%PDF- %PDF-
Direktori : /lib/python3/dist-packages/sympy/physics/quantum/tests/ |
Current File : //lib/python3/dist-packages/sympy/physics/quantum/tests/test_gate.py |
from sympy import exp, symbols, sqrt, I, pi, Mul, Integer, Wild, Rational from sympy.matrices import Matrix, ImmutableMatrix from sympy.physics.quantum.gate import (XGate, YGate, ZGate, random_circuit, CNOT, IdentityGate, H, X, Y, S, T, Z, SwapGate, gate_simp, gate_sort, CNotGate, TGate, HadamardGate, PhaseGate, UGate, CGate) from sympy.physics.quantum.commutator import Commutator from sympy.physics.quantum.anticommutator import AntiCommutator from sympy.physics.quantum.represent import represent from sympy.physics.quantum.qapply import qapply from sympy.physics.quantum.qubit import Qubit, IntQubit, qubit_to_matrix, \ matrix_to_qubit from sympy.physics.quantum.matrixutils import matrix_to_zero from sympy.physics.quantum.matrixcache import sqrt2_inv from sympy.physics.quantum import Dagger def test_gate(): """Test a basic gate.""" h = HadamardGate(1) assert h.min_qubits == 2 assert h.nqubits == 1 i0 = Wild('i0') i1 = Wild('i1') h0_w1 = HadamardGate(i0) h0_w2 = HadamardGate(i0) h1_w1 = HadamardGate(i1) assert h0_w1 == h0_w2 assert h0_w1 != h1_w1 assert h1_w1 != h0_w2 cnot_10_w1 = CNOT(i1, i0) cnot_10_w2 = CNOT(i1, i0) cnot_01_w1 = CNOT(i0, i1) assert cnot_10_w1 == cnot_10_w2 assert cnot_10_w1 != cnot_01_w1 assert cnot_10_w2 != cnot_01_w1 def test_UGate(): a, b, c, d = symbols('a,b,c,d') uMat = Matrix([[a, b], [c, d]]) # Test basic case where gate exists in 1-qubit space u1 = UGate((0,), uMat) assert represent(u1, nqubits=1) == uMat assert qapply(u1*Qubit('0')) == a*Qubit('0') + c*Qubit('1') assert qapply(u1*Qubit('1')) == b*Qubit('0') + d*Qubit('1') # Test case where gate exists in a larger space u2 = UGate((1,), uMat) u2Rep = represent(u2, nqubits=2) for i in range(4): assert u2Rep*qubit_to_matrix(IntQubit(i, 2)) == \ qubit_to_matrix(qapply(u2*IntQubit(i, 2))) def test_cgate(): """Test the general CGate.""" # Test single control functionality CNOTMatrix = Matrix( [[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 0, 1], [0, 0, 1, 0]]) assert represent(CGate(1, XGate(0)), nqubits=2) == CNOTMatrix # Test multiple control bit functionality ToffoliGate = CGate((1, 2), XGate(0)) assert represent(ToffoliGate, nqubits=3) == \ Matrix( [[1, 0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 0, 0, 0, 1], [0, 0, 0, 0, 0, 0, 1, 0]]) ToffoliGate = CGate((3, 0), XGate(1)) assert qapply(ToffoliGate*Qubit('1001')) == \ matrix_to_qubit(represent(ToffoliGate*Qubit('1001'), nqubits=4)) assert qapply(ToffoliGate*Qubit('0000')) == \ matrix_to_qubit(represent(ToffoliGate*Qubit('0000'), nqubits=4)) CYGate = CGate(1, YGate(0)) CYGate_matrix = Matrix( ((1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 0, -I), (0, 0, I, 0))) # Test 2 qubit controlled-Y gate decompose method. assert represent(CYGate.decompose(), nqubits=2) == CYGate_matrix CZGate = CGate(0, ZGate(1)) CZGate_matrix = Matrix( ((1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, -1))) assert qapply(CZGate*Qubit('11')) == -Qubit('11') assert matrix_to_qubit(represent(CZGate*Qubit('11'), nqubits=2)) == \ -Qubit('11') # Test 2 qubit controlled-Z gate decompose method. assert represent(CZGate.decompose(), nqubits=2) == CZGate_matrix CPhaseGate = CGate(0, PhaseGate(1)) assert qapply(CPhaseGate*Qubit('11')) == \ I*Qubit('11') assert matrix_to_qubit(represent(CPhaseGate*Qubit('11'), nqubits=2)) == \ I*Qubit('11') # Test that the dagger, inverse, and power of CGate is evaluated properly assert Dagger(CZGate) == CZGate assert pow(CZGate, 1) == Dagger(CZGate) assert Dagger(CZGate) == CZGate.inverse() assert Dagger(CPhaseGate) != CPhaseGate assert Dagger(CPhaseGate) == CPhaseGate.inverse() assert Dagger(CPhaseGate) == pow(CPhaseGate, -1) assert pow(CPhaseGate, -1) == CPhaseGate.inverse() def test_UGate_CGate_combo(): a, b, c, d = symbols('a,b,c,d') uMat = Matrix([[a, b], [c, d]]) cMat = Matrix([[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, a, b], [0, 0, c, d]]) # Test basic case where gate exists in 1-qubit space. u1 = UGate((0,), uMat) cu1 = CGate(1, u1) assert represent(cu1, nqubits=2) == cMat assert qapply(cu1*Qubit('10')) == a*Qubit('10') + c*Qubit('11') assert qapply(cu1*Qubit('11')) == b*Qubit('10') + d*Qubit('11') assert qapply(cu1*Qubit('01')) == Qubit('01') assert qapply(cu1*Qubit('00')) == Qubit('00') # Test case where gate exists in a larger space. u2 = UGate((1,), uMat) u2Rep = represent(u2, nqubits=2) for i in range(4): assert u2Rep*qubit_to_matrix(IntQubit(i, 2)) == \ qubit_to_matrix(qapply(u2*IntQubit(i, 2))) def test_UGate_OneQubitGate_combo(): v, w, f, g = symbols('v w f g') uMat1 = ImmutableMatrix([[v, w], [f, g]]) cMat1 = Matrix([[v, w + 1, 0, 0], [f + 1, g, 0, 0], [0, 0, v, w + 1], [0, 0, f + 1, g]]) u1 = X(0) + UGate(0, uMat1) assert represent(u1, nqubits=2) == cMat1 uMat2 = ImmutableMatrix([[1/sqrt(2), 1/sqrt(2)], [I/sqrt(2), -I/sqrt(2)]]) cMat2_1 = Matrix([[Rational(1, 2) + I/2, Rational(1, 2) - I/2], [Rational(1, 2) - I/2, Rational(1, 2) + I/2]]) cMat2_2 = Matrix([[1, 0], [0, I]]) u2 = UGate(0, uMat2) assert represent(H(0)*u2, nqubits=1) == cMat2_1 assert represent(u2*H(0), nqubits=1) == cMat2_2 def test_represent_hadamard(): """Test the representation of the hadamard gate.""" circuit = HadamardGate(0)*Qubit('00') answer = represent(circuit, nqubits=2) # Check that the answers are same to within an epsilon. assert answer == Matrix([sqrt2_inv, sqrt2_inv, 0, 0]) def test_represent_xgate(): """Test the representation of the X gate.""" circuit = XGate(0)*Qubit('00') answer = represent(circuit, nqubits=2) assert Matrix([0, 1, 0, 0]) == answer def test_represent_ygate(): """Test the representation of the Y gate.""" circuit = YGate(0)*Qubit('00') answer = represent(circuit, nqubits=2) assert answer[0] == 0 and answer[1] == I and \ answer[2] == 0 and answer[3] == 0 def test_represent_zgate(): """Test the representation of the Z gate.""" circuit = ZGate(0)*Qubit('00') answer = represent(circuit, nqubits=2) assert Matrix([1, 0, 0, 0]) == answer def test_represent_phasegate(): """Test the representation of the S gate.""" circuit = PhaseGate(0)*Qubit('01') answer = represent(circuit, nqubits=2) assert Matrix([0, I, 0, 0]) == answer def test_represent_tgate(): """Test the representation of the T gate.""" circuit = TGate(0)*Qubit('01') assert Matrix([0, exp(I*pi/4), 0, 0]) == represent(circuit, nqubits=2) def test_compound_gates(): """Test a compound gate representation.""" circuit = YGate(0)*ZGate(0)*XGate(0)*HadamardGate(0)*Qubit('00') answer = represent(circuit, nqubits=2) assert Matrix([I/sqrt(2), I/sqrt(2), 0, 0]) == answer def test_cnot_gate(): """Test the CNOT gate.""" circuit = CNotGate(1, 0) assert represent(circuit, nqubits=2) == \ Matrix([[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 0, 1], [0, 0, 1, 0]]) circuit = circuit*Qubit('111') assert matrix_to_qubit(represent(circuit, nqubits=3)) == \ qapply(circuit) circuit = CNotGate(1, 0) assert Dagger(circuit) == circuit assert Dagger(Dagger(circuit)) == circuit assert circuit*circuit == 1 def test_gate_sort(): """Test gate_sort.""" for g in (X, Y, Z, H, S, T): assert gate_sort(g(2)*g(1)*g(0)) == g(0)*g(1)*g(2) e = gate_sort(X(1)*H(0)**2*CNOT(0, 1)*X(1)*X(0)) assert e == H(0)**2*CNOT(0, 1)*X(0)*X(1)**2 assert gate_sort(Z(0)*X(0)) == -X(0)*Z(0) assert gate_sort(Z(0)*X(0)**2) == X(0)**2*Z(0) assert gate_sort(Y(0)*H(0)) == -H(0)*Y(0) assert gate_sort(Y(0)*X(0)) == -X(0)*Y(0) assert gate_sort(Z(0)*Y(0)) == -Y(0)*Z(0) assert gate_sort(T(0)*S(0)) == S(0)*T(0) assert gate_sort(Z(0)*S(0)) == S(0)*Z(0) assert gate_sort(Z(0)*T(0)) == T(0)*Z(0) assert gate_sort(Z(0)*CNOT(0, 1)) == CNOT(0, 1)*Z(0) assert gate_sort(S(0)*CNOT(0, 1)) == CNOT(0, 1)*S(0) assert gate_sort(T(0)*CNOT(0, 1)) == CNOT(0, 1)*T(0) assert gate_sort(X(1)*CNOT(0, 1)) == CNOT(0, 1)*X(1) # This takes a long time and should only be uncommented once in a while. # nqubits = 5 # ngates = 10 # trials = 10 # for i in range(trials): # c = random_circuit(ngates, nqubits) # assert represent(c, nqubits=nqubits) == \ # represent(gate_sort(c), nqubits=nqubits) def test_gate_simp(): """Test gate_simp.""" e = H(0)*X(1)*H(0)**2*CNOT(0, 1)*X(1)**3*X(0)*Z(3)**2*S(4)**3 assert gate_simp(e) == H(0)*CNOT(0, 1)*S(4)*X(0)*Z(4) assert gate_simp(X(0)*X(0)) == 1 assert gate_simp(Y(0)*Y(0)) == 1 assert gate_simp(Z(0)*Z(0)) == 1 assert gate_simp(H(0)*H(0)) == 1 assert gate_simp(T(0)*T(0)) == S(0) assert gate_simp(S(0)*S(0)) == Z(0) assert gate_simp(Integer(1)) == Integer(1) assert gate_simp(X(0)**2 + Y(0)**2) == Integer(2) def test_swap_gate(): """Test the SWAP gate.""" swap_gate_matrix = Matrix( ((1, 0, 0, 0), (0, 0, 1, 0), (0, 1, 0, 0), (0, 0, 0, 1))) assert represent(SwapGate(1, 0).decompose(), nqubits=2) == swap_gate_matrix assert qapply(SwapGate(1, 3)*Qubit('0010')) == Qubit('1000') nqubits = 4 for i in range(nqubits): for j in range(i): assert represent(SwapGate(i, j), nqubits=nqubits) == \ represent(SwapGate(i, j).decompose(), nqubits=nqubits) def test_one_qubit_commutators(): """Test single qubit gate commutation relations.""" for g1 in (IdentityGate, X, Y, Z, H, T, S): for g2 in (IdentityGate, X, Y, Z, H, T, S): e = Commutator(g1(0), g2(0)) a = matrix_to_zero(represent(e, nqubits=1, format='sympy')) b = matrix_to_zero(represent(e.doit(), nqubits=1, format='sympy')) assert a == b e = Commutator(g1(0), g2(1)) assert e.doit() == 0 def test_one_qubit_anticommutators(): """Test single qubit gate anticommutation relations.""" for g1 in (IdentityGate, X, Y, Z, H): for g2 in (IdentityGate, X, Y, Z, H): e = AntiCommutator(g1(0), g2(0)) a = matrix_to_zero(represent(e, nqubits=1, format='sympy')) b = matrix_to_zero(represent(e.doit(), nqubits=1, format='sympy')) assert a == b e = AntiCommutator(g1(0), g2(1)) a = matrix_to_zero(represent(e, nqubits=2, format='sympy')) b = matrix_to_zero(represent(e.doit(), nqubits=2, format='sympy')) assert a == b def test_cnot_commutators(): """Test commutators of involving CNOT gates.""" assert Commutator(CNOT(0, 1), Z(0)).doit() == 0 assert Commutator(CNOT(0, 1), T(0)).doit() == 0 assert Commutator(CNOT(0, 1), S(0)).doit() == 0 assert Commutator(CNOT(0, 1), X(1)).doit() == 0 assert Commutator(CNOT(0, 1), CNOT(0, 1)).doit() == 0 assert Commutator(CNOT(0, 1), CNOT(0, 2)).doit() == 0 assert Commutator(CNOT(0, 2), CNOT(0, 1)).doit() == 0 assert Commutator(CNOT(1, 2), CNOT(1, 0)).doit() == 0 def test_random_circuit(): c = random_circuit(10, 3) assert isinstance(c, Mul) m = represent(c, nqubits=3) assert m.shape == (8, 8) assert isinstance(m, Matrix) def test_hermitian_XGate(): x = XGate(1, 2) x_dagger = Dagger(x) assert (x == x_dagger) def test_hermitian_YGate(): y = YGate(1, 2) y_dagger = Dagger(y) assert (y == y_dagger) def test_hermitian_ZGate(): z = ZGate(1, 2) z_dagger = Dagger(z) assert (z == z_dagger) def test_unitary_XGate(): x = XGate(1, 2) x_dagger = Dagger(x) assert (x*x_dagger == 1) def test_unitary_YGate(): y = YGate(1, 2) y_dagger = Dagger(y) assert (y*y_dagger == 1) def test_unitary_ZGate(): z = ZGate(1, 2) z_dagger = Dagger(z) assert (z*z_dagger == 1)