%PDF- %PDF-
Direktori : /lib/python3/dist-packages/pythran/pythonic/numpy/random/ |
Current File : //lib/python3/dist-packages/pythran/pythonic/numpy/random/logseries.hpp |
#ifndef PYTHONIC_NUMPY_RANDOM_LOGSERIES_HPP #define PYTHONIC_NUMPY_RANDOM_LOGSERIES_HPP #include "pythonic/include/numpy/random/logseries.hpp" #include "pythonic/include/numpy/random/generator.hpp" #include "pythonic/types/ndarray.hpp" #include "pythonic/types/NoneType.hpp" #include "pythonic/types/tuple.hpp" #include "pythonic/utils/functor.hpp" #include <math.h> #include <random> #include <algorithm> PYTHONIC_NS_BEGIN namespace numpy { namespace random { template <class pS> types::ndarray<double, pS> logseries(double p, pS const &shape) { types::ndarray<double, pS> result{shape, types::none_type()}; std::generate(result.fbegin(), result.fend(), [&]() { return logseries(p); }); return result; } auto logseries(double p, long size) -> decltype(logseries(p, types::array<long, 1>{{size}})) { return logseries(p, types::array<long, 1>{{size}}); } double logseries(double p, types::none_type d) { double q, r, U, V; double result; r = log1p(-p); while (1) { V = std::uniform_real_distribution<double>{0., 1.}(details::generator); if (V >= p) { return 1; } U = std::uniform_real_distribution<double>{0., 1.}(details::generator); q = -expm1(r * U); if (V <= q * q) { result = (double)floor(1 + log(V) / log(q)); if ((result < 1) || (V == 0.0)) { continue; } else { return result; } } if (V >= q) { return 1; } return 2; } } } } PYTHONIC_NS_END #endif