%PDF- %PDF-
| Direktori : /proc/self/root/data/old/usr/share/texlive/texmf-dist/doc/latex/mathdesign/mdbch/ |
| Current File : //proc/self/root/data/old/usr/share/texlive/texmf-dist/doc/latex/mathdesign/mdbch/mdbchtest.tex |
\documentclass[fleqn]{article}
\usepackage[fraktur,mdbch]{mathdesign}
\title{A \LaTeX\ math test document}
\author{for fonts created by Math Design}
\raggedbottom
\newcommand{\testsize}[1]{
#1 \texttt{\string#1}: \(a_{c_e}, b_{d_f}, C_{E_G}, 0_{1_2},
a_{0_a}, 0_{a_0},
\sum_{i=0}^\infty\) \\
}
\newcommand{\testdelims}[3]{\sqrt{
#1|#1\|#1\uparrow
#1\downarrow#1\updownarrow#1\Uparrow#1\Downarrow
#1\Updownarrow#1\lfloor#1\lceil
#1(#1\{#1[#1\langle
#3
#2\rangle#2]#2\}#2)
#2\rceil#2\rfloor#2\Updownarrow#2\Downarrow
#2\Uparrow#2\updownarrow#2\downarrow#2\uparrow
#2\|#2|
}\\}
\newcommand{\testglyphs}[1]{
\begin{quote}
#1a#1b#1c#1d#1e#1f#1g#1h#1i#1j#1k#1l#1m
#1n#1o#1p#1q#1r#1s#1t#1u#1v#1w#1x#1y#1z
#1A#1B#1C#1D#1E#1F#1G#1H#1I#1J#1K#1L#1M
#1N#1O#1P#1Q#1R#1S#1T#1U#1V#1W#1X#1Y#1Z
#10#11#12#13#14#15#16#17#18#19
#1\Gammait#1\Deltait#1\Thetait#1\Lambdait#1\Xiit
#1\Piit#1\Sigmait#1\Upsilonit#1\Phiit#1\Psiit#1\Omegait
#1\alpha#1\beta#1\gamma#1\digamma#1\delta#1\epsilon
#1\varepsilon#1\zeta#1\eta#1\theta#1\vartheta
#1\iota#1\kappa#1\varkappa#1\lambda#1\mu#1\nu#1\xi#1\omicron
#1\pi#1\varpi#1\rho#1\varrho
#1\sigma#1\varsigma#1\tau#1\upsilon#1\phi
#1\varphi#1\chi#1\psi#1\omega
#1\Gamma#1\Delta#1\Theta#1\Lambda#1\Xi
#1\Pi#1\Sigma#1\Upsilon#1\Phi#1\Psi#1\Omega
#1\alphaup#1\betaup#1\gammaup#1\digammaup#1\deltaup#1\epsilonup
#1\varepsilonup#1\zetaup#1\etaup#1\thetaup#1\varthetaup
#1\iotaup#1\kappaup#1\varkappaup#1\lambdaup#1\muup#1\nuup#1\xiup#1\omicron
#1\piup#1\varpiup#1\rhoup#1\varrhoup
#1\sigmaup#1\varsigmaup#1\tauup#1\upsilonup#1\phiup
#1\varphiup#1\chiup#1\psiup#1\omegaup
#1\partial#1\ell#1\imath#1\jmath#1\wp
\end{quote}
}
\newcommand{\parenthesis}[1]{ $(#1)$ }
\newcommand{\sidebearings}[1]{ $|#1|$ }
\newcommand{\subscripts}[1]{ $#1_\circ$ }
\newcommand{\supscripts}[1]{ $#1^\_$ }
\newcommand{\scripts}[1]{ $#1^2_\circ$ }
\newcommand{\vecaccents}[1]{ $\vec#1$ }
\newcommand{\tildeaccents}[1]{ $\tilde#1$ }
\ifx\omicron\undefined
\let\omicron=o
\fi
\parindent 0pt
\mathindent 1em
\def\test#1{#1}
\def\testnums{%
\test 0 \test 1 \test 2 \test 3 \test 4 \test 5 \test 6 \test 7
\test 8 \test 9 }
\def\testupperi{%
\test A \test B \test C \test D \test E \test F \test G \test H
\test I \test J \test K \test L \test M }
\def\testupperii{%
\test N \test O \test P \test Q \test R \test S \test T \test U
\test V \test W \test X \test Y \test Z }
\def\testupper{%
\testupperi\testupperii}
\def\testloweri{%
\test a \test b \test c \test d \test e \test f \test g \test h
\test \imath \test \jmath \test k \test l \test m }
\def\testlowerii{%
\test n \test o \test p \test q \test r \test s \test t \test u
\test v \test w \test x \test y \test z
\test\imath \test\jmath }
\def\testlower{%
\testloweri\testlowerii}
\def\testupgreeki{%
\test A \test B \test\Gamma \test\Delta \test E \test Z \test H
\test\Theta \test I \test K \test\Lambda \test M }
\def\testupgreekii{%
\test N \test\Xi \test O \test\Pi \test P \test\Sigma \test T
\test\Upsilon \test\Phi \test X \test\Psi \test\Omega
\test\nabla }
\def\testupgreek{%
\testupgreeki\testupgreekii}
\def\testlowgreeki{%
\test\alpha \test\beta \test\gamma \test\delta \test\epsilon
\test\zeta \test\eta \test\theta \test\iota \test\kappa \test\lambda
\test\mu }
\def\testlowgreekii{%
\test\nu \test\xi \test o \test\pi \test\rho \test\sigma \test\tau
\test\upsilon \test\phi \test\chi \test\psi \test\omega }
\def\testlowgreekiii{%
\test\varepsilon \test\vartheta \test\varpi \test\varrho
\test\varsigma \test\varphi}
\def\testlowgreek{%
\testlowgreeki\testlowgreekii\testlowgreekiii}
\DeclareMathSymbol{\dit}{\mathord}{letters}{`d}
\DeclareMathSymbol{\dup}{\mathord}{operators}{`d}
\newenvironment{boldface}{\bgroup\mathversion{bold}%
\def\it{\fontseries{b}\fontshape{it}\selectfont}%
\fontseries{b}\selectfont }{\egroup}
\begin{document}
\maketitle
\section*{Introduction}
This document tests the math capabilities of the mdbchpackage, and is
strongly modelled after a similar document by Alan Jeffrey.
This test exercises the {\tt MathDesign mdbch} math fonts combined with the
{\tt bch} text fonts.
\section*{Math Alphabets}
Math italic:
$$
ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijklmnopqrstuvwxyz
$$
Text italic:
$$
\mathit{ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijklmnopqrstuvwxyz}
$$
Roman:
$$
\mathrm{ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijklmnopqrstuvwxyz}
$$
Bold:
$$
\mathbf{ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijklmnopqrstuvwxyz}
$$
Typewriter:
$$
\mathtt{ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijklmnopqrstuvwxyz}
$$
AMS like Symbol:
$$
\yen \geqq \circeq \daleth \varkappa \leftarrowtail \because
\eqslantless \eqslantgtr \curlyeqprec
$$
Greek:
$$
\Gamma\Delta\Theta\Lambda\Xi\Pi\Sigma\Upsilon\Phi\Psi\Omega
\alpha\beta\gamma\delta\epsilon\varepsilon\zeta\eta\theta\vartheta
\iota\kappa\lambda\mu\nu\xi\omicron\pi\varpi\rho\varrho
\sigma\varsigma\tau\upsilon\phi\varphi\chi\psi\omega
$$
{\mathversion{bold}
$$
\Gamma\Delta\Theta\Lambda\Xi\Pi\Sigma\Upsilon\Phi\Psi\Omega
\alpha\beta\gamma\delta\epsilon\varepsilon\zeta\eta\theta\vartheta
\iota\kappa\lambda\mu\nu\xi\omicron\pi\varpi\rho\varrho
\sigma\varsigma\tau\upsilon\phi\varphi\chi\psi\omega
$$}
Calligraphic:
$$A\mathcal{ABCDEFGHIJKLMNOPQRSTUVWXYZ}Z$$
Sans:
$$
A\mathsf{ABCDEFGHIJKLMNOPQRSTUVWXYZ}Z \quad
a\mathsf{abcdefghijklmnopqrstuvwxyz}z
$$
Fraktur:
$$
A\mathfrak{ABCDEFGHIJKLMNOPQRSTUVWXYZ}Z
$$
$$
a\mathfrak{abcdefghijklmnopqrstuvwxyz}z
$$
Blackboard Bold:
$$
A\mathbb{ABCDEFGHIJKLMNOPQRSTUVWXYZ}Z
$$
\section*{Symbols}
$$ \frac{\partial f}{\partial x} $$
$$
a \hookrightarrow b \hookleftarrow c \longrightarrow d
\longleftarrow e \Longrightarrow f \Longleftarrow g
\longleftrightarrow h \Longleftrightarrow i
\mapsto j
$$
$$\textstyle
\oint \int \quad
\bigodot \bigoplus \bigotimes \sum \prod
\bigcup \bigcap \biguplus \bigwedge \bigvee \coprod
$$
$$
\oint \int \quad
\bigodot \bigoplus \bigotimes \sum \prod
\bigcup \bigcap \biguplus \bigwedge \bigvee \coprod
$$
$$ \bigodot_{i=1}^n \gamma_i = \bigoplus_{i=1}^n \gamma_i
=\bigotimes_{i=1}^n \gamma_i = \sum_{i=1}^n \gamma_i = \prod_{i=1}^n
\gamma_i = \bigcup_{i=1}^n \gamma_i = \bigcap_{i=1}^n \gamma_i =
\biguplus_{i=1}^n \gamma_i = \bigwedge_{i=1}^n \gamma_i=
\bigvee_{i=1}^n \gamma_i = \coprod_{i=1}^n \gamma_i
$$
\clearpage
\section*{Big operators}
\def\testop#1{#1_{i=1}^{n} x^{n} \quad}
\begin{displaymath}
\testop\sum
\testop\prod
\testop\coprod
\testop\int
\testop\oint
\end{displaymath}
\begin{displaymath}
\testop\bigotimes
\testop\bigoplus
\testop\bigodot
\testop\bigwedge
\testop\bigvee
\testop\biguplus
\testop\bigcup
\testop\bigcap
\testop\bigsqcup
% \testop\bigsqcap
\end{displaymath}
\section*{Radicals}
\begin{displaymath}
\sqrt{x+y} \qquad \sqrt{x^{2}+y^{2}} \qquad
\sqrt{x_{i}^{2}+y_{j}^{2}} \qquad
\sqrt{\left(\frac{\cos x}{2}\right)} \qquad
\sqrt{\left(\frac{\sin x}{2}\right)}
\end{displaymath}
\begingroup
\delimitershortfall-1pt
\begin{displaymath}
\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{x+y}}}}}}}
\end{displaymath}
\endgroup % \delimitershortfall
\section*{Over- and underbraces}
\begin{displaymath}
\overbrace{x} \quad
\overbrace{x+y} \quad
\overbrace{x^{2}+y^{2}} \quad
\overbrace{x_{i}^{2}+y_{j}^{2}} \quad
\underbrace{x} \quad
\underbrace{x+y} \quad
\underbrace{x_{i}+y_{j}} \quad
\underbrace{x_{i}^{2}+y_{j}^{2}} \quad
\end{displaymath}
\section*{Normal and wide accents}
\begin{displaymath}
\dot{x} \quad
\ddot{x} \quad
\vec{x} \quad
\bar{x} \quad
\overline{x} \quad
\overline{xx} \quad
\tilde{x} \quad
\widetilde{x} \quad
\widetilde{xx} \quad
\widetilde{xxx} \quad
\hat{x} \quad
\widehat{x} \quad
\widehat{xx} \quad
\widehat{xxx} \quad
\end{displaymath}
\def\testwilde#1{
\begin{displaymath}
#1{a} \quad
#1{ab} \quad
#1{abc} \quad
#1{abcde} \quad
#1{abcdefg} \quad
#1{abcdefghi} \quad
#1{abcdefghijk} \quad
\end{displaymath}}
\testwilde\widehat
\testwilde\widetilde
\testwilde\widetriangle
\testwilde\wideparen
\section*{Long arrows}
\begin{displaymath}
\leftrightarrow \quad
\longleftarrow \quad
\longrightarrow \quad
\longleftrightarrow \quad
\Leftrightarrow \quad
\Longleftarrow \quad
\Longrightarrow \quad
\Longleftrightarrow \quad
\end{displaymath}
\section*{Left and right delimters}
\def\testdelim#1#2{ - #1 f #2 - }
\begin{displaymath}
\testdelim()
\testdelim[]
\testdelim\lfloor\rfloor
\testdelim\lceil\rceil
\testdelim\langle\rangle
\testdelim\{\}
\end{displaymath}
\clearpage
\section*{Big-g-g delimters}
\def\testdelim#1#2{
-
\left#1\left#1\left#1\left#1\left#1\left#1\left#1\left#1\left#1\left#1\left#1
#1 -
#2 \right#2\right#2\right#2\right#2\right#2\right#2\right#2\right#2\right#2\right#2\right#2 -}
\begingroup
\delimitershortfall-1pt
\begin{displaymath}
\testdelim\lfloor\rfloor
\qquad
\testdelim()
\end{displaymath}
\begin{displaymath}
\testdelim\lceil\rceil
\qquad
\testdelim\{\}
\end{displaymath}
\begin{displaymath}
\testdelim\llbracket\rrbracket
\qquad
\testdelim\lwave\rwave
\end{displaymath}
\begin{displaymath}
\testdelim[]
\qquad
\testdelim\lgroup\rgroup
\end{displaymath}
\begin{displaymath}
\testdelim\langle\rangle
\qquad
\testdelim\lmoustache\rmoustache
\end{displaymath}
\begin{displaymath}
\testdelim\uparrow\downarrow \quad
\testdelim\Uparrow\Downarrow \quad
\end{displaymath}
\endgroup % \delimitershortfall
\section*{Delimiters}
Each row should be a different size, but within each row the delimiters
should be the same size. First with \verb|\big|, etc:
$$\begin{array}{c}
\testdelims\relax\relax{J}
\testdelims\bigl\bigr{J}
\testdelims\Bigl\Bigr{J}
\testdelims\biggl\biggr{J}
\testdelims\Biggl\Biggr{J}
\end{array}$$
Then with \verb|\left| and \verb|\right|:
$$\begin{array}{c}
\testdelims\left\right{\begin{array}{c} f \end{array}}
\testdelims\left\right{\begin{array}{c} a\\f \end{array}}
\testdelims\left\right{\begin{array}{c} a\\a\\f \end{array}}
\testdelims\left\right{\begin{array}{c} a\\a\\a\\f \end{array}}
\end{array}$$
\section*{Sizing}
$$
abcde + x^{abcde} + 2^{x^{abcde}}
$$
The subscripts should be appropriately sized:
\begin{quote}
\testsize\tiny
\testsize\scriptsize
\testsize\footnotesize
\testsize\small
\testsize\normalsize
\testsize\large
\testsize\Large
\testsize\LARGE
\testsize\huge
\testsize\Huge
\end{quote}
\clearpage
\section*{Spacing}
This paragraph should appear to be a monotone grey texture. Suppose
\(f \in \mathcal{S}_n\) and \(g(x) = (-1)^{|\alpha|}x^\alpha
f(x)\). Then \(g \in \mathcal{S}_n\); now (\emph{c}) implies
that \(\hat g = D_\alpha \hat f\) and \(P \cdot D_\alpha\hat
f = P \cdot \hat g = (P(D)g)\hat{}\), which is a bounded function,
since \(P(D)g \in L^1(R^n)\). This proves that \(\hat f \in
\mathcal S_n\). If \(f_i \rightarrow f\) in \(\mathcal S_n\),
then \(f_i \rightarrow f\) in \(L^1(R^n)\). Therefore \(\hat
f_i(t) \rightarrow \hat f(t)\) for all \(t \in R^n\). That \(f
\rightarrow \hat f\) is a \emph{continuous} mapping of
\(\mathcal S_n\) into \(\mathcal S_n\) follows now from the
closed graph theorem. And thus for \(x_1\) through \(x_i\).
\emph{Functional Analysis}, W.~Rudin,
McGraw--Hill, 1973.
\begin{boldface}
This paragraph should appear to be a monotone dark texture. Suppose
\(f \in \mathcal{S}_n\) and \(g(x) = (-1)^{|\alpha|}x^\alpha
f(x)\). Then \(g \in \mathcal{S}_n\); now (\emph{c}) implies
that \(\hat g = D_\alpha \hat f\) and \(P \cdot D_\alpha\hat
f = P \cdot \hat g = (P(D)g)\hat{}\), which is a bounded function,
since \(P(D)g \in L^1(R^n)\). This proves that \(\hat f \in
\mathcal S_n\). If \(f_i \rightarrow f\) in \(\mathcal S_n\),
then \(f_i \rightarrow f\) in \(L^1(R^n)\). Therefore \(\hat
f_i(t) \rightarrow \hat f(t)\) for all \(t \in R^n\). That \(f
\rightarrow \hat f\) is a \emph{continuous} mapping of
\(\mathcal S_n\) into \(\mathcal S_n\) follows now from the
closed graph theorem. And thus for \(x_1\) through \(x_i\).
\emph{Functional Analysis}, W.~Rudin, McGraw--Hill, 1973.
\end{boldface}
{\itshape This paragraph should appear to be a monotone grey texture.
Suppose \(f \in \mathcal{S}_n\) and \(g(x) =
(-1)^{|\alpha|}x^\alpha f(x)\). Then \(g \in \mathcal{S}_n\);
now (\emph{c}) implies that \(\hat g = D_\alpha \hat f\) and
\(P \cdot D_\alpha\hat f = P \cdot \hat g = (P(D)g)\hat{}\),
which is a bounded function, since \(P(D)g \in L^1(R^n)\). This
proves that \(\hat f \in \mathcal S_n\). If \(f_i \rightarrow
f\) in \(\mathcal S_n\), then \(f_i \rightarrow f\) in
\(L^1(R^n)\). Therefore \(\hat f_i(t) \rightarrow \hat f(t)\)
for all \(t \in R^n\). That \(f \rightarrow \hat f\) is a
\emph{continuous} mapping of \(\mathcal S_n\) into \(\mathcal
S_n\) follows now from the closed graph theorem. \emph{Functional
Analysis}, W.~Rudin, McGraw--Hill, 1973.}
The text in these boxes should spread out as much as the math does:
$$\begin{array}{c}
\framebox[.95\width][s]{For example \(x+y = \min\{x,y\}
+ \max\{x,y\}\) is a formula.} \\
\framebox[.975\width][s]{For example \(x+y = \min\{x,y\}
+ \max\{x,y\}\) is a formula.} \\
\framebox[\width][s]{For example \(x+y = \min\{x,y\}
+ \max\{x,y\}\) is a formula.} \\
\framebox[1.025\width][s]{For example \(x+y = \min\{x,y\}
+ \max\{x,y\}\) is a formula.} \\
\framebox[1.05\width][s]{For example \(x+y = \min\{x,y\}
+ \max\{x,y\}\) is a formula.} \\
\framebox[1.075\width][s]{For example \(x+y = \min\{x,y\}
+ \max\{x,y\}\) is a formula.} \\
\framebox[1.1\width][s]{For example \(x+y = \min\{x,y\}
+ \max\{x,y\}\) is a formula.} \\
\framebox[1.125\width][s]{For example \(x+y = \min\{x,y\}
+ \max\{x,y\}\) is a formula.} \\
\end{array}$$
\end{document}
%% Local Variables:
%% mode: latex
%% End: