%PDF- %PDF-
Direktori : /proc/985914/root/lib/python3/dist-packages/pythran/pythonic/include/numpy/fft/ |
Current File : //proc/985914/root/lib/python3/dist-packages/pythran/pythonic/include/numpy/fft/hfft.hpp |
#ifndef PYTHONIC_INCLUDE_NUMPY_FFT_HFFT_HPP #define PYTHONIC_INCLUDE_NUMPY_FFT_HFFT_HPP #include "pythonic/include/utils/functor.hpp" #include "pythonic/include/types/ndarray.hpp" /** * **Noteable difference to numpy.fft.hfft:** * In contrast to numpy.fft.hfft this implementation preserves precision * of floating point and complex inputs, i.e. complex<float> input yields * complex<float> output. numpy.fft.fft always returns complex<double>, even for * long double input. This follows the same reasoning as given by numpy compiled * with intel_mkl (see here: https://github.com/IntelPython/mkl_fft/issues/10). * Conversion to double precision causes code to be slower and hurts use cases * where single precision preservation is desired, e.g. when interacting with *GPUs * or instruments. Moreover for the case of long double inputs, this avoids * loss of precision. **/ PYTHONIC_NS_BEGIN namespace numpy { namespace fft { template <class T, class pS> types::ndarray<T, types::array<long, std::tuple_size<pS>::value>> hfft(types::ndarray<std::complex<T>, pS> const &a, long n = -1, long axis = -1, types::str const &norm = {}); template <class T, class pS> types::ndarray<T, types::array<long, std::tuple_size<pS>::value>> hfft(types::ndarray<std::complex<T>, pS> const &a, types::none_type n, long axis, types::str const &norm); template <class T, class pS> types::ndarray<T, types::array<long, std::tuple_size<pS>::value>> hfft(types::ndarray<std::complex<T>, pS> const &a, long n, long axis, types::none_type norm); template <class T, class pS> types::ndarray<T, types::array<long, std::tuple_size<pS>::value>> hfft(types::ndarray<std::complex<T>, pS> const &a, types::none_type n, long axis = -1, types::none_type norm = types::none_type{}); template <class T, class pS> types::ndarray<typename std::enable_if< !types::is_complex<T>::value, typename std::conditional<std::is_integral<T>::value, double, T>::type>::type, types::array<long, std::tuple_size<pS>::value>> hfft(types::ndarray<T, pS> const &a, long n = -1, long axis = -1, types::str const &norm = {}); template <class T, class pS> types::ndarray<typename std::enable_if< !types::is_complex<T>::value, typename std::conditional<std::is_integral<T>::value, double, T>::type>::type, types::array<long, std::tuple_size<pS>::value>> hfft(types::ndarray<T, pS> const &a, types::none_type n, long axis, types::str const &norm); template <class T, class pS> types::ndarray<typename std::enable_if< !types::is_complex<T>::value, typename std::conditional<std::is_integral<T>::value, double, T>::type>::type, types::array<long, std::tuple_size<pS>::value>> hfft(types::ndarray<T, pS> const &a, long n, long axis, types::none_type norm); template <class T, class pS> types::ndarray<typename std::enable_if< !types::is_complex<T>::value, typename std::conditional<std::is_integral<T>::value, double, T>::type>::type, types::array<long, std::tuple_size<pS>::value>> hfft(types::ndarray<T, pS> const &a, types::none_type n, long axis = -1, types::none_type norm = types::none_type{}); NUMPY_EXPR_TO_NDARRAY0_DECL(hfft); DEFINE_FUNCTOR(pythonic::numpy::fft, hfft); } } PYTHONIC_NS_END #endif