%PDF- %PDF-
Direktori : /lib/python3/dist-packages/pythran/pythonic/numpy/random/ |
Current File : //lib/python3/dist-packages/pythran/pythonic/numpy/random/gumbel.hpp |
#ifndef PYTHONIC_NUMPY_RANDOM_GUMBEL_HPP #define PYTHONIC_NUMPY_RANDOM_GUMBEL_HPP #include "pythonic/include/numpy/random/gumbel.hpp" #include "pythonic/include/numpy/random/generator.hpp" #include "pythonic/types/ndarray.hpp" #include "pythonic/types/NoneType.hpp" #include "pythonic/types/tuple.hpp" #include "pythonic/utils/functor.hpp" #include <random> #include <algorithm> PYTHONIC_NS_BEGIN namespace numpy { namespace random { template <class pS> types::ndarray<double, pS> gumbel(double loc, double scale, pS const &shape) { types::ndarray<double, pS> result{shape, types::none_type()}; std::generate(result.fbegin(), result.fend(), [&]() { return gumbel(loc, scale); }); return result; } auto gumbel(double loc, double scale, long size) -> decltype(gumbel(loc, scale, types::array<long, 1>{{size}})) { return gumbel(loc, scale, types::array<long, 1>{{size}}); } double gumbel(double loc, double scale, types::none_type d) { double U = std::uniform_real_distribution<double>{0., 1.}(details::generator); if (U < 1.0) { return loc - scale * xsimd::log(-xsimd::log(U)); } return gumbel(loc, scale); } } } PYTHONIC_NS_END #endif