%PDF- %PDF-
Direktori : /lib/python3/dist-packages/sympy/matrices/expressions/tests/ |
Current File : //lib/python3/dist-packages/sympy/matrices/expressions/tests/test_determinant.py |
from sympy.core import S, symbols from sympy.matrices import eye, Matrix, ShapeError from sympy.matrices.expressions import ( Identity, MatrixExpr, MatrixSymbol, Determinant, det, ZeroMatrix, Transpose ) from sympy.matrices.expressions.special import OneMatrix from sympy.testing.pytest import raises from sympy import refine, Q n = symbols('n', integer=True) A = MatrixSymbol('A', n, n) B = MatrixSymbol('B', n, n) C = MatrixSymbol('C', 3, 4) def test_det(): assert isinstance(Determinant(A), Determinant) assert not isinstance(Determinant(A), MatrixExpr) raises(ShapeError, lambda: Determinant(C)) assert det(eye(3)) == 1 assert det(Matrix(3, 3, [1, 3, 2, 4, 1, 3, 2, 5, 2])) == 17 A / det(A) # Make sure this is possible raises(TypeError, lambda: Determinant(S.One)) assert Determinant(A).arg is A def test_eval_determinant(): assert det(Identity(n)) == 1 assert det(ZeroMatrix(n, n)) == 0 assert det(OneMatrix(n, n)) == Determinant(OneMatrix(n, n)) assert det(OneMatrix(1, 1)) == 1 assert det(OneMatrix(2, 2)) == 0 assert det(Transpose(A)) == det(A) def test_refine(): assert refine(det(A), Q.orthogonal(A)) == 1 assert refine(det(A), Q.singular(A)) == 0 def test_commutative(): det_a = Determinant(A) det_b = Determinant(B) assert det_a.is_commutative assert det_b.is_commutative assert det_a * det_b == det_b * det_a