%PDF- %PDF-
Direktori : /lib/python3/dist-packages/sympy/physics/vector/tests/ |
Current File : //lib/python3/dist-packages/sympy/physics/vector/tests/test_printing.py |
# -*- coding: utf-8 -*- from sympy import symbols, sin, asin, cos, sqrt, Function from sympy.physics.vector import ReferenceFrame, dynamicsymbols, Dyadic from sympy.physics.vector.printing import (VectorLatexPrinter, vpprint, vsprint, vsstrrepr, vlatex) a, b, c = symbols('a, b, c') alpha, omega, beta = dynamicsymbols('alpha, omega, beta') A = ReferenceFrame('A') N = ReferenceFrame('N') v = a ** 2 * N.x + b * N.y + c * sin(alpha) * N.z w = alpha * N.x + sin(omega) * N.y + alpha * beta * N.z ww = alpha * N.x + asin(omega) * N.y - alpha.diff() * beta * N.z o = a/b * N.x + (c+b)/a * N.y + c**2/b * N.z y = a ** 2 * (N.x | N.y) + b * (N.y | N.y) + c * sin(alpha) * (N.z | N.y) x = alpha * (N.x | N.x) + sin(omega) * (N.y | N.z) + alpha * beta * (N.z | N.x) xx = N.x | (-N.y - N.z) xx2 = N.x | (N.y + N.z) def ascii_vpretty(expr): return vpprint(expr, use_unicode=False, wrap_line=False) def unicode_vpretty(expr): return vpprint(expr, use_unicode=True, wrap_line=False) def test_latex_printer(): r = Function('r')('t') assert VectorLatexPrinter().doprint(r ** 2) == "r^{2}" r2 = Function('r^2')('t') assert VectorLatexPrinter().doprint(r2.diff()) == r'\dot{r^{2}}' ra = Function('r__a')('t') assert VectorLatexPrinter().doprint(ra.diff().diff()) == r'\ddot{r^{a}}' def test_vector_pretty_print(): # TODO : The unit vectors should print with subscripts but they just # print as `n_x` instead of making `x` a subscript with unicode. # TODO : The pretty print division does not print correctly here: # w = alpha * N.x + sin(omega) * N.y + alpha / beta * N.z expected = """\ 2 a n_x + b n_y + c*sin(alpha) n_z\ """ uexpected = """\ 2 a n_x + b n_y + c⋅sin(α) n_z\ """ assert ascii_vpretty(v) == expected assert unicode_vpretty(v) == uexpected expected = 'alpha n_x + sin(omega) n_y + alpha*beta n_z' uexpected = 'α n_x + sin(ω) n_y + α⋅β n_z' assert ascii_vpretty(w) == expected assert unicode_vpretty(w) == uexpected expected = """\ 2 a b + c c - n_x + ----- n_y + -- n_z b a b\ """ uexpected = """\ 2 a b + c c ─ n_x + ───── n_y + ── n_z b a b\ """ assert ascii_vpretty(o) == expected assert unicode_vpretty(o) == uexpected def test_vector_latex(): a, b, c, d, omega = symbols('a, b, c, d, omega') v = (a ** 2 + b / c) * A.x + sqrt(d) * A.y + cos(omega) * A.z assert vlatex(v) == (r'(a^{2} + \frac{b}{c})\mathbf{\hat{a}_x} + ' r'\sqrt{d}\mathbf{\hat{a}_y} + ' r'\cos{\left(\omega \right)}' r'\mathbf{\hat{a}_z}') theta, omega, alpha, q = dynamicsymbols('theta, omega, alpha, q') v = theta * A.x + omega * omega * A.y + (q * alpha) * A.z assert vlatex(v) == (r'\theta\mathbf{\hat{a}_x} + ' r'\omega^{2}\mathbf{\hat{a}_y} + ' r'\alpha q\mathbf{\hat{a}_z}') phi1, phi2, phi3 = dynamicsymbols('phi1, phi2, phi3') theta1, theta2, theta3 = symbols('theta1, theta2, theta3') v = (sin(theta1) * A.x + cos(phi1) * cos(phi2) * A.y + cos(theta1 + phi3) * A.z) assert vlatex(v) == (r'\sin{\left(\theta_{1} \right)}' r'\mathbf{\hat{a}_x} + \cos{' r'\left(\phi_{1} \right)} \cos{' r'\left(\phi_{2} \right)}\mathbf{\hat{a}_y} + ' r'\cos{\left(\theta_{1} + ' r'\phi_{3} \right)}\mathbf{\hat{a}_z}') N = ReferenceFrame('N') a, b, c, d, omega = symbols('a, b, c, d, omega') v = (a ** 2 + b / c) * N.x + sqrt(d) * N.y + cos(omega) * N.z expected = (r'(a^{2} + \frac{b}{c})\mathbf{\hat{n}_x} + ' r'\sqrt{d}\mathbf{\hat{n}_y} + ' r'\cos{\left(\omega \right)}' r'\mathbf{\hat{n}_z}') assert vlatex(v) == expected # Try custom unit vectors. N = ReferenceFrame('N', latexs=(r'\hat{i}', r'\hat{j}', r'\hat{k}')) v = (a ** 2 + b / c) * N.x + sqrt(d) * N.y + cos(omega) * N.z expected = (r'(a^{2} + \frac{b}{c})\hat{i} + ' r'\sqrt{d}\hat{j} + ' r'\cos{\left(\omega \right)}\hat{k}') assert vlatex(v) == expected expected = r'\alpha\mathbf{\hat{n}_x} + \operatorname{asin}{\left(\omega ' \ r'\right)}\mathbf{\hat{n}_y} - \beta \dot{\alpha}\mathbf{\hat{n}_z}' assert vlatex(ww) == expected expected = r'- \mathbf{\hat{n}_x}\otimes \mathbf{\hat{n}_y} - ' \ r'\mathbf{\hat{n}_x}\otimes \mathbf{\hat{n}_z}' assert vlatex(xx) == expected expected = r'\mathbf{\hat{n}_x}\otimes \mathbf{\hat{n}_y} + ' \ r'\mathbf{\hat{n}_x}\otimes \mathbf{\hat{n}_z}' assert vlatex(xx2) == expected def test_vector_latex_arguments(): assert vlatex(N.x * 3.0, full_prec=False) == r'3.0\mathbf{\hat{n}_x}' assert vlatex(N.x * 3.0, full_prec=True) == r'3.00000000000000\mathbf{\hat{n}_x}' def test_vector_latex_with_functions(): N = ReferenceFrame('N') omega, alpha = dynamicsymbols('omega, alpha') v = omega.diff() * N.x assert vlatex(v) == r'\dot{\omega}\mathbf{\hat{n}_x}' v = omega.diff() ** alpha * N.x assert vlatex(v) == (r'\dot{\omega}^{\alpha}' r'\mathbf{\hat{n}_x}') def test_dyadic_pretty_print(): expected = """\ 2 a n_x|n_y + b n_y|n_y + c*sin(alpha) n_z|n_y\ """ uexpected = """\ 2 a n_x⊗n_y + b n_y⊗n_y + c⋅sin(α) n_z⊗n_y\ """ assert ascii_vpretty(y) == expected assert unicode_vpretty(y) == uexpected expected = 'alpha n_x|n_x + sin(omega) n_y|n_z + alpha*beta n_z|n_x' uexpected = 'α n_x⊗n_x + sin(ω) n_y⊗n_z + α⋅β n_z⊗n_x' assert ascii_vpretty(x) == expected assert unicode_vpretty(x) == uexpected assert ascii_vpretty(Dyadic([])) == '0' assert unicode_vpretty(Dyadic([])) == '0' assert ascii_vpretty(xx) == '- n_x|n_y - n_x|n_z' assert unicode_vpretty(xx) == '- n_x⊗n_y - n_x⊗n_z' assert ascii_vpretty(xx2) == 'n_x|n_y + n_x|n_z' assert unicode_vpretty(xx2) == 'n_x⊗n_y + n_x⊗n_z' def test_dyadic_latex(): expected = (r'a^{2}\mathbf{\hat{n}_x}\otimes \mathbf{\hat{n}_y} + ' r'b\mathbf{\hat{n}_y}\otimes \mathbf{\hat{n}_y} + ' r'c \sin{\left(\alpha \right)}' r'\mathbf{\hat{n}_z}\otimes \mathbf{\hat{n}_y}') assert vlatex(y) == expected expected = (r'\alpha\mathbf{\hat{n}_x}\otimes \mathbf{\hat{n}_x} + ' r'\sin{\left(\omega \right)}\mathbf{\hat{n}_y}' r'\otimes \mathbf{\hat{n}_z} + ' r'\alpha \beta\mathbf{\hat{n}_z}\otimes \mathbf{\hat{n}_x}') assert vlatex(x) == expected assert vlatex(Dyadic([])) == '0' def test_dyadic_str(): assert vsprint(Dyadic([])) == '0' assert vsprint(y) == 'a**2*(N.x|N.y) + b*(N.y|N.y) + c*sin(alpha)*(N.z|N.y)' assert vsprint(x) == 'alpha*(N.x|N.x) + sin(omega)*(N.y|N.z) + alpha*beta*(N.z|N.x)' assert vsprint(ww) == "alpha*N.x + asin(omega)*N.y - beta*alpha'*N.z" assert vsprint(xx) == '- (N.x|N.y) - (N.x|N.z)' assert vsprint(xx2) == '(N.x|N.y) + (N.x|N.z)' def test_vlatex(): # vlatex is broken #12078 from sympy.physics.vector import vlatex x = symbols('x') J = symbols('J') f = Function('f') g = Function('g') h = Function('h') expected = r'J \left(\frac{d}{d x} g{\left(x \right)} - \frac{d}{d x} h{\left(x \right)}\right)' expr = J*f(x).diff(x).subs(f(x), g(x)-h(x)) assert vlatex(expr) == expected def test_issue_13354(): """ Test for proper pretty printing of physics vectors with ADD instances in arguments. Test is exactly the one suggested in the original bug report by @moorepants. """ a, b, c = symbols('a, b, c') A = ReferenceFrame('A') v = a * A.x + b * A.y + c * A.z w = b * A.x + c * A.y + a * A.z z = w + v expected = """(a + b) a_x + (b + c) a_y + (a + c) a_z""" assert ascii_vpretty(z) == expected def test_vector_derivative_printing(): # First order v = omega.diff() * N.x assert unicode_vpretty(v) == 'ω̇ n_x' assert ascii_vpretty(v) == "omega'(t) n_x" # Second order v = omega.diff().diff() * N.x assert vlatex(v) == r'\ddot{\omega}\mathbf{\hat{n}_x}' assert unicode_vpretty(v) == 'ω̈ n_x' assert ascii_vpretty(v) == "omega''(t) n_x" # Third order v = omega.diff().diff().diff() * N.x assert vlatex(v) == r'\dddot{\omega}\mathbf{\hat{n}_x}' assert unicode_vpretty(v) == 'ω⃛ n_x' assert ascii_vpretty(v) == "omega'''(t) n_x" # Fourth order v = omega.diff().diff().diff().diff() * N.x assert vlatex(v) == r'\ddddot{\omega}\mathbf{\hat{n}_x}' assert unicode_vpretty(v) == 'ω⃜ n_x' assert ascii_vpretty(v) == "omega''''(t) n_x" # Fifth order v = omega.diff().diff().diff().diff().diff() * N.x assert vlatex(v) == r'\frac{d^{5}}{d t^{5}} \omega\mathbf{\hat{n}_x}' assert unicode_vpretty(v) == ' 5\n d\n───(ω) n_x\n 5\ndt' assert ascii_vpretty(v) == ' 5\n d\n---(omega) n_x\n 5\ndt' def test_vector_str_printing(): assert vsprint(w) == 'alpha*N.x + sin(omega)*N.y + alpha*beta*N.z' assert vsprint(omega.diff() * N.x) == "omega'*N.x" assert vsstrrepr(w) == 'alpha*N.x + sin(omega)*N.y + alpha*beta*N.z' def test_vector_str_arguments(): assert vsprint(N.x * 3.0, full_prec=False) == '3.0*N.x' assert vsprint(N.x * 3.0, full_prec=True) == '3.00000000000000*N.x' def test_issue_14041(): import sympy.physics.mechanics as me A_frame = me.ReferenceFrame('A') thetad, phid = me.dynamicsymbols('theta, phi', 1) L = symbols('L') assert vlatex(L*(phid + thetad)**2*A_frame.x) == \ r"L \left(\dot{\phi} + \dot{\theta}\right)^{2}\mathbf{\hat{a}_x}" assert vlatex((phid + thetad)**2*A_frame.x) == \ r"\left(\dot{\phi} + \dot{\theta}\right)^{2}\mathbf{\hat{a}_x}" assert vlatex((phid*thetad)**a*A_frame.x) == \ r"\left(\dot{\phi} \dot{\theta}\right)^{a}\mathbf{\hat{a}_x}"