%PDF- %PDF-
Direktori : /lib/python3/dist-packages/sympy/physics/mechanics/tests/ |
Current File : //lib/python3/dist-packages/sympy/physics/mechanics/tests/test_lagrange.py |
from sympy.physics.mechanics import (dynamicsymbols, ReferenceFrame, Point, RigidBody, LagrangesMethod, Particle, inertia, Lagrangian) from sympy import symbols, pi, sin, cos, tan, simplify, Function, \ Derivative, Matrix def test_disc_on_an_incline_plane(): # Disc rolling on an inclined plane # First the generalized coordinates are created. The mass center of the # disc is located from top vertex of the inclined plane by the generalized # coordinate 'y'. The orientation of the disc is defined by the angle # 'theta'. The mass of the disc is 'm' and its radius is 'R'. The length of # the inclined path is 'l', the angle of inclination is 'alpha'. 'g' is the # gravitational constant. y, theta = dynamicsymbols('y theta') yd, thetad = dynamicsymbols('y theta', 1) m, g, R, l, alpha = symbols('m g R l alpha') # Next, we create the inertial reference frame 'N'. A reference frame 'A' # is attached to the inclined plane. Finally a frame is created which is attached to the disk. N = ReferenceFrame('N') A = N.orientnew('A', 'Axis', [pi/2 - alpha, N.z]) B = A.orientnew('B', 'Axis', [-theta, A.z]) # Creating the disc 'D'; we create the point that represents the mass # center of the disc and set its velocity. The inertia dyadic of the disc # is created. Finally, we create the disc. Do = Point('Do') Do.set_vel(N, yd * A.x) I = m * R**2/2 * B.z | B.z D = RigidBody('D', Do, B, m, (I, Do)) # To construct the Lagrangian, 'L', of the disc, we determine its kinetic # and potential energies, T and U, respectively. L is defined as the # difference between T and U. D.potential_energy = m * g * (l - y) * sin(alpha) L = Lagrangian(N, D) # We then create the list of generalized coordinates and constraint # equations. The constraint arises due to the disc rolling without slip on # on the inclined path. We then invoke the 'LagrangesMethod' class and # supply it the necessary arguments and generate the equations of motion. # The'rhs' method solves for the q_double_dots (i.e. the second derivative # with respect to time of the generalized coordinates and the lagrange # multipliers. q = [y, theta] hol_coneqs = [y - R * theta] m = LagrangesMethod(L, q, hol_coneqs=hol_coneqs) m.form_lagranges_equations() rhs = m.rhs() rhs.simplify() assert rhs[2] == 2*g*sin(alpha)/3 def test_simp_pen(): # This tests that the equations generated by LagrangesMethod are identical # to those obtained by hand calculations. The system under consideration is # the simple pendulum. # We begin by creating the generalized coordinates as per the requirements # of LagrangesMethod. Also we created the associate symbols # that characterize the system: 'm' is the mass of the bob, l is the length # of the massless rigid rod connecting the bob to a point O fixed in the # inertial frame. q, u = dynamicsymbols('q u') qd, ud = dynamicsymbols('q u ', 1) l, m, g = symbols('l m g') # We then create the inertial frame and a frame attached to the massless # string following which we define the inertial angular velocity of the # string. N = ReferenceFrame('N') A = N.orientnew('A', 'Axis', [q, N.z]) A.set_ang_vel(N, qd * N.z) # Next, we create the point O and fix it in the inertial frame. We then # locate the point P to which the bob is attached. Its corresponding # velocity is then determined by the 'two point formula'. O = Point('O') O.set_vel(N, 0) P = O.locatenew('P', l * A.x) P.v2pt_theory(O, N, A) # The 'Particle' which represents the bob is then created and its # Lagrangian generated. Pa = Particle('Pa', P, m) Pa.potential_energy = - m * g * l * cos(q) L = Lagrangian(N, Pa) # The 'LagrangesMethod' class is invoked to obtain equations of motion. lm = LagrangesMethod(L, [q]) lm.form_lagranges_equations() RHS = lm.rhs() assert RHS[1] == -g*sin(q)/l def test_nonminimal_pendulum(): q1, q2 = dynamicsymbols('q1:3') q1d, q2d = dynamicsymbols('q1:3', level=1) L, m, t = symbols('L, m, t') g = 9.8 # Compose World Frame N = ReferenceFrame('N') pN = Point('N*') pN.set_vel(N, 0) # Create point P, the pendulum mass P = pN.locatenew('P1', q1*N.x + q2*N.y) P.set_vel(N, P.pos_from(pN).dt(N)) pP = Particle('pP', P, m) # Constraint Equations f_c = Matrix([q1**2 + q2**2 - L**2]) # Calculate the lagrangian, and form the equations of motion Lag = Lagrangian(N, pP) LM = LagrangesMethod(Lag, [q1, q2], hol_coneqs=f_c, forcelist=[(P, m*g*N.x)], frame=N) LM.form_lagranges_equations() # Check solution lam1 = LM.lam_vec[0, 0] eom_sol = Matrix([[m*Derivative(q1, t, t) - 9.8*m + 2*lam1*q1], [m*Derivative(q2, t, t) + 2*lam1*q2]]) assert LM.eom == eom_sol # Check multiplier solution lam_sol = Matrix([(19.6*q1 + 2*q1d**2 + 2*q2d**2)/(4*q1**2/m + 4*q2**2/m)]) assert simplify(LM.solve_multipliers(sol_type='Matrix')) == simplify(lam_sol) def test_dub_pen(): # The system considered is the double pendulum. Like in the # test of the simple pendulum above, we begin by creating the generalized # coordinates and the simple generalized speeds and accelerations which # will be used later. Following this we create frames and points necessary # for the kinematics. The procedure isn't explicitly explained as this is # similar to the simple pendulum. Also this is documented on the pydy.org # website. q1, q2 = dynamicsymbols('q1 q2') q1d, q2d = dynamicsymbols('q1 q2', 1) q1dd, q2dd = dynamicsymbols('q1 q2', 2) u1, u2 = dynamicsymbols('u1 u2') u1d, u2d = dynamicsymbols('u1 u2', 1) l, m, g = symbols('l m g') N = ReferenceFrame('N') A = N.orientnew('A', 'Axis', [q1, N.z]) B = N.orientnew('B', 'Axis', [q2, N.z]) A.set_ang_vel(N, q1d * A.z) B.set_ang_vel(N, q2d * A.z) O = Point('O') P = O.locatenew('P', l * A.x) R = P.locatenew('R', l * B.x) O.set_vel(N, 0) P.v2pt_theory(O, N, A) R.v2pt_theory(P, N, B) ParP = Particle('ParP', P, m) ParR = Particle('ParR', R, m) ParP.potential_energy = - m * g * l * cos(q1) ParR.potential_energy = - m * g * l * cos(q1) - m * g * l * cos(q2) L = Lagrangian(N, ParP, ParR) lm = LagrangesMethod(L, [q1, q2], bodies=[ParP, ParR]) lm.form_lagranges_equations() assert simplify(l*m*(2*g*sin(q1) + l*sin(q1)*sin(q2)*q2dd + l*sin(q1)*cos(q2)*q2d**2 - l*sin(q2)*cos(q1)*q2d**2 + l*cos(q1)*cos(q2)*q2dd + 2*l*q1dd) - lm.eom[0]) == 0 assert simplify(l*m*(g*sin(q2) + l*sin(q1)*sin(q2)*q1dd - l*sin(q1)*cos(q2)*q1d**2 + l*sin(q2)*cos(q1)*q1d**2 + l*cos(q1)*cos(q2)*q1dd + l*q2dd) - lm.eom[1]) == 0 assert lm.bodies == [ParP, ParR] def test_rolling_disc(): # Rolling Disc Example # Here the rolling disc is formed from the contact point up, removing the # need to introduce generalized speeds. Only 3 configuration and 3 # speed variables are need to describe this system, along with the # disc's mass and radius, and the local gravity. q1, q2, q3 = dynamicsymbols('q1 q2 q3') q1d, q2d, q3d = dynamicsymbols('q1 q2 q3', 1) r, m, g = symbols('r m g') # The kinematics are formed by a series of simple rotations. Each simple # rotation creates a new frame, and the next rotation is defined by the new # frame's basis vectors. This example uses a 3-1-2 series of rotations, or # Z, X, Y series of rotations. Angular velocity for this is defined using # the second frame's basis (the lean frame). N = ReferenceFrame('N') Y = N.orientnew('Y', 'Axis', [q1, N.z]) L = Y.orientnew('L', 'Axis', [q2, Y.x]) R = L.orientnew('R', 'Axis', [q3, L.y]) # This is the translational kinematics. We create a point with no velocity # in N; this is the contact point between the disc and ground. Next we form # the position vector from the contact point to the disc's center of mass. # Finally we form the velocity and acceleration of the disc. C = Point('C') C.set_vel(N, 0) Dmc = C.locatenew('Dmc', r * L.z) Dmc.v2pt_theory(C, N, R) # Forming the inertia dyadic. I = inertia(L, m/4 * r**2, m/2 * r**2, m/4 * r**2) BodyD = RigidBody('BodyD', Dmc, R, m, (I, Dmc)) # Finally we form the equations of motion, using the same steps we did # before. Supply the Lagrangian, the generalized speeds. BodyD.potential_energy = - m * g * r * cos(q2) Lag = Lagrangian(N, BodyD) q = [q1, q2, q3] q1 = Function('q1') q2 = Function('q2') q3 = Function('q3') l = LagrangesMethod(Lag, q) l.form_lagranges_equations() RHS = l.rhs() RHS.simplify() t = symbols('t') assert (l.mass_matrix[3:6] == [0, 5*m*r**2/4, 0]) assert RHS[4].simplify() == ( (-8*g*sin(q2(t)) + r*(5*sin(2*q2(t))*Derivative(q1(t), t) + 12*cos(q2(t))*Derivative(q3(t), t))*Derivative(q1(t), t))/(10*r)) assert RHS[5] == (-5*cos(q2(t))*Derivative(q1(t), t) + 6*tan(q2(t) )*Derivative(q3(t), t) + 4*Derivative(q1(t), t)/cos(q2(t)) )*Derivative(q2(t), t)