%PDF- %PDF-
Mini Shell

Mini Shell

Direktori : /usr/include/xsimd/math/
Upload File :
Create Path :
Current File : //usr/include/xsimd/math/xsimd_exponential.hpp

/***************************************************************************
* Copyright (c) Johan Mabille, Sylvain Corlay, Wolf Vollprecht and         *
* Martin Renou                                                             *
* Copyright (c) QuantStack                                                 *
*                                                                          *
* Distributed under the terms of the BSD 3-Clause License.                 *
*                                                                          *
* The full license is in the file LICENSE, distributed with this software. *
****************************************************************************/

#ifndef XSIMD_EXPONENTIAL_HPP
#define XSIMD_EXPONENTIAL_HPP

#include "xsimd_exp_reduction.hpp"
#include "xsimd_fp_manipulation.hpp"

namespace xsimd
{
    /**
     * Computes the natural exponential of the batch \c x.
     * @param x batch of floating point values.
     * @return the natural exponential of \c x.
     */
    template <class B>
    batch_type_t<B> exp(const simd_base<B>& x);

    /**
     * Computes the base 2 exponential of the batch \c x.
     * @param x batch of floating point values.
     * @return the base 2 exponential of \c x.
     */
    template <class B>
    batch_type_t<B> exp2(const simd_base<B>& x);

    /**
     * Computes the base 10 exponential of the batch \c x.
     * @param x batch of floating point values.
     * @return the base 10 exponential of \c x.
     */
    template <class B>
    batch_type_t<B> exp10(const simd_base<B>& x);

    /**
     * Computes the natural exponential of the batch \c x, minus one.
     * @param x batch of floating point values.
     * @return the natural exponential of \c x, minus one.
     */
    template <class B>
    batch_type_t<B> expm1(const simd_base<B>& x);

    /******************************
     * exponential implementation *
     ******************************/

    namespace detail
    {
        template <class B, class Tag, class T = typename B::value_type>
        struct exp_kernel;

        template <class B, class Tag>
        struct exp_kernel<B, Tag, float>
        {
            /* origin: boost/simd/arch/common/detail/simd/expo_base.hpp */
            /*
             * ====================================================
             * copyright 2016 NumScale SAS
             *
             * Distributed under the Boost Software License, Version 1.0.
             * (See copy at http://boost.org/LICENSE_1_0.txt)
             * ====================================================
             */
            static inline B compute(const B& a)
            {
                using reducer_t = exp_reduction<B, Tag>;
                B x;
                B k = reducer_t::reduce(a, x);
                x = reducer_t::approx(x);
                x = select(a <= reducer_t::minlog(), B(0.), ldexp(x, to_int(k)));
                x = select(a >= reducer_t::maxlog(), infinity<B>(), x);
                return x;
            }
        };

        template <class B, class Tag>
        struct exp_kernel<B, Tag, double>
        {
            /* origin: boost/simd/arch/common/detail/simd/expo_base.hpp */
            /*
             * ====================================================
             * copyright 2016 NumScale SAS
             *
             * Distributed under the Boost Software License, Version 1.0.
             * (See copy at http://boost.org/LICENSE_1_0.txt)
             * ====================================================
             */
            static inline B compute(const B& a)
            {
                using reducer_t = exp_reduction<B, Tag>;
                B hi, lo, x;
                B k = reducer_t::reduce(a, hi, lo, x);
                B c = reducer_t::approx(x);
                c = reducer_t::finalize(x, c, hi, lo);
                c = select(a <= reducer_t::minlog(), B(0.), ldexp(c, to_int(k)));
                c = select(a >= reducer_t::maxlog(), infinity<B>(), c);
                return c;
            }
        };
    }

    template <class B>
    inline batch_type_t<B> exp(const simd_base<B>& x)
    {
        return detail::exp_kernel<batch_type_t<B>, exp_tag>::compute(x());
    }

    template <class B>
    inline batch_type_t<B> exp2(const simd_base<B>& x)
    {
        return detail::exp_kernel<batch_type_t<B>, exp2_tag>::compute(x());
    }

    template <class B>
    inline batch_type_t<B> exp10(const simd_base<B>& x)
    {
        return detail::exp_kernel<batch_type_t<B>, exp10_tag>::compute(x());
    }

    /************************
     * expm1 implementation *
     ************************/

    namespace detail
    {
        template <class B, class T = typename B::value_type>
        struct expm1_kernel;

        template <class B>
        inline B expm1_real_impl(const B& x)
        {
            return select(x < logeps<B>(),
                          B(-1.),
                          select(x > maxlog<B>(),
                                 infinity<B>(),
                                 expm1_kernel<B>::compute_impl(x)));
        }

        template <class B>
        struct expm1_kernel<B, float>
        {
            /* origin: boost/simd/arch/common/detail/generic/expm1_kernel.hpp */
            /*
             * ====================================================
             * copyright 2016 NumScale SAS
             *
             * Distributed under the Boost Software License, Version 1.0.
             * (See copy at http://boost.org/LICENSE_1_0.txt)
             * ====================================================
             */
            static inline B compute_impl(const B& a)
            {
                B k = nearbyint(invlog_2<B>() * a);
                B x = fnma(k, log_2hi<B>(), a);
                x = fnma(k, log_2lo<B>(), x);
                B hx = x * B(0.5);
                B hxs = x * hx;
                B r = horner<B,
                             0X3F800000UL,  // 1
                             0XBD08887FUL,  // -3.3333298E-02
                             0X3ACF6DB4UL  // 1.582554
                             >(hxs);
                B t = fnma(r, hx, B(3.));
                B e = hxs * ((r - t) / (B(6.) - x * t));
                e = fms(x, e, hxs);
                using i_type = as_integer_t<B>;
                i_type ik = to_int(k);
                B two2mk = bitwise_cast<B>((maxexponent<B>() - ik) << nmb<B>());
                B y = B(1.) - two2mk - (e - x);
                return ldexp(y, ik);
            }

            static inline B compute(const B& a)
            {
                return expm1_real_impl(a);
            }
        };

        template <class B>
        struct expm1_kernel<B, double>
        {
            /* origin: boost/simd/arch/common/detail/generic/expm1_kernel.hpp */
            /*
             * ====================================================
             * copyright 2016 NumScale SAS
             *
             * Distributed under the Boost Software License, Version 1.0.
             * (See copy at http://boost.org/LICENSE_1_0.txt)
             * ====================================================
             */
            static inline B compute_impl(const B& a)
            {
                B k = nearbyint(invlog_2<B>() * a);
                B hi = fnma(k, log_2hi<B>(), a);
                B lo = k * log_2lo<B>();
                B x = hi - lo;
                B hxs = x * x * B(0.5);
                B r = horner<B,
                             0X3FF0000000000000ULL,
                             0XBFA11111111110F4ULL,
                             0X3F5A01A019FE5585ULL,
                             0XBF14CE199EAADBB7ULL,
                             0X3ED0CFCA86E65239ULL,
                             0XBE8AFDB76E09C32DULL>(hxs);
                B t = B(3.) - r * B(0.5) * x;
                B e = hxs * ((r - t) / (B(6) - x * t));
                B c = (hi - x) - lo;
                e = (x * (e - c) - c) - hxs;
                using i_type = as_integer_t<B>;
                i_type ik = to_int(k);
                B two2mk = bitwise_cast<B>((maxexponent<B>() - ik) << nmb<B>());
                B ct1 = B(1.) - two2mk - (e - x);
                B ct2 = ++(x - (e + two2mk));
                B y = select(k < B(20.), ct1, ct2);
                return ldexp(y, ik);
            }

            static inline B compute(const B& a)
            {
                return expm1_real_impl(a);
            }
        };
    }

    template <class B>
    inline batch_type_t<B> expm1(const simd_base<B>& x)
    {
        return detail::expm1_kernel<batch_type_t<B>>::compute(x());
    }
}

#endif

Zerion Mini Shell 1.0