%PDF- %PDF-
Direktori : /lib/python3/dist-packages/sympy/geometry/tests/ |
Current File : //lib/python3/dist-packages/sympy/geometry/tests/test_polygon.py |
from sympy import (Abs, Rational, Float, S, Symbol, symbols, cos, sin, pi, sqrt, \ oo, acos) from sympy.functions.elementary.trigonometric import tan from sympy.geometry import (Circle, Ellipse, GeometryError, Point, Point2D, \ Polygon, Ray, RegularPolygon, Segment, Triangle, \ are_similar, convex_hull, intersection, Line, Ray2D) from sympy.testing.pytest import raises, slow, warns from sympy.testing.randtest import verify_numerically from sympy.geometry.polygon import rad, deg from sympy import integrate def feq(a, b): """Test if two floating point values are 'equal'.""" t_float = Float("1.0E-10") return -t_float < a - b < t_float @slow def test_polygon(): x = Symbol('x', real=True) y = Symbol('y', real=True) q = Symbol('q', real=True) u = Symbol('u', real=True) v = Symbol('v', real=True) w = Symbol('w', real=True) x1 = Symbol('x1', real=True) half = S.Half a, b, c = Point(0, 0), Point(2, 0), Point(3, 3) t = Triangle(a, b, c) assert Polygon(Point(0, 0)) == Point(0, 0) assert Polygon(a, Point(1, 0), b, c) == t assert Polygon(Point(1, 0), b, c, a) == t assert Polygon(b, c, a, Point(1, 0)) == t # 2 "remove folded" tests assert Polygon(a, Point(3, 0), b, c) == t assert Polygon(a, b, Point(3, -1), b, c) == t # remove multiple collinear points assert Polygon(Point(-4, 15), Point(-11, 15), Point(-15, 15), Point(-15, 33/5), Point(-15, -87/10), Point(-15, -15), Point(-42/5, -15), Point(-2, -15), Point(7, -15), Point(15, -15), Point(15, -3), Point(15, 10), Point(15, 15)) == \ Polygon(Point(-15, -15), Point(15, -15), Point(15, 15), Point(-15, 15)) p1 = Polygon( Point(0, 0), Point(3, -1), Point(6, 0), Point(4, 5), Point(2, 3), Point(0, 3)) p2 = Polygon( Point(6, 0), Point(3, -1), Point(0, 0), Point(0, 3), Point(2, 3), Point(4, 5)) p3 = Polygon( Point(0, 0), Point(3, 0), Point(5, 2), Point(4, 4)) p4 = Polygon( Point(0, 0), Point(4, 4), Point(5, 2), Point(3, 0)) p5 = Polygon( Point(0, 0), Point(4, 4), Point(0, 4)) p6 = Polygon( Point(-11, 1), Point(-9, 6.6), Point(-4, -3), Point(-8.4, -8.7)) p7 = Polygon( Point(x, y), Point(q, u), Point(v, w)) p8 = Polygon( Point(x, y), Point(v, w), Point(q, u)) p9 = Polygon( Point(0, 0), Point(4, 4), Point(3, 0), Point(5, 2)) p10 = Polygon( Point(0, 2), Point(2, 2), Point(0, 0), Point(2, 0)) p11 = Polygon(Point(0, 0), 1, n=3) p12 = Polygon(Point(0, 0), 1, 0, n=3) r = Ray(Point(-9, 6.6), Point(-9, 5.5)) # # General polygon # assert p1 == p2 assert len(p1.args) == 6 assert len(p1.sides) == 6 assert p1.perimeter == 5 + 2*sqrt(10) + sqrt(29) + sqrt(8) assert p1.area == 22 assert not p1.is_convex() assert Polygon((-1, 1), (2, -1), (2, 1), (-1, -1), (3, 0) ).is_convex() is False # ensure convex for both CW and CCW point specification assert p3.is_convex() assert p4.is_convex() dict5 = p5.angles assert dict5[Point(0, 0)] == pi / 4 assert dict5[Point(0, 4)] == pi / 2 assert p5.encloses_point(Point(x, y)) is None assert p5.encloses_point(Point(1, 3)) assert p5.encloses_point(Point(0, 0)) is False assert p5.encloses_point(Point(4, 0)) is False assert p1.encloses(Circle(Point(2.5, 2.5), 5)) is False assert p1.encloses(Ellipse(Point(2.5, 2), 5, 6)) is False p5.plot_interval('x') == [x, 0, 1] assert p5.distance( Polygon(Point(10, 10), Point(14, 14), Point(10, 14))) == 6 * sqrt(2) assert p5.distance( Polygon(Point(1, 8), Point(5, 8), Point(8, 12), Point(1, 12))) == 4 with warns(UserWarning, \ match="Polygons may intersect producing erroneous output"): Polygon(Point(0, 0), Point(1, 0), Point(1, 1)).distance( Polygon(Point(0, 0), Point(0, 1), Point(1, 1))) assert hash(p5) == hash(Polygon(Point(0, 0), Point(4, 4), Point(0, 4))) assert hash(p1) == hash(p2) assert hash(p7) == hash(p8) assert hash(p3) != hash(p9) assert p5 == Polygon(Point(4, 4), Point(0, 4), Point(0, 0)) assert Polygon(Point(4, 4), Point(0, 4), Point(0, 0)) in p5 assert p5 != Point(0, 4) assert Point(0, 1) in p5 assert p5.arbitrary_point('t').subs(Symbol('t', real=True), 0) == \ Point(0, 0) raises(ValueError, lambda: Polygon( Point(x, 0), Point(0, y), Point(x, y)).arbitrary_point('x')) assert p6.intersection(r) == [Point(-9, Rational(-84, 13)), Point(-9, Rational(33, 5))] assert p10.area == 0 assert p11 == RegularPolygon(Point(0, 0), 1, 3, 0) assert p11 == p12 assert p11.vertices[0] == Point(1, 0) assert p11.args[0] == Point(0, 0) p11.spin(pi/2) assert p11.vertices[0] == Point(0, 1) # # Regular polygon # p1 = RegularPolygon(Point(0, 0), 10, 5) p2 = RegularPolygon(Point(0, 0), 5, 5) raises(GeometryError, lambda: RegularPolygon(Point(0, 0), Point(0, 1), Point(1, 1))) raises(GeometryError, lambda: RegularPolygon(Point(0, 0), 1, 2)) raises(ValueError, lambda: RegularPolygon(Point(0, 0), 1, 2.5)) assert p1 != p2 assert p1.interior_angle == pi*Rational(3, 5) assert p1.exterior_angle == pi*Rational(2, 5) assert p2.apothem == 5*cos(pi/5) assert p2.circumcenter == p1.circumcenter == Point(0, 0) assert p1.circumradius == p1.radius == 10 assert p2.circumcircle == Circle(Point(0, 0), 5) assert p2.incircle == Circle(Point(0, 0), p2.apothem) assert p2.inradius == p2.apothem == (5 * (1 + sqrt(5)) / 4) p2.spin(pi / 10) dict1 = p2.angles assert dict1[Point(0, 5)] == 3 * pi / 5 assert p1.is_convex() assert p1.rotation == 0 assert p1.encloses_point(Point(0, 0)) assert p1.encloses_point(Point(11, 0)) is False assert p2.encloses_point(Point(0, 4.9)) p1.spin(pi/3) assert p1.rotation == pi/3 assert p1.vertices[0] == Point(5, 5*sqrt(3)) for var in p1.args: if isinstance(var, Point): assert var == Point(0, 0) else: assert var == 5 or var == 10 or var == pi / 3 assert p1 != Point(0, 0) assert p1 != p5 # while spin works in place (notice that rotation is 2pi/3 below) # rotate returns a new object p1_old = p1 assert p1.rotate(pi/3) == RegularPolygon(Point(0, 0), 10, 5, pi*Rational(2, 3)) assert p1 == p1_old assert p1.area == (-250*sqrt(5) + 1250)/(4*tan(pi/5)) assert p1.length == 20*sqrt(-sqrt(5)/8 + Rational(5, 8)) assert p1.scale(2, 2) == \ RegularPolygon(p1.center, p1.radius*2, p1._n, p1.rotation) assert RegularPolygon((0, 0), 1, 4).scale(2, 3) == \ Polygon(Point(2, 0), Point(0, 3), Point(-2, 0), Point(0, -3)) assert repr(p1) == str(p1) # # Angles # angles = p4.angles assert feq(angles[Point(0, 0)].evalf(), Float("0.7853981633974483")) assert feq(angles[Point(4, 4)].evalf(), Float("1.2490457723982544")) assert feq(angles[Point(5, 2)].evalf(), Float("1.8925468811915388")) assert feq(angles[Point(3, 0)].evalf(), Float("2.3561944901923449")) angles = p3.angles assert feq(angles[Point(0, 0)].evalf(), Float("0.7853981633974483")) assert feq(angles[Point(4, 4)].evalf(), Float("1.2490457723982544")) assert feq(angles[Point(5, 2)].evalf(), Float("1.8925468811915388")) assert feq(angles[Point(3, 0)].evalf(), Float("2.3561944901923449")) # # Triangle # p1 = Point(0, 0) p2 = Point(5, 0) p3 = Point(0, 5) t1 = Triangle(p1, p2, p3) t2 = Triangle(p1, p2, Point(Rational(5, 2), sqrt(Rational(75, 4)))) t3 = Triangle(p1, Point(x1, 0), Point(0, x1)) s1 = t1.sides assert Triangle(p1, p2, p1) == Polygon(p1, p2, p1) == Segment(p1, p2) raises(GeometryError, lambda: Triangle(Point(0, 0))) # Basic stuff assert Triangle(p1, p1, p1) == p1 assert Triangle(p2, p2*2, p2*3) == Segment(p2, p2*3) assert t1.area == Rational(25, 2) assert t1.is_right() assert t2.is_right() is False assert t3.is_right() assert p1 in t1 assert t1.sides[0] in t1 assert Segment((0, 0), (1, 0)) in t1 assert Point(5, 5) not in t2 assert t1.is_convex() assert feq(t1.angles[p1].evalf(), pi.evalf()/2) assert t1.is_equilateral() is False assert t2.is_equilateral() assert t3.is_equilateral() is False assert are_similar(t1, t2) is False assert are_similar(t1, t3) assert are_similar(t2, t3) is False assert t1.is_similar(Point(0, 0)) is False assert t1.is_similar(t2) is False # Bisectors bisectors = t1.bisectors() assert bisectors[p1] == Segment( p1, Point(Rational(5, 2), Rational(5, 2))) assert t2.bisectors()[p2] == Segment( Point(5, 0), Point(Rational(5, 4), 5*sqrt(3)/4)) p4 = Point(0, x1) assert t3.bisectors()[p4] == Segment(p4, Point(x1*(sqrt(2) - 1), 0)) ic = (250 - 125*sqrt(2))/50 assert t1.incenter == Point(ic, ic) # Inradius assert t1.inradius == t1.incircle.radius == 5 - 5*sqrt(2)/2 assert t2.inradius == t2.incircle.radius == 5*sqrt(3)/6 assert t3.inradius == t3.incircle.radius == x1**2/((2 + sqrt(2))*Abs(x1)) # Exradius assert t1.exradii[t1.sides[2]] == 5*sqrt(2)/2 # Excenters assert t1.excenters[t1.sides[2]] == Point2D(25*sqrt(2), -5*sqrt(2)/2) # Circumcircle assert t1.circumcircle.center == Point(2.5, 2.5) # Medians + Centroid m = t1.medians assert t1.centroid == Point(Rational(5, 3), Rational(5, 3)) assert m[p1] == Segment(p1, Point(Rational(5, 2), Rational(5, 2))) assert t3.medians[p1] == Segment(p1, Point(x1/2, x1/2)) assert intersection(m[p1], m[p2], m[p3]) == [t1.centroid] assert t1.medial == Triangle(Point(2.5, 0), Point(0, 2.5), Point(2.5, 2.5)) # Nine-point circle assert t1.nine_point_circle == Circle(Point(2.5, 0), Point(0, 2.5), Point(2.5, 2.5)) assert t1.nine_point_circle == Circle(Point(0, 0), Point(0, 2.5), Point(2.5, 2.5)) # Perpendicular altitudes = t1.altitudes assert altitudes[p1] == Segment(p1, Point(Rational(5, 2), Rational(5, 2))) assert altitudes[p2].equals(s1[0]) assert altitudes[p3] == s1[2] assert t1.orthocenter == p1 t = S('''Triangle( Point(100080156402737/5000000000000, 79782624633431/500000000000), Point(39223884078253/2000000000000, 156345163124289/1000000000000), Point(31241359188437/1250000000000, 338338270939941/1000000000000000))''') assert t.orthocenter == S('''Point(-780660869050599840216997''' '''79471538701955848721853/80368430960602242240789074233100000000000000,''' '''20151573611150265741278060334545897615974257/16073686192120448448157''' '''8148466200000000000)''') # Ensure assert len(intersection(*bisectors.values())) == 1 assert len(intersection(*altitudes.values())) == 1 assert len(intersection(*m.values())) == 1 # Distance p1 = Polygon( Point(0, 0), Point(1, 0), Point(1, 1), Point(0, 1)) p2 = Polygon( Point(0, Rational(5)/4), Point(1, Rational(5)/4), Point(1, Rational(9)/4), Point(0, Rational(9)/4)) p3 = Polygon( Point(1, 2), Point(2, 2), Point(2, 1)) p4 = Polygon( Point(1, 1), Point(Rational(6)/5, 1), Point(1, Rational(6)/5)) pt1 = Point(half, half) pt2 = Point(1, 1) '''Polygon to Point''' assert p1.distance(pt1) == half assert p1.distance(pt2) == 0 assert p2.distance(pt1) == Rational(3)/4 assert p3.distance(pt2) == sqrt(2)/2 '''Polygon to Polygon''' # p1.distance(p2) emits a warning with warns(UserWarning, \ match="Polygons may intersect producing erroneous output"): assert p1.distance(p2) == half/2 assert p1.distance(p3) == sqrt(2)/2 # p3.distance(p4) emits a warning with warns(UserWarning, \ match="Polygons may intersect producing erroneous output"): assert p3.distance(p4) == (sqrt(2)/2 - sqrt(Rational(2)/25)/2) def test_convex_hull(): p = [Point(-5, -1), Point(-2, 1), Point(-2, -1), Point(-1, -3), \ Point(0, 0), Point(1, 1), Point(2, 2), Point(2, -1), Point(3, 1), \ Point(4, -1), Point(6, 2)] ch = Polygon(p[0], p[3], p[9], p[10], p[6], p[1]) #test handling of duplicate points p.append(p[3]) #more than 3 collinear points another_p = [Point(-45, -85), Point(-45, 85), Point(-45, 26), \ Point(-45, -24)] ch2 = Segment(another_p[0], another_p[1]) assert convex_hull(*another_p) == ch2 assert convex_hull(*p) == ch assert convex_hull(p[0]) == p[0] assert convex_hull(p[0], p[1]) == Segment(p[0], p[1]) # no unique points assert convex_hull(*[p[-1]]*3) == p[-1] # collection of items assert convex_hull(*[Point(0, 0), \ Segment(Point(1, 0), Point(1, 1)), \ RegularPolygon(Point(2, 0), 2, 4)]) == \ Polygon(Point(0, 0), Point(2, -2), Point(4, 0), Point(2, 2)) def test_encloses(): # square with a dimpled left side s = Polygon(Point(0, 0), Point(1, 0), Point(1, 1), Point(0, 1), \ Point(S.Half, S.Half)) # the following is True if the polygon isn't treated as closing on itself assert s.encloses(Point(0, S.Half)) is False assert s.encloses(Point(S.Half, S.Half)) is False # it's a vertex assert s.encloses(Point(Rational(3, 4), S.Half)) is True def test_triangle_kwargs(): assert Triangle(sss=(3, 4, 5)) == \ Triangle(Point(0, 0), Point(3, 0), Point(3, 4)) assert Triangle(asa=(30, 2, 30)) == \ Triangle(Point(0, 0), Point(2, 0), Point(1, sqrt(3)/3)) assert Triangle(sas=(1, 45, 2)) == \ Triangle(Point(0, 0), Point(2, 0), Point(sqrt(2)/2, sqrt(2)/2)) assert Triangle(sss=(1, 2, 5)) is None assert deg(rad(180)) == 180 def test_transform(): pts = [Point(0, 0), Point(S.Half, Rational(1, 4)), Point(1, 1)] pts_out = [Point(-4, -10), Point(-3, Rational(-37, 4)), Point(-2, -7)] assert Triangle(*pts).scale(2, 3, (4, 5)) == Triangle(*pts_out) assert RegularPolygon((0, 0), 1, 4).scale(2, 3, (4, 5)) == \ Polygon(Point(-2, -10), Point(-4, -7), Point(-6, -10), Point(-4, -13)) # Checks for symmetric scaling assert RegularPolygon((0, 0), 1, 4).scale(2, 2) == \ RegularPolygon(Point2D(0, 0), 2, 4, 0) def test_reflect(): x = Symbol('x', real=True) y = Symbol('y', real=True) b = Symbol('b') m = Symbol('m') l = Line((0, b), slope=m) p = Point(x, y) r = p.reflect(l) dp = l.perpendicular_segment(p).length dr = l.perpendicular_segment(r).length assert verify_numerically(dp, dr) assert Polygon((1, 0), (2, 0), (2, 2)).reflect(Line((3, 0), slope=oo)) \ == Triangle(Point(5, 0), Point(4, 0), Point(4, 2)) assert Polygon((1, 0), (2, 0), (2, 2)).reflect(Line((0, 3), slope=oo)) \ == Triangle(Point(-1, 0), Point(-2, 0), Point(-2, 2)) assert Polygon((1, 0), (2, 0), (2, 2)).reflect(Line((0, 3), slope=0)) \ == Triangle(Point(1, 6), Point(2, 6), Point(2, 4)) assert Polygon((1, 0), (2, 0), (2, 2)).reflect(Line((3, 0), slope=0)) \ == Triangle(Point(1, 0), Point(2, 0), Point(2, -2)) def test_bisectors(): p1, p2, p3 = Point(0, 0), Point(1, 0), Point(0, 1) p = Polygon(Point(0, 0), Point(2, 0), Point(1, 1), Point(0, 3)) q = Polygon(Point(1, 0), Point(2, 0), Point(3, 3), Point(-1, 5)) poly = Polygon(Point(3, 4), Point(0, 0), Point(8, 7), Point(-1, 1), Point(19, -19)) t = Triangle(p1, p2, p3) assert t.bisectors()[p2] == Segment(Point(1, 0), Point(0, sqrt(2) - 1)) assert p.bisectors()[Point2D(0, 3)] == Ray2D(Point2D(0, 3), \ Point2D(sin(acos(2*sqrt(5)/5)/2), 3 - cos(acos(2*sqrt(5)/5)/2))) assert q.bisectors()[Point2D(-1, 5)] == \ Ray2D(Point2D(-1, 5), Point2D(-1 + sqrt(29)*(5*sin(acos(9*sqrt(145)/145)/2) + \ 2*cos(acos(9*sqrt(145)/145)/2))/29, sqrt(29)*(-5*cos(acos(9*sqrt(145)/145)/2) + \ 2*sin(acos(9*sqrt(145)/145)/2))/29 + 5)) assert poly.bisectors()[Point2D(-1, 1)] == Ray2D(Point2D(-1, 1), \ Point2D(-1 + sin(acos(sqrt(26)/26)/2 + pi/4), 1 - sin(-acos(sqrt(26)/26)/2 + pi/4))) def test_incenter(): assert Triangle(Point(0, 0), Point(1, 0), Point(0, 1)).incenter \ == Point(1 - sqrt(2)/2, 1 - sqrt(2)/2) def test_inradius(): assert Triangle(Point(0, 0), Point(4, 0), Point(0, 3)).inradius == 1 def test_incircle(): assert Triangle(Point(0, 0), Point(2, 0), Point(0, 2)).incircle \ == Circle(Point(2 - sqrt(2), 2 - sqrt(2)), 2 - sqrt(2)) def test_exradii(): t = Triangle(Point(0, 0), Point(6, 0), Point(0, 2)) assert t.exradii[t.sides[2]] == (-2 + sqrt(10)) def test_medians(): t = Triangle(Point(0, 0), Point(1, 0), Point(0, 1)) assert t.medians[Point(0, 0)] == Segment(Point(0, 0), Point(S.Half, S.Half)) def test_medial(): assert Triangle(Point(0, 0), Point(1, 0), Point(0, 1)).medial \ == Triangle(Point(S.Half, 0), Point(S.Half, S.Half), Point(0, S.Half)) def test_nine_point_circle(): assert Triangle(Point(0, 0), Point(1, 0), Point(0, 1)).nine_point_circle \ == Circle(Point2D(Rational(1, 4), Rational(1, 4)), sqrt(2)/4) def test_eulerline(): assert Triangle(Point(0, 0), Point(1, 0), Point(0, 1)).eulerline \ == Line(Point2D(0, 0), Point2D(S.Half, S.Half)) assert Triangle(Point(0, 0), Point(10, 0), Point(5, 5*sqrt(3))).eulerline \ == Point2D(5, 5*sqrt(3)/3) assert Triangle(Point(4, -6), Point(4, -1), Point(-3, 3)).eulerline \ == Line(Point2D(Rational(64, 7), 3), Point2D(Rational(-29, 14), Rational(-7, 2))) def test_intersection(): poly1 = Triangle(Point(0, 0), Point(1, 0), Point(0, 1)) poly2 = Polygon(Point(0, 1), Point(-5, 0), Point(0, -4), Point(0, Rational(1, 5)), Point(S.Half, -0.1), Point(1, 0), Point(0, 1)) assert poly1.intersection(poly2) == [Point2D(Rational(1, 3), 0), Segment(Point(0, Rational(1, 5)), Point(0, 0)), Segment(Point(1, 0), Point(0, 1))] assert poly2.intersection(poly1) == [Point(Rational(1, 3), 0), Segment(Point(0, 0), Point(0, Rational(1, 5))), Segment(Point(1, 0), Point(0, 1))] assert poly1.intersection(Point(0, 0)) == [Point(0, 0)] assert poly1.intersection(Point(-12, -43)) == [] assert poly2.intersection(Line((-12, 0), (12, 0))) == [Point(-5, 0), Point(0, 0), Point(Rational(1, 3), 0), Point(1, 0)] assert poly2.intersection(Line((-12, 12), (12, 12))) == [] assert poly2.intersection(Ray((-3, 4), (1, 0))) == [Segment(Point(1, 0), Point(0, 1))] assert poly2.intersection(Circle((0, -1), 1)) == [Point(0, -2), Point(0, 0)] assert poly1.intersection(poly1) == [Segment(Point(0, 0), Point(1, 0)), Segment(Point(0, 1), Point(0, 0)), Segment(Point(1, 0), Point(0, 1))] assert poly2.intersection(poly2) == [Segment(Point(-5, 0), Point(0, -4)), Segment(Point(0, -4), Point(0, Rational(1, 5))), Segment(Point(0, Rational(1, 5)), Point(S.Half, Rational(-1, 10))), Segment(Point(0, 1), Point(-5, 0)), Segment(Point(S.Half, Rational(-1, 10)), Point(1, 0)), Segment(Point(1, 0), Point(0, 1))] assert poly2.intersection(Triangle(Point(0, 1), Point(1, 0), Point(-1, 1))) \ == [Point(Rational(-5, 7), Rational(6, 7)), Segment(Point2D(0, 1), Point(1, 0))] assert poly1.intersection(RegularPolygon((-12, -15), 3, 3)) == [] def test_parameter_value(): t = Symbol('t') sq = Polygon((0, 0), (0, 1), (1, 1), (1, 0)) assert sq.parameter_value((0.5, 1), t) == {t: Rational(3, 8)} q = Polygon((0, 0), (2, 1), (2, 4), (4, 0)) assert q.parameter_value((4, 0), t) == {t: -6 + 3*sqrt(5)} # ~= 0.708 raises(ValueError, lambda: sq.parameter_value((5, 6), t)) raises(ValueError, lambda: sq.parameter_value(Circle(Point(0, 0), 1), t)) def test_issue_12966(): poly = Polygon(Point(0, 0), Point(0, 10), Point(5, 10), Point(5, 5), Point(10, 5), Point(10, 0)) t = Symbol('t') pt = poly.arbitrary_point(t) DELTA = 5/poly.perimeter assert [pt.subs(t, DELTA*i) for i in range(int(1/DELTA))] == [ Point(0, 0), Point(0, 5), Point(0, 10), Point(5, 10), Point(5, 5), Point(10, 5), Point(10, 0), Point(5, 0)] def test_second_moment_of_area(): x, y = symbols('x, y') # triangle p1, p2, p3 = [(0, 0), (4, 0), (0, 2)] p = (0, 0) # equation of hypotenuse eq_y = (1-x/4)*2 I_yy = integrate((x**2) * (integrate(1, (y, 0, eq_y))), (x, 0, 4)) I_xx = integrate(1 * (integrate(y**2, (y, 0, eq_y))), (x, 0, 4)) I_xy = integrate(x * (integrate(y, (y, 0, eq_y))), (x, 0, 4)) triangle = Polygon(p1, p2, p3) assert (I_xx - triangle.second_moment_of_area(p)[0]) == 0 assert (I_yy - triangle.second_moment_of_area(p)[1]) == 0 assert (I_xy - triangle.second_moment_of_area(p)[2]) == 0 # rectangle p1, p2, p3, p4=[(0, 0), (4, 0), (4, 2), (0, 2)] I_yy = integrate((x**2) * integrate(1, (y, 0, 2)), (x, 0, 4)) I_xx = integrate(1 * integrate(y**2, (y, 0, 2)), (x, 0, 4)) I_xy = integrate(x * integrate(y, (y, 0, 2)), (x, 0, 4)) rectangle = Polygon(p1, p2, p3, p4) assert (I_xx - rectangle.second_moment_of_area(p)[0]) == 0 assert (I_yy - rectangle.second_moment_of_area(p)[1]) == 0 assert (I_xy - rectangle.second_moment_of_area(p)[2]) == 0 r = RegularPolygon(Point(0, 0), 5, 3) assert r.second_moment_of_area() == (1875*sqrt(3)/S(32), 1875*sqrt(3)/S(32), 0) def test_first_moment(): a, b = symbols('a, b', positive=True) # rectangle p1 = Polygon((0, 0), (a, 0), (a, b), (0, b)) assert p1.first_moment_of_area() == (a*b**2/8, a**2*b/8) assert p1.first_moment_of_area((a/3, b/4)) == (-3*a*b**2/32, -a**2*b/9) p1 = Polygon((0, 0), (40, 0), (40, 30), (0, 30)) assert p1.first_moment_of_area() == (4500, 6000) # triangle p2 = Polygon((0, 0), (a, 0), (a/2, b)) assert p2.first_moment_of_area() == (4*a*b**2/81, a**2*b/24) assert p2.first_moment_of_area((a/8, b/6)) == (-25*a*b**2/648, -5*a**2*b/768) p2 = Polygon((0, 0), (12, 0), (12, 30)) p2.first_moment_of_area() == (1600/3, -640/3) def test_section_modulus_and_polar_second_moment_of_area(): a, b = symbols('a, b', positive=True) x, y = symbols('x, y') rectangle = Polygon((0, b), (0, 0), (a, 0), (a, b)) assert rectangle.section_modulus(Point(x, y)) == (a*b**3/12/(-b/2 + y), a**3*b/12/(-a/2 + x)) assert rectangle.polar_second_moment_of_area() == a**3*b/12 + a*b**3/12 convex = RegularPolygon((0, 0), 1, 6) assert convex.section_modulus() == (Rational(5, 8), sqrt(3)*Rational(5, 16)) assert convex.polar_second_moment_of_area() == 5*sqrt(3)/S(8) concave = Polygon((0, 0), (1, 8), (3, 4), (4, 6), (7, 1)) assert concave.section_modulus() == (Rational(-6371, 429), Rational(-9778, 519)) assert concave.polar_second_moment_of_area() == Rational(-38669, 252) def test_cut_section(): # concave polygon p = Polygon((-1, -1), (1, Rational(5, 2)), (2, 1), (3, Rational(5, 2)), (4, 2), (5, 3), (-1, 3)) l = Line((0, 0), (Rational(9, 2), 3)) p1 = p.cut_section(l)[0] p2 = p.cut_section(l)[1] assert p1 == Polygon( Point2D(Rational(-9, 13), Rational(-6, 13)), Point2D(1, Rational(5, 2)), Point2D(Rational(24, 13), Rational(16, 13)), Point2D(Rational(12, 5), Rational(8, 5)), Point2D(3, Rational(5, 2)), Point2D(Rational(24, 7), Rational(16, 7)), Point2D(Rational(9, 2), 3), Point2D(-1, 3), Point2D(-1, Rational(-2, 3))) assert p2 == Polygon(Point2D(-1, -1), Point2D(Rational(-9, 13), Rational(-6, 13)), Point2D(Rational(24, 13), Rational(16, 13)), Point2D(2, 1), Point2D(Rational(12, 5), Rational(8, 5)), Point2D(Rational(24, 7), Rational(16, 7)), Point2D(4, 2), Point2D(5, 3), Point2D(Rational(9, 2), 3), Point2D(-1, Rational(-2, 3))) # convex polygon p = RegularPolygon(Point2D(0, 0), 6, 6) s = p.cut_section(Line((0, 0), slope=1)) assert s[0] == Polygon(Point2D(-3*sqrt(3) + 9, -3*sqrt(3) + 9), Point2D(3, 3*sqrt(3)), Point2D(-3, 3*sqrt(3)), Point2D(-6, 0), Point2D(-9 + 3*sqrt(3), -9 + 3*sqrt(3))) assert s[1] == Polygon(Point2D(6, 0), Point2D(-3*sqrt(3) + 9, -3*sqrt(3) + 9), Point2D(-9 + 3*sqrt(3), -9 + 3*sqrt(3)), Point2D(-3, -3*sqrt(3)), Point2D(3, -3*sqrt(3))) # case where line does not intersects but coincides with the edge of polygon a, b = 20, 10 t1, t2, t3, t4 = [(0, b), (0, 0), (a, 0), (a, b)] p = Polygon(t1, t2, t3, t4) p1, p2 = p.cut_section(Line((0, b), slope=0)) assert p1 == None assert p2 == Polygon(Point2D(0, 10), Point2D(0, 0), Point2D(20, 0), Point2D(20, 10)) p3, p4 = p.cut_section(Line((0, 0), slope=0)) assert p3 == Polygon(Point2D(0, 10), Point2D(0, 0), Point2D(20, 0), Point2D(20, 10)) assert p4 == None # case where the line does not intersect with a polygon at all raises(ValueError, lambda: p.cut_section(Line((0, a), slope=0))) def test_type_of_triangle(): # Isoceles triangle p1 = Polygon(Point(0, 0), Point(5, 0), Point(2, 4)) assert p1.is_isosceles() == True assert p1.is_scalene() == False assert p1.is_equilateral() == False # Scalene triangle p2 = Polygon (Point(0, 0), Point(0, 2), Point(4, 0)) assert p2.is_isosceles() == False assert p2.is_scalene() == True assert p2.is_equilateral() == False # Equilateral triagle p3 = Polygon(Point(0, 0), Point(6, 0), Point(3, sqrt(27))) assert p3.is_isosceles() == True assert p3.is_scalene() == False assert p3.is_equilateral() == True def test_do_poly_distance(): # Non-intersecting polygons square1 = Polygon (Point(0, 0), Point(0, 1), Point(1, 1), Point(1, 0)) triangle1 = Polygon(Point(1, 2), Point(2, 2), Point(2, 1)) assert square1._do_poly_distance(triangle1) == sqrt(2)/2 # Polygons which sides intersect square2 = Polygon(Point(1, 0), Point(2, 0), Point(2, 1), Point(1, 1)) with warns(UserWarning, \ match="Polygons may intersect producing erroneous output"): assert square1._do_poly_distance(square2) == 0 # Polygons which bodies intersect triangle2 = Polygon(Point(0, -1), Point(2, -1), Point(S.Half, S.Half)) with warns(UserWarning, \ match="Polygons may intersect producing erroneous output"): assert triangle2._do_poly_distance(square1) == 0