%PDF- %PDF-
Direktori : /backups/router/usr/local/lib/python3.11/site-packages/duckdb/experimental/spark/ |
Current File : //backups/router/usr/local/lib/python3.11/site-packages/duckdb/experimental/spark/context.py |
from typing import Optional import duckdb from duckdb import DuckDBPyConnection from duckdb.experimental.spark.exception import ContributionsAcceptedError from duckdb.experimental.spark.conf import SparkConf class SparkContext: def __init__(self, master: str): self._connection = duckdb.connect(':memory:') @property def connection(self) -> DuckDBPyConnection: return self._connection def stop(self) -> None: self._connection.close() @classmethod def getOrCreate(cls, conf: Optional[SparkConf] = None) -> "SparkContext": raise ContributionsAcceptedError @classmethod def setSystemProperty(cls, key: str, value: str) -> None: raise ContributionsAcceptedError @property def applicationId(self) -> str: raise ContributionsAcceptedError @property def defaultMinPartitions(self) -> int: raise ContributionsAcceptedError @property def defaultParallelism(self) -> int: raise ContributionsAcceptedError # @property # def resources(self) -> Dict[str, ResourceInformation]: # raise ContributionsAcceptedError @property def startTime(self) -> str: raise ContributionsAcceptedError @property def uiWebUrl(self) -> str: raise ContributionsAcceptedError @property def version(self) -> str: raise ContributionsAcceptedError def __repr__(self) -> str: raise ContributionsAcceptedError # def accumulator(self, value: ~T, accum_param: Optional[ForwardRef('AccumulatorParam[T]')] = None) -> 'Accumulator[T]': # pass def addArchive(self, path: str) -> None: raise ContributionsAcceptedError def addFile(self, path: str, recursive: bool = False) -> None: raise ContributionsAcceptedError def addPyFile(self, path: str) -> None: raise ContributionsAcceptedError # def binaryFiles(self, path: str, minPartitions: Optional[int] = None) -> duckdb.experimental.spark.rdd.RDD[typing.Tuple[str, bytes]]: # pass # def binaryRecords(self, path: str, recordLength: int) -> duckdb.experimental.spark.rdd.RDD[bytes]: # pass # def broadcast(self, value: ~T) -> 'Broadcast[T]': # pass def cancelAllJobs(self) -> None: raise ContributionsAcceptedError def cancelJobGroup(self, groupId: str) -> None: raise ContributionsAcceptedError def dump_profiles(self, path: str) -> None: raise ContributionsAcceptedError # def emptyRDD(self) -> duckdb.experimental.spark.rdd.RDD[typing.Any]: # pass def getCheckpointDir(self) -> Optional[str]: raise ContributionsAcceptedError def getConf(self) -> SparkConf: raise ContributionsAcceptedError def getLocalProperty(self, key: str) -> Optional[str]: raise ContributionsAcceptedError # def hadoopFile(self, path: str, inputFormatClass: str, keyClass: str, valueClass: str, keyConverter: Optional[str] = None, valueConverter: Optional[str] = None, conf: Optional[Dict[str, str]] = None, batchSize: int = 0) -> pyspark.rdd.RDD[typing.Tuple[~T, ~U]]: # pass # def hadoopRDD(self, inputFormatClass: str, keyClass: str, valueClass: str, keyConverter: Optional[str] = None, valueConverter: Optional[str] = None, conf: Optional[Dict[str, str]] = None, batchSize: int = 0) -> pyspark.rdd.RDD[typing.Tuple[~T, ~U]]: # pass # def newAPIHadoopFile(self, path: str, inputFormatClass: str, keyClass: str, valueClass: str, keyConverter: Optional[str] = None, valueConverter: Optional[str] = None, conf: Optional[Dict[str, str]] = None, batchSize: int = 0) -> pyspark.rdd.RDD[typing.Tuple[~T, ~U]]: # pass # def newAPIHadoopRDD(self, inputFormatClass: str, keyClass: str, valueClass: str, keyConverter: Optional[str] = None, valueConverter: Optional[str] = None, conf: Optional[Dict[str, str]] = None, batchSize: int = 0) -> pyspark.rdd.RDD[typing.Tuple[~T, ~U]]: # pass # def parallelize(self, c: Iterable[~T], numSlices: Optional[int] = None) -> pyspark.rdd.RDD[~T]: # pass # def pickleFile(self, name: str, minPartitions: Optional[int] = None) -> pyspark.rdd.RDD[typing.Any]: # pass # def range(self, start: int, end: Optional[int] = None, step: int = 1, numSlices: Optional[int] = None) -> pyspark.rdd.RDD[int]: # pass # def runJob(self, rdd: pyspark.rdd.RDD[~T], partitionFunc: Callable[[Iterable[~T]], Iterable[~U]], partitions: Optional[Sequence[int]] = None, allowLocal: bool = False) -> List[~U]: # pass # def sequenceFile(self, path: str, keyClass: Optional[str] = None, valueClass: Optional[str] = None, keyConverter: Optional[str] = None, valueConverter: Optional[str] = None, minSplits: Optional[int] = None, batchSize: int = 0) -> pyspark.rdd.RDD[typing.Tuple[~T, ~U]]: # pass def setCheckpointDir(self, dirName: str) -> None: raise ContributionsAcceptedError def setJobDescription(self, value: str) -> None: raise ContributionsAcceptedError def setJobGroup(self, groupId: str, description: str, interruptOnCancel: bool = False) -> None: raise ContributionsAcceptedError def setLocalProperty(self, key: str, value: str) -> None: raise ContributionsAcceptedError def setLogLevel(self, logLevel: str) -> None: raise ContributionsAcceptedError def show_profiles(self) -> None: raise ContributionsAcceptedError def sparkUser(self) -> str: raise ContributionsAcceptedError # def statusTracker(self) -> duckdb.experimental.spark.status.StatusTracker: # raise ContributionsAcceptedError # def textFile(self, name: str, minPartitions: Optional[int] = None, use_unicode: bool = True) -> pyspark.rdd.RDD[str]: # pass # def union(self, rdds: List[pyspark.rdd.RDD[~T]]) -> pyspark.rdd.RDD[~T]: # pass # def wholeTextFiles(self, path: str, minPartitions: Optional[int] = None, use_unicode: bool = True) -> pyspark.rdd.RDD[typing.Tuple[str, str]]: # pass __all__ = ["SparkContext"]