%PDF- %PDF-
Direktori : /lib/python3/dist-packages/sympy/solvers/ode/tests/ |
Current File : //lib/python3/dist-packages/sympy/solvers/ode/tests/test_lie_group.py |
from sympy import (atan, Eq, exp, Function, log, Rational, sin, sqrt, Symbol, tan, symbols) from sympy.solvers.ode import (classify_ode, checkinfsol, dsolve, infinitesimals) from sympy.solvers.ode.subscheck import checkodesol from sympy.testing.pytest import XFAIL C1 = Symbol('C1') x, y = symbols("x y") f = Function('f') xi = Function('xi') eta = Function('eta') def test_heuristic1(): a, b, c, a4, a3, a2, a1, a0 = symbols("a b c a4 a3 a2 a1 a0") df = f(x).diff(x) eq = Eq(df, x**2*f(x)) eq1 = f(x).diff(x) + a*f(x) - c*exp(b*x) eq2 = f(x).diff(x) + 2*x*f(x) - x*exp(-x**2) eq3 = (1 + 2*x)*df + 2 - 4*exp(-f(x)) eq4 = f(x).diff(x) - (a4*x**4 + a3*x**3 + a2*x**2 + a1*x + a0)**Rational(-1, 2) eq5 = x**2*df - f(x) + x**2*exp(x - (1/x)) eqlist = [eq, eq1, eq2, eq3, eq4, eq5] i = infinitesimals(eq, hint='abaco1_simple') assert i == [{eta(x, f(x)): exp(x**3/3), xi(x, f(x)): 0}, {eta(x, f(x)): f(x), xi(x, f(x)): 0}, {eta(x, f(x)): 0, xi(x, f(x)): x**(-2)}] i1 = infinitesimals(eq1, hint='abaco1_simple') assert i1 == [{eta(x, f(x)): exp(-a*x), xi(x, f(x)): 0}] i2 = infinitesimals(eq2, hint='abaco1_simple') assert i2 == [{eta(x, f(x)): exp(-x**2), xi(x, f(x)): 0}] i3 = infinitesimals(eq3, hint='abaco1_simple') assert i3 == [{eta(x, f(x)): 0, xi(x, f(x)): 2*x + 1}, {eta(x, f(x)): 0, xi(x, f(x)): 1/(exp(f(x)) - 2)}] i4 = infinitesimals(eq4, hint='abaco1_simple') assert i4 == [{eta(x, f(x)): 1, xi(x, f(x)): 0}, {eta(x, f(x)): 0, xi(x, f(x)): sqrt(a0 + a1*x + a2*x**2 + a3*x**3 + a4*x**4)}] i5 = infinitesimals(eq5, hint='abaco1_simple') assert i5 == [{xi(x, f(x)): 0, eta(x, f(x)): exp(-1/x)}] ilist = [i, i1, i2, i3, i4, i5] for eq, i in (zip(eqlist, ilist)): check = checkinfsol(eq, i) assert check[0] # This ODE can be solved by the Lie Group method, when there are # better assumptions eq6 = df - (f(x)/x)*(x*log(x**2/f(x)) + 2) i = infinitesimals(eq6, hint='abaco1_product') assert i == [{eta(x, f(x)): f(x)*exp(-x), xi(x, f(x)): 0}] assert checkinfsol(eq6, i)[0] eq7 = x*(f(x).diff(x)) + 1 - f(x)**2 i = infinitesimals(eq7, hint='chi') assert checkinfsol(eq7, i)[0] def test_heuristic3(): a, b = symbols("a b") df = f(x).diff(x) eq = x**2*df + x*f(x) + f(x)**2 + x**2 i = infinitesimals(eq, hint='bivariate') assert i == [{eta(x, f(x)): f(x), xi(x, f(x)): x}] assert checkinfsol(eq, i)[0] eq = x**2*(-f(x)**2 + df)- a*x**2*f(x) + 2 - a*x i = infinitesimals(eq, hint='bivariate') assert checkinfsol(eq, i)[0] def test_heuristic_function_sum(): eq = f(x).diff(x) - (3*(1 + x**2/f(x)**2)*atan(f(x)/x) + (1 - 2*f(x))/x + (1 - 3*f(x))*(x/f(x)**2)) i = infinitesimals(eq, hint='function_sum') assert i == [{eta(x, f(x)): f(x)**(-2) + x**(-2), xi(x, f(x)): 0}] assert checkinfsol(eq, i)[0] def test_heuristic_abaco2_similar(): a, b = symbols("a b") F = Function('F') eq = f(x).diff(x) - F(a*x + b*f(x)) i = infinitesimals(eq, hint='abaco2_similar') assert i == [{eta(x, f(x)): -a/b, xi(x, f(x)): 1}] assert checkinfsol(eq, i)[0] eq = f(x).diff(x) - (f(x)**2 / (sin(f(x) - x) - x**2 + 2*x*f(x))) i = infinitesimals(eq, hint='abaco2_similar') assert i == [{eta(x, f(x)): f(x)**2, xi(x, f(x)): f(x)**2}] assert checkinfsol(eq, i)[0] def test_heuristic_abaco2_unique_unknown(): a, b = symbols("a b") F = Function('F') eq = f(x).diff(x) - x**(a - 1)*(f(x)**(1 - b))*F(x**a/a + f(x)**b/b) i = infinitesimals(eq, hint='abaco2_unique_unknown') assert i == [{eta(x, f(x)): -f(x)*f(x)**(-b), xi(x, f(x)): x*x**(-a)}] assert checkinfsol(eq, i)[0] eq = f(x).diff(x) + tan(F(x**2 + f(x)**2) + atan(x/f(x))) i = infinitesimals(eq, hint='abaco2_unique_unknown') assert i == [{eta(x, f(x)): x, xi(x, f(x)): -f(x)}] assert checkinfsol(eq, i)[0] eq = (x*f(x).diff(x) + f(x) + 2*x)**2 -4*x*f(x) -4*x**2 -4*a i = infinitesimals(eq, hint='abaco2_unique_unknown') assert checkinfsol(eq, i)[0] def test_heuristic_linear(): a, b, m, n = symbols("a b m n") eq = x**(n*(m + 1) - m)*(f(x).diff(x)) - a*f(x)**n -b*x**(n*(m + 1)) i = infinitesimals(eq, hint='linear') assert checkinfsol(eq, i)[0] @XFAIL def test_kamke(): a, b, alpha, c = symbols("a b alpha c") eq = x**2*(a*f(x)**2+(f(x).diff(x))) + b*x**alpha + c i = infinitesimals(eq, hint='sum_function') # XFAIL assert checkinfsol(eq, i)[0] def test_user_infinitesimals(): x = Symbol("x") # assuming x is real generates an error eq = x*(f(x).diff(x)) + 1 - f(x)**2 sol = Eq(f(x), (C1 + x**2)/(C1 - x**2)) infinitesimals = {'xi':sqrt(f(x) - 1)/sqrt(f(x) + 1), 'eta':0} assert dsolve(eq, hint='lie_group', **infinitesimals) == sol assert checkodesol(eq, sol) == (True, 0) @XFAIL def test_lie_group_issue15219(): eqn = exp(f(x).diff(x)-f(x)) assert 'lie_group' not in classify_ode(eqn, f(x))