i << (24 - q0); ih = iq[jz - 1] >> (23 - q0); } else if (q0 == 0) ih = iq[jz - 1] >> 23; else if (z >= 0.5) ih = 2; if (ih > 0) { /* q > 0.5 */ n += 1; carry = 0; for (i = 0; i < jz; i++) { /* compute 1-q */ j = iq[i]; if (carry == 0) { if (j != 0) { carry = 1; iq[i] = 0x1000000 - j; } } else iq[i] = 0xffffff - j; } if (q0 > 0) { /* rare case: chance is 1 in 12 */ switch (q0) { case 1: iq[jz - 1] &= 0x7fffff; break; case 2: iq[jz - 1] &= 0x3fffff; break; } } if (ih == 2) { z = one - z; if (carry != 0) z -= std::scalbn(one, q0); } } /* check if recomputation is needed */ if (z == zero) { j = 0; for (i = jz - 1; i >= jk; i--) j |= iq[i]; if (j == 0) { /* need recomputation */ for (k = 1; iq[jk - k] == 0; k++) ; /* k = no. of terms needed */ for (i = jz + 1; i <= jz + k; i++) { /* add q[jz+1] to q[jz+k] */ f[jx + i] = (double)ipio2[jv + i]; for (j = 0, fw = 0.0; j <= jx; j++) fw += x[j] * f[jx + i - j]; q[i] = fw; } jz += k; goto recompute; } } /* chop off zero terms */ if (z == 0.0) { jz -= 1; q0 -= 24; while (iq[jz] == 0) { jz--; q0 -= 24; } } else { /* break z into 24-bit if necessary */ z = std::scalbn(z, -q0); if (z >= two24) { fw = (double)((int32_t)(twon24 * z)); iq[jz] = (int32_t)(z - two24 * fw); jz += 1; q0 += 24; iq[jz] = (int32_t)fw; } else iq[jz] = (int32_t)z; } /* convert integer "bit" chunk to floating-point value */ fw = scalbn(one, q0); for (i = jz; i >= 0; i--) { q[i] = fw * (double)iq[i]; fw *= twon24; } /* compute PIo2[0,...,jp]*q[jz,...,0] */ for (i = jz; i >= 0; i--) { for (fw = 0.0, k = 0; k <= jp && k <= jz - i; k++) fw += PIo2[k] * q[i + k]; fq[jz - i] = fw; } /* compress fq[] into y[] */ switch (prec) { case 0: fw = 0.0; for (i = jz; i >= 0; i--) fw += fq[i]; y[0] = (ih == 0) ? fw : -fw; break; case 1: case 2: fw = 0.0; for (i = jz; i >= 0; i--) fw += fq[i]; y[0] = (ih == 0) ? fw : -fw; fw = fq[0] - fw; for (i = 1; i <= jz; i++) fw += fq[i]; y[1] = (ih == 0) ? fw : -fw; break; case 3: /* painful */ for (i = jz; i > 0; i--) { fw = fq[i - 1] + fq[i]; fq[i] += fq[i - 1] - fw; fq[i - 1] = fw; } for (i = jz; i > 1; i--) { fw = fq[i - 1] + fq[i]; fq[i] += fq[i - 1] - fw; fq[i - 1] = fw; } for (fw = 0.0, i = jz; i >= 2; i--) fw += fq[i]; if (ih == 0) { y[0] = fq[0]; y[1] = fq[1]; y[2] = fw; } else { y[0] = -fq[0]; y[1] = -fq[1]; y[2] = -fw; } } return n & 7; } inline std::int32_t __ieee754_rem_pio2(double x, double* y) { static const std::int32_t two_over_pi[] = { 0xA2F983, 0x6E4E44, 0x1529FC, 0x2757D1, 0xF534DD, 0xC0DB62, 0x95993C, 0x439041, 0xFE5163, 0xABDEBB, 0xC561B7, 0x246E3A, 0x424DD2, 0xE00649, 0x2EEA09, 0xD1921C, 0xFE1DEB, 0x1CB129, 0xA73EE8, 0x8235F5, 0x2EBB44, 0x84E99C, 0x7026B4, 0x5F7E41, 0x3991D6, 0x398353, 0x39F49C, 0x845F8B, 0xBDF928, 0x3B1FF8, 0x97FFDE, 0x05980F, 0xEF2F11, 0x8B5A0A, 0x6D1F6D, 0x367ECF, 0x27CB09, 0xB74F46, 0x3F669E, 0x5FEA2D, 0x7527BA, 0xC7EBE5, 0xF17B3D, 0x0739F7, 0x8A5292, 0xEA6BFB, 0x5FB11F, 0x8D5D08, 0x560330, 0x46FC7B, 0x6BABF0, 0xCFBC20, 0x9AF436, 0x1DA9E3, 0x91615E, 0xE61B08, 0x659985, 0x5F14A0, 0x68408D, 0xFFD880, 0x4D7327, 0x310606, 0x1556CA, 0x73A8C9, 0x60E27B, 0xC08C6B, }; static const std::int32_t npio2_hw[] = { 0x3FF921FB, 0x400921FB, 0x4012D97C, 0x401921FB, 0x401F6A7A, 0x4022D97C, 0x4025FDBB, 0x402921FB, 0x402C463A, 0x402F6A7A, 0x4031475C, 0x4032D97C, 0x40346B9C, 0x4035FDBB, 0x40378FDB, 0x403921FB, 0x403AB41B, 0x403C463A, 0x403DD85A, 0x403F6A7A, 0x40407E4C, 0x4041475C, 0x4042106C, 0x4042D97C, 0x4043A28C, 0x40446B9C, 0x404534AC, 0x4045FDBB, 0x4046C6CB, 0x40478FDB, 0x404858EB, 0x404921FB, }; /* * invpio2: 53 bits of 2/pi * pio2_1: first 33 bit of pi/2 * pio2_1t: pi/2 - pio2_1 * pio2_2: second 33 bit of pi/2 * pio2_2t: pi/2 - (pio2_1+pio2_2) * pio2_3: third 33 bit of pi/2 * pio2_3t: pi/2 - (pio2_1+pio2_2+pio2_3) */ static const double zero = 0.00000000000000000000e+00, /* 0x00000000, 0x00000000 */ half = 5.00000000000000000000e-01, /* 0x3FE00000, 0x00000000 */ two24 = 1.67772160000000000000e+07, /* 0x41700000, 0x00000000 */ invpio2 = 6.36619772367581382433e-01, /* 0x3FE45F30, 0x6DC9C883 */ pio2_1 = 1.57079632673412561417e+00, /* 0x3FF921FB, 0x54400000 */ pio2_1t = 6.07710050650619224932e-11, /* 0x3DD0B461, 0x1A626331 */ pio2_2 = 6.07710050630396597660e-11, /* 0x3DD0B461, 0x1A600000 */ pio2_2t = 2.02226624879595063154e-21, /* 0x3BA3198A, 0x2E037073 */ pio2_3 = 2.02226624871116645580e-21, /* 0x3BA3198A, 0x2E000000 */ pio2_3t = 8.47842766036889956997e-32; /* 0x397B839A, 0x252049C1 */ double z = 0., w, t, r, fn; double tx[3]; std::int32_t e0, i, j, nx, n, ix, hx; std::uint32_t low; GET_HIGH_WORD(hx, x); /* high word of x */ ix = hx & 0x7fffffff; if (ix <= 0x3fe921fb) /* |x| ~<= pi/4 , no need for reduction */ { y[0] = x; y[1] = 0; return 0; } if (ix < 0x4002d97c) { /* |x| < 3pi/4, special case with n=+-1 */ if (hx > 0) { z = x - pio2_1; if (ix != 0x3ff921fb) { /* 33+53 bit pi is good enough */ y[0] = z - pio2_1t; y[1] = (z - y[0]) - pio2_1t; } else { /* near pi/2, use 33+33+53 bit pi */ z -= pio2_2; y[0] = z - pio2_2t; y[1] = (z - y[0]) - pio2_2t; } return 1; } else { /* negative x */ z = x + pio2_1; if (ix != 0x3ff921fb) { /* 33+53 bit pi is good enough */ y[0] = z + pio2_1t; y[1] = (z - y[0]) + pio2_1t; } else { /* near pi/2, use 33+33+53 bit pi */ z += pio2_2; y[0] = z + pio2_2t; y[1] = (z - y[0]) + pio2_2t; } return -1; } } if (ix <= 0x413921fb) { /* |x| ~<= 2^19*(pi/2), medium_ size */ t = std::fabs(x); n = (std::int32_t)(t * invpio2 + half); fn = (double)n; r = t - fn * pio2_1; w = fn * pio2_1t; /* 1st round good to 85 bit */ if ((n < 32) && (n > 0) && (ix != npio2_hw[n - 1])) { y[0] = r - w; /* quick check no cancellation */ } else { std::uint32_t high; j = ix >> 20; y[0] = r - w; GET_HIGH_WORD(high, y[0]); i = j - ((high >> 20) & 0x7ff); if (i > 16) { /* 2nd iteration needed, good to 118 */ t = r; w = fn * pio2_2; r = t - w; w = fn * pio2_2t - ((t - r) - w); y[0] = r - w; GET_HIGH_WORD(high, y[0]); i = j - ((high >> 20) & 0x7ff); if (i > 49) { /* 3rd iteration need, 151 bits acc */ t = r; /* will cover all possible cases */ w = fn * pio2_3; r = t - w; w = fn * pio2_3t - ((t - r) - w); y[0] = r - w; } } } y[1] = (r - y[0]) - w; if (hx < 0) { y[0] = -y[0]; y[1] = -y[1]; return -n; } else return n; } /* * all other (large) arguments */ if (ix >= 0x7ff00000) { /* x is inf or NaN */ y[0] = y[1] = x - x; return 0; } /* set z = scalbn(|x|,ilogb(x)-23) */ GET_LOW_WORD(low, x); SET_LOW_WORD(z, low); e0 = (ix >> 20) - 1046; /* e0 = ilogb(z)-23; */ SET_HIGH_WORD(z, ix - ((std::int32_t)(e0 << 20))); for (i = 0; i < 2; i++) { tx[i] = (double)((std::int32_t)(z)); z = (z - tx[i]) * two24; } tx[2] = z; nx = 3; while (tx[nx - 1] == zero) nx--; /* skip zero term */ n = __kernel_rem_pio2(tx, y, e0, nx, 2, two_over_pi); if (hx < 0) { y[0] = -y[0]; y[1] = -y[1]; return -n; } return n; } } #undef XSIMD_LITTLE_ENDIAN #undef SET_LOW_WORD #undef SET_HIGH_WORD #undef GET_LOW_WORD #undef GET_HIGH_WORD #undef HIGH_WORD_IDX #undef LOW_WORD_IDX #undef ONCE0 }