%PDF- %PDF-
Direktori : /lib/python3/dist-packages/sympy/polys/matrices/ |
Current File : //lib/python3/dist-packages/sympy/polys/matrices/normalforms.py |
'''Functions returning normal forms of matrices''' from .domainmatrix import DomainMatrix def smith_normal_form(m): ''' Return the Smith Normal Form of a matrix `m` over the ring `domain`. This will only work if the ring is a principal ideal domain. Examples ======== >>> from sympy import ZZ >>> from sympy.polys.matrices import DomainMatrix >>> from sympy.polys.matrices.normalforms import smith_normal_form >>> m = DomainMatrix([[ZZ(12), ZZ(6), ZZ(4)], ... [ZZ(3), ZZ(9), ZZ(6)], ... [ZZ(2), ZZ(16), ZZ(14)]], (3, 3), ZZ) >>> print(smith_normal_form(m).to_Matrix()) Matrix([[1, 0, 0], [0, 10, 0], [0, 0, -30]]) ''' invs = invariant_factors(m) smf = DomainMatrix.diag(invs, m.domain, m.shape) return smf def invariant_factors(m): ''' Return the tuple of abelian invariants for a matrix `m` (as in the Smith-Normal form) References ========== [1] https://en.wikipedia.org/wiki/Smith_normal_form#Algorithm [2] http://sierra.nmsu.edu/morandi/notes/SmithNormalForm.pdf ''' domain = m.domain if not domain.is_PID: msg = "The matrix entries must be over a principal ideal domain" raise ValueError(msg) if 0 in m.shape: return () rows, cols = shape = m.shape m = list(m.to_dense().rep) def add_rows(m, i, j, a, b, c, d): # replace m[i, :] by a*m[i, :] + b*m[j, :] # and m[j, :] by c*m[i, :] + d*m[j, :] for k in range(cols): e = m[i][k] m[i][k] = a*e + b*m[j][k] m[j][k] = c*e + d*m[j][k] def add_columns(m, i, j, a, b, c, d): # replace m[:, i] by a*m[:, i] + b*m[:, j] # and m[:, j] by c*m[:, i] + d*m[:, j] for k in range(rows): e = m[k][i] m[k][i] = a*e + b*m[k][j] m[k][j] = c*e + d*m[k][j] def clear_column(m): # make m[1:, 0] zero by row and column operations if m[0][0] == 0: return m # pragma: nocover pivot = m[0][0] for j in range(1, rows): if m[j][0] == 0: continue d, r = domain.div(m[j][0], pivot) if r == 0: add_rows(m, 0, j, 1, 0, -d, 1) else: a, b, g = domain.gcdex(pivot, m[j][0]) d_0 = domain.div(m[j][0], g)[0] d_j = domain.div(pivot, g)[0] add_rows(m, 0, j, a, b, d_0, -d_j) pivot = g return m def clear_row(m): # make m[0, 1:] zero by row and column operations if m[0][0] == 0: return m # pragma: nocover pivot = m[0][0] for j in range(1, cols): if m[0][j] == 0: continue d, r = domain.div(m[0][j], pivot) if r == 0: add_columns(m, 0, j, 1, 0, -d, 1) else: a, b, g = domain.gcdex(pivot, m[0][j]) d_0 = domain.div(m[0][j], g)[0] d_j = domain.div(pivot, g)[0] add_columns(m, 0, j, a, b, d_0, -d_j) pivot = g return m # permute the rows and columns until m[0,0] is non-zero if possible ind = [i for i in range(rows) if m[i][0] != 0] if ind and ind[0] != 0: m[0], m[ind[0]] = m[ind[0]], m[0] else: ind = [j for j in range(cols) if m[0][j] != 0] if ind and ind[0] != 0: for row in m: row[0], row[ind[0]] = row[ind[0]], row[0] # make the first row and column except m[0,0] zero while (any([m[0][i] != 0 for i in range(1,cols)]) or any([m[i][0] != 0 for i in range(1,rows)])): m = clear_column(m) m = clear_row(m) if 1 in shape: invs = () else: lower_right = DomainMatrix([r[1:] for r in m[1:]], (rows-1, cols-1), domain) invs = invariant_factors(lower_right) if m[0][0]: result = [m[0][0]] result.extend(invs) # in case m[0] doesn't divide the invariants of the rest of the matrix for i in range(len(result)-1): if result[i] and domain.div(result[i+1], result[i])[1] != 0: g = domain.gcd(result[i+1], result[i]) result[i+1] = domain.div(result[i], g)[0]*result[i+1] result[i] = g else: break else: result = invs + (m[0][0],) return tuple(result)