%PDF- %PDF-
Direktori : /lib/python3/dist-packages/sympy/solvers/tests/ |
Current File : //lib/python3/dist-packages/sympy/solvers/tests/test_recurr.py |
from sympy import Eq, factor, factorial, Function, Lambda, rf, S, sqrt, symbols, I, \ expand, binomial, Rational, Symbol, cos, sin, Abs from sympy.solvers.recurr import rsolve, rsolve_hyper, rsolve_poly, rsolve_ratio from sympy.testing.pytest import raises, slow from sympy.abc import a, b y = Function('y') n, k = symbols('n,k', integer=True) C0, C1, C2 = symbols('C0,C1,C2') def test_rsolve_poly(): assert rsolve_poly([-1, -1, 1], 0, n) == 0 assert rsolve_poly([-1, -1, 1], 1, n) == -1 assert rsolve_poly([-1, n + 1], n, n) == 1 assert rsolve_poly([-1, 1], n, n) == C0 + (n**2 - n)/2 assert rsolve_poly([-n - 1, n], 1, n) == C1*n - 1 assert rsolve_poly([-4*n - 2, 1], 4*n + 1, n) == -1 assert rsolve_poly([-1, 1], n**5 + n**3, n) == \ C0 - n**3 / 2 - n**5 / 2 + n**2 / 6 + n**6 / 6 + 2*n**4 / 3 def test_rsolve_ratio(): solution = rsolve_ratio([-2*n**3 + n**2 + 2*n - 1, 2*n**3 + n**2 - 6*n, -2*n**3 - 11*n**2 - 18*n - 9, 2*n**3 + 13*n**2 + 22*n + 8], 0, n) assert solution in [ C1*((-2*n + 3)/(n**2 - 1))/3, (S.Half)*(C1*(-3 + 2*n)/(-1 + n**2)), (S.Half)*(C1*( 3 - 2*n)/( 1 - n**2)), (S.Half)*(C2*(-3 + 2*n)/(-1 + n**2)), (S.Half)*(C2*( 3 - 2*n)/( 1 - n**2)), ] def test_rsolve_hyper(): assert rsolve_hyper([-1, -1, 1], 0, n) in [ C0*(S.Half - S.Half*sqrt(5))**n + C1*(S.Half + S.Half*sqrt(5))**n, C1*(S.Half - S.Half*sqrt(5))**n + C0*(S.Half + S.Half*sqrt(5))**n, ] assert rsolve_hyper([n**2 - 2, -2*n - 1, 1], 0, n) in [ C0*rf(sqrt(2), n) + C1*rf(-sqrt(2), n), C1*rf(sqrt(2), n) + C0*rf(-sqrt(2), n), ] assert rsolve_hyper([n**2 - k, -2*n - 1, 1], 0, n) in [ C0*rf(sqrt(k), n) + C1*rf(-sqrt(k), n), C1*rf(sqrt(k), n) + C0*rf(-sqrt(k), n), ] assert rsolve_hyper( [2*n*(n + 1), -n**2 - 3*n + 2, n - 1], 0, n) == C1*factorial(n) + C0*2**n assert rsolve_hyper( [n + 2, -(2*n + 3)*(17*n**2 + 51*n + 39), n + 1], 0, n) == None assert rsolve_hyper([-n - 1, -1, 1], 0, n) == None assert rsolve_hyper([-1, 1], n, n).expand() == C0 + n**2/2 - n/2 assert rsolve_hyper([-1, 1], 1 + n, n).expand() == C0 + n**2/2 + n/2 assert rsolve_hyper([-1, 1], 3*(n + n**2), n).expand() == C0 + n**3 - n assert rsolve_hyper([-a, 1],0,n).expand() == C0*a**n assert rsolve_hyper([-a, 0, 1], 0, n).expand() == (-1)**n*C1*a**(n/2) + C0*a**(n/2) assert rsolve_hyper([1, 1, 1], 0, n).expand() == \ C0*(Rational(-1, 2) - sqrt(3)*I/2)**n + C1*(Rational(-1, 2) + sqrt(3)*I/2)**n assert rsolve_hyper([1, -2*n/a - 2/a, 1], 0, n) is None def recurrence_term(c, f): """Compute RHS of recurrence in f(n) with coefficients in c.""" return sum(c[i]*f.subs(n, n + i) for i in range(len(c))) def test_rsolve_bulk(): """Some bulk-generated tests.""" funcs = [ n, n + 1, n**2, n**3, n**4, n + n**2, 27*n + 52*n**2 - 3* n**3 + 12*n**4 - 52*n**5 ] coeffs = [ [-2, 1], [-2, -1, 1], [-1, 1, 1, -1, 1], [-n, 1], [n**2 - n + 12, 1] ] for p in funcs: # compute difference for c in coeffs: q = recurrence_term(c, p) if p.is_polynomial(n): assert rsolve_poly(c, q, n) == p # See issue 3956: #if p.is_hypergeometric(n): # assert rsolve_hyper(c, q, n) == p def test_rsolve(): f = y(n + 2) - y(n + 1) - y(n) h = sqrt(5)*(S.Half + S.Half*sqrt(5))**n \ - sqrt(5)*(S.Half - S.Half*sqrt(5))**n assert rsolve(f, y(n)) in [ C0*(S.Half - S.Half*sqrt(5))**n + C1*(S.Half + S.Half*sqrt(5))**n, C1*(S.Half - S.Half*sqrt(5))**n + C0*(S.Half + S.Half*sqrt(5))**n, ] assert rsolve(f, y(n), [0, 5]) == h assert rsolve(f, y(n), {0: 0, 1: 5}) == h assert rsolve(f, y(n), {y(0): 0, y(1): 5}) == h assert rsolve(y(n) - y(n - 1) - y(n - 2), y(n), [0, 5]) == h assert rsolve(Eq(y(n), y(n - 1) + y(n - 2)), y(n), [0, 5]) == h assert f.subs(y, Lambda(k, rsolve(f, y(n)).subs(n, k))).simplify() == 0 f = (n - 1)*y(n + 2) - (n**2 + 3*n - 2)*y(n + 1) + 2*n*(n + 1)*y(n) g = C1*factorial(n) + C0*2**n h = -3*factorial(n) + 3*2**n assert rsolve(f, y(n)) == g assert rsolve(f, y(n), []) == g assert rsolve(f, y(n), {}) == g assert rsolve(f, y(n), [0, 3]) == h assert rsolve(f, y(n), {0: 0, 1: 3}) == h assert rsolve(f, y(n), {y(0): 0, y(1): 3}) == h assert f.subs(y, Lambda(k, rsolve(f, y(n)).subs(n, k))).simplify() == 0 f = y(n) - y(n - 1) - 2 assert rsolve(f, y(n), {y(0): 0}) == 2*n assert rsolve(f, y(n), {y(0): 1}) == 2*n + 1 assert rsolve(f, y(n), {y(0): 0, y(1): 1}) is None assert f.subs(y, Lambda(k, rsolve(f, y(n)).subs(n, k))).simplify() == 0 f = 3*y(n - 1) - y(n) - 1 assert rsolve(f, y(n), {y(0): 0}) == -3**n/2 + S.Half assert rsolve(f, y(n), {y(0): 1}) == 3**n/2 + S.Half assert rsolve(f, y(n), {y(0): 2}) == 3*3**n/2 + S.Half assert f.subs(y, Lambda(k, rsolve(f, y(n)).subs(n, k))).simplify() == 0 f = y(n) - 1/n*y(n - 1) assert rsolve(f, y(n)) == C0/factorial(n) assert f.subs(y, Lambda(k, rsolve(f, y(n)).subs(n, k))).simplify() == 0 f = y(n) - 1/n*y(n - 1) - 1 assert rsolve(f, y(n)) is None f = 2*y(n - 1) + (1 - n)*y(n)/n assert rsolve(f, y(n), {y(1): 1}) == 2**(n - 1)*n assert rsolve(f, y(n), {y(1): 2}) == 2**(n - 1)*n*2 assert rsolve(f, y(n), {y(1): 3}) == 2**(n - 1)*n*3 assert f.subs(y, Lambda(k, rsolve(f, y(n)).subs(n, k))).simplify() == 0 f = (n - 1)*(n - 2)*y(n + 2) - (n + 1)*(n + 2)*y(n) assert rsolve(f, y(n), {y(3): 6, y(4): 24}) == n*(n - 1)*(n - 2) assert rsolve( f, y(n), {y(3): 6, y(4): -24}) == -n*(n - 1)*(n - 2)*(-1)**(n) assert f.subs(y, Lambda(k, rsolve(f, y(n)).subs(n, k))).simplify() == 0 assert rsolve(Eq(y(n + 1), a*y(n)), y(n), {y(1): a}).simplify() == a**n assert rsolve(y(n) - a*y(n-2),y(n), \ {y(1): sqrt(a)*(a + b), y(2): a*(a - b)}).simplify() == \ a**(n/2)*(-(-1)**n*b + a) f = (-16*n**2 + 32*n - 12)*y(n - 1) + (4*n**2 - 12*n + 9)*y(n) yn = rsolve(f, y(n), {y(1): binomial(2*n + 1, 3)}) sol = 2**(2*n)*n*(2*n - 1)**2*(2*n + 1)/12 assert factor(expand(yn, func=True)) == sol assert (rsolve(y(n) + a*(y(n + 1) + y(n - 1))/2, y(n)) - (C0*((sqrt(-a**2 + 1) - 1)/a)**n + C1*((-sqrt(-a**2 + 1) - 1)/a)**n)).simplify() == 0 assert rsolve((k + 1)*y(k), y(k)) is None assert (rsolve((k + 1)*y(k) + (k + 3)*y(k + 1) + (k + 5)*y(k + 2), y(k)) is None) assert rsolve(y(n) + y(n + 1) + 2**n + 3**n, y(n)) == (-1)**n*C0 - 2**n/3 - 3**n/4 def test_rsolve_raises(): x = Function('x') raises(ValueError, lambda: rsolve(y(n) - y(k + 1), y(n))) raises(ValueError, lambda: rsolve(y(n) - y(n + 1), x(n))) raises(ValueError, lambda: rsolve(y(n) - x(n + 1), y(n))) raises(ValueError, lambda: rsolve(y(n) - sqrt(n)*y(n + 1), y(n))) raises(ValueError, lambda: rsolve(y(n) - y(n + 1), y(n), {x(0): 0})) raises(ValueError, lambda: rsolve(y(n) + y(n + 1) + 2**n + cos(n), y(n))) def test_issue_6844(): f = y(n + 2) - y(n + 1) + y(n)/4 assert rsolve(f, y(n)) == 2**(-n)*(C0 + C1*n) assert rsolve(f, y(n), {y(0): 0, y(1): 1}) == 2*2**(-n)*n def test_issue_18751(): r = Symbol('r', real=True, positive=True) theta = Symbol('theta', real=True) f = y(n) - 2 * r * cos(theta) * y(n - 1) + r**2 * y(n - 2) assert rsolve(f, y(n)) == \ C0*(r*(cos(theta) - I*Abs(sin(theta))))**n + C1*(r*(cos(theta) + I*Abs(sin(theta))))**n def test_constant_naming(): #issue 8697 assert rsolve(y(n+3) - y(n+2) - y(n+1) + y(n), y(n)) == (-1)**n*C0+C1+C2*n assert rsolve(y(n+3)+3*y(n+2)+3*y(n+1)+y(n), y(n)).expand() == C0*(-1)**n + (-1)**n*C1*n + (-1)**n*C2*n**2 assert rsolve(y(n) - 2*y(n - 3) + 5*y(n - 2) - 4*y(n - 1),y(n),[1,3,8]) == 3*2**n - n - 2 #issue 19630 assert rsolve(y(n+3) - 3*y(n+1) + 2*y(n), y(n), {y(1):0, y(2):8, y(3):-2}) == (-2)**n + 2*n @slow def test_issue_15751(): f = y(n) + 21*y(n + 1) - 273*y(n + 2) - 1092*y(n + 3) + 1820*y(n + 4) + 1092*y(n + 5) - 273*y(n + 6) - 21*y(n + 7) + y(n + 8) assert rsolve(f, y(n)) is not None def test_issue_17990(): f = -10*y(n) + 4*y(n + 1) + 6*y(n + 2) + 46*y(n + 3) sol = rsolve(f, y(n)) expected = C0*((86*18**(S(1)/3)/69 + (-12 + (-1 + sqrt(3)*I)*(290412 + 3036*sqrt(9165))**(S(1)/3))*(1 - sqrt(3)*I)*(24201 + 253*sqrt(9165))** (S(1)/3)/276)/((1 - sqrt(3)*I)*(24201 + 253*sqrt(9165))**(S(1)/3)) )**n + C1*((86*18**(S(1)/3)/69 + (-12 + (-1 - sqrt(3)*I)*(290412 + 3036 *sqrt(9165))**(S(1)/3))*(1 + sqrt(3)*I)*(24201 + 253*sqrt(9165))** (S(1)/3)/276)/((1 + sqrt(3)*I)*(24201 + 253*sqrt(9165))**(S(1)/3)) )**n + C2*(-43*18**(S(1)/3)/(69*(24201 + 253*sqrt(9165))**(S(1)/3)) - S(1)/23 + (290412 + 3036*sqrt(9165))**(S(1)/3)/138)**n assert sol == expected e = sol.subs({C0: 1, C1: 1, C2: 1, n: 1}).evalf() assert abs(e + 0.130434782608696) < 1e-13