%PDF- %PDF-
Direktori : /backups/router/usr/local/include/boost/unordered/detail/ |
Current File : //backups/router/usr/local/include/boost/unordered/detail/implementation.hpp |
// Copyright (C) 2003-2004 Jeremy B. Maitin-Shepard. // Copyright (C) 2005-2016 Daniel James // Copyright (C) 2022-2024 Joaquin M Lopez Munoz. // Copyright (C) 2022-2023 Christian Mazakas // Copyright (C) 2024 Braden Ganetsky // // Distributed under the Boost Software License, Version 1.0. (See accompanying // file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) #ifndef BOOST_UNORDERED_DETAIL_IMPLEMENTATION_HPP #define BOOST_UNORDERED_DETAIL_IMPLEMENTATION_HPP #include <boost/config.hpp> #if defined(BOOST_HAS_PRAGMA_ONCE) #pragma once #endif #include <boost/unordered/detail/allocator_constructed.hpp> #include <boost/unordered/detail/fca.hpp> #include <boost/unordered/detail/opt_storage.hpp> #include <boost/unordered/detail/serialize_tracked_address.hpp> #include <boost/unordered/detail/static_assert.hpp> #include <boost/unordered/detail/type_traits.hpp> #include <boost/assert.hpp> #include <boost/core/allocator_traits.hpp> #include <boost/core/bit.hpp> #include <boost/core/invoke_swap.hpp> #include <boost/core/no_exceptions_support.hpp> #include <boost/core/pointer_traits.hpp> #include <boost/core/serialization.hpp> #include <boost/mp11/algorithm.hpp> #include <boost/mp11/list.hpp> #include <boost/throw_exception.hpp> #include <algorithm> #include <cmath> #include <iterator> #include <limits> #include <stdexcept> #include <type_traits> #include <utility> #include <tuple> // std::forward_as_tuple namespace boost { namespace tuples { struct null_type; } } // namespace boost // BOOST_UNORDERED_SUPPRESS_DEPRECATED // // Define to stop deprecation attributes #if defined(BOOST_UNORDERED_SUPPRESS_DEPRECATED) #define BOOST_UNORDERED_DEPRECATED(msg) #endif // BOOST_UNORDERED_DEPRECATED // // Wrapper around various depreaction attributes. #if defined(__has_cpp_attribute) && \ (!defined(__cplusplus) || __cplusplus >= 201402) #if __has_cpp_attribute(deprecated) && !defined(BOOST_UNORDERED_DEPRECATED) #define BOOST_UNORDERED_DEPRECATED(msg) [[deprecated(msg)]] #endif #endif #if !defined(BOOST_UNORDERED_DEPRECATED) #if defined(__GNUC__) && __GNUC__ >= 4 #define BOOST_UNORDERED_DEPRECATED(msg) __attribute__((deprecated)) #elif defined(_MSC_VER) && _MSC_VER >= 1400 #define BOOST_UNORDERED_DEPRECATED(msg) __declspec(deprecated(msg)) #elif defined(_MSC_VER) && _MSC_VER >= 1310 #define BOOST_UNORDERED_DEPRECATED(msg) __declspec(deprecated) #else #define BOOST_UNORDERED_DEPRECATED(msg) #endif #endif namespace boost { namespace unordered { using std::piecewise_construct; using std::piecewise_construct_t; namespace detail { template <typename Types> struct table; static const float minimum_max_load_factor = 1e-3f; static const std::size_t default_bucket_count = 0; struct move_tag { }; struct empty_emplace { }; struct no_key { no_key() {} template <class T> no_key(T const&) {} }; struct converting_key { }; namespace func { template <class T> inline void ignore_unused_variable_warning(T const&) { } } // namespace func ////////////////////////////////////////////////////////////////////////// // iterator SFINAE template <typename I> struct is_forward : std::is_base_of<std::forward_iterator_tag, typename std::iterator_traits<I>::iterator_category> { }; template <typename I, typename ReturnType> struct enable_if_forward : std::enable_if<boost::unordered::detail::is_forward<I>::value, ReturnType> { }; template <typename I, typename ReturnType> struct disable_if_forward : std::enable_if<!boost::unordered::detail::is_forward<I>::value, ReturnType> { }; } // namespace detail } // namespace unordered } // namespace boost namespace boost { namespace unordered { namespace detail { ////////////////////////////////////////////////////////////////////////// // insert_size/initial_size template <class I> inline typename boost::unordered::detail::enable_if_forward<I, std::size_t>::type insert_size(I i, I j) { return static_cast<std::size_t>(std::distance(i, j)); } template <class I> inline typename boost::unordered::detail::disable_if_forward<I, std::size_t>::type insert_size(I, I) { return 1; } template <class I> inline std::size_t initial_size(I i, I j, std::size_t num_buckets = boost::unordered::detail::default_bucket_count) { return (std::max)( boost::unordered::detail::insert_size(i, j), num_buckets); } ////////////////////////////////////////////////////////////////////////// // compressed template <typename T, int Index> struct compressed_base : boost::empty_value<T> { compressed_base(T const& x) : empty_value<T>(boost::empty_init_t(), x) { } compressed_base(T& x, move_tag) : empty_value<T>(boost::empty_init_t(), std::move(x)) { } T& get() { return empty_value<T>::get(); } T const& get() const { return empty_value<T>::get(); } }; template <typename T, int Index> struct generate_base : boost::unordered::detail::compressed_base<T, Index> { typedef compressed_base<T, Index> type; generate_base() : type() {} }; template <typename T1, typename T2> struct compressed : private boost::unordered::detail::generate_base<T1, 1>::type, private boost::unordered::detail::generate_base<T2, 2>::type { typedef typename generate_base<T1, 1>::type base1; typedef typename generate_base<T2, 2>::type base2; typedef T1 first_type; typedef T2 second_type; first_type& first() { return static_cast<base1*>(this)->get(); } first_type const& first() const { return static_cast<base1 const*>(this)->get(); } second_type& second() { return static_cast<base2*>(this)->get(); } second_type const& second() const { return static_cast<base2 const*>(this)->get(); } template <typename First, typename Second> compressed(First const& x1, Second const& x2) : base1(x1), base2(x2) { } compressed(compressed const& x) : base1(x.first()), base2(x.second()) {} compressed(compressed& x, move_tag m) : base1(x.first(), m), base2(x.second(), m) { } void assign(compressed const& x) { first() = x.first(); second() = x.second(); } void move_assign(compressed& x) { first() = std::move(x.first()); second() = std::move(x.second()); } void swap(compressed& x) { boost::core::invoke_swap(first(), x.first()); boost::core::invoke_swap(second(), x.second()); } private: // Prevent assignment just to make use of assign or // move_assign explicit. compressed& operator=(compressed const&); }; ////////////////////////////////////////////////////////////////////////// // pair_traits // // Used to get the types from a pair without instantiating it. template <typename Pair> struct pair_traits { typedef typename Pair::first_type first_type; typedef typename Pair::second_type second_type; }; template <typename T1, typename T2> struct pair_traits<std::pair<T1, T2> > { typedef T1 first_type; typedef T2 second_type; }; #if defined(BOOST_MSVC) #pragma warning(push) #pragma warning(disable : 4512) // assignment operator could not be generated. #pragma warning(disable : 4345) // behavior change: an object of POD type // constructed with an initializer of the form () // will be default-initialized. #endif ////////////////////////////////////////////////////////////////////////// // Bits and pieces for implementing traits template <typename T> typename std::add_lvalue_reference<T>::type make(); struct choice2 { typedef char (&type)[2]; }; struct choice1 : choice2 { typedef char (&type)[1]; }; choice1 choose(); typedef choice1::type yes_type; typedef choice2::type no_type; struct private_type { private_type const& operator,(int) const; }; template <typename T> no_type is_private_type(T const&); yes_type is_private_type(private_type const&); struct convert_from_anything { template <typename T> convert_from_anything(T const&); }; } // namespace detail } // namespace unordered } // namespace boost //////////////////////////////////////////////////////////////////////////////// // // Some utilities for implementing allocator_traits, but useful elsewhere so // they're always defined. namespace boost { namespace unordered { namespace detail { //////////////////////////////////////////////////////////////////////////// // Explicitly call a destructor #if defined(BOOST_MSVC) #pragma warning(push) #pragma warning(disable : 4100) // unreferenced formal parameter #endif namespace func { template <class T> inline void destroy(T* x) { x->~T(); } } // namespace func #if defined(BOOST_MSVC) #pragma warning(pop) #endif ////////////////////////////////////////////////////////////////////////// // value_base // // Space used to store values. template <typename ValueType> struct value_base { typedef ValueType value_type; opt_storage<value_type> data_; value_base() : data_() {} void* address() { return this; } value_type& value() { return *(ValueType*)this; } value_type const& value() const { return *(ValueType const*)this; } value_type* value_ptr() { return (ValueType*)this; } value_type const* value_ptr() const { return (ValueType const*)this; } private: value_base& operator=(value_base const&); }; ////////////////////////////////////////////////////////////////////////// // optional // TODO: Use std::optional when available. template <typename T> class optional { boost::unordered::detail::value_base<T> value_; bool has_value_; void destroy() { if (has_value_) { boost::unordered::detail::func::destroy(value_.value_ptr()); has_value_ = false; } } void move(optional<T>& x) { BOOST_ASSERT(!has_value_ && x.has_value_); new (value_.value_ptr()) T(std::move(x.value_.value())); boost::unordered::detail::func::destroy(x.value_.value_ptr()); has_value_ = true; x.has_value_ = false; } public: optional() noexcept : has_value_(false) {} optional(optional const&) = delete; optional& operator=(optional const&) = delete; optional(optional<T>&& x) : has_value_(false) { if (x.has_value_) { move(x); } } explicit optional(T const& x) : has_value_(true) { new (value_.value_ptr()) T(x); } optional& operator=(optional<T>&& x) { destroy(); if (x.has_value_) { move(x); } return *this; } ~optional() { destroy(); } bool has_value() const { return has_value_; } T& operator*() { return value_.value(); } T const& operator*() const { return value_.value(); } T* operator->() { return value_.value_ptr(); } T const* operator->() const { return value_.value_ptr(); } bool operator==(optional<T> const& x) const { return has_value_ ? x.has_value_ && value_.value() == x.value_.value() : !x.has_value_; } bool operator!=(optional<T> const& x) const { return !((*this) == x); } void swap(optional<T>& x) { if (has_value_ != x.has_value_) { if (has_value_) { x.move(*this); } else { move(x); } } else if (has_value_) { boost::core::invoke_swap(value_.value(), x.value_.value()); } } friend void swap(optional<T>& x, optional<T>& y) { x.swap(y); } }; } // namespace detail } // namespace unordered } // namespace boost //////////////////////////////////////////////////////////////////////////////// // // Allocator traits // namespace boost { namespace unordered { namespace detail { template <typename Alloc> struct allocator_traits : boost::allocator_traits<Alloc> { }; template <typename Alloc, typename T> struct rebind_wrap : boost::allocator_rebind<Alloc, T> { }; } // namespace detail } // namespace unordered } // namespace boost namespace boost { namespace unordered { namespace detail { namespace func { //////////////////////////////////////////////////////////////////////// // Trait to check for piecewise construction. template <typename A0> struct use_piecewise { static choice1::type test(choice1, std::piecewise_construct_t); static choice2::type test(choice2, ...); enum { value = sizeof(choice1::type) == sizeof(test(choose(), boost::unordered::detail::make<A0>())) }; }; //////////////////////////////////////////////////////////////////////// // Construct from variadic parameters template <typename Alloc, typename T, typename... Args> inline void construct_from_args( Alloc& alloc, T* address, Args&&... args) { boost::allocator_construct( alloc, address, std::forward<Args>(args)...); } // For backwards compatibility, implement a special case for // piecewise_construct with boost::tuple template <typename A0> struct detect_std_tuple { template <class... Args> static choice1::type test(choice1, std::tuple<Args...> const&); static choice2::type test(choice2, ...); enum { value = sizeof(choice1::type) == sizeof(test(choose(), boost::unordered::detail::make<A0>())) }; }; // Special case for piecewise_construct template <template <class...> class Tuple, class... Args, std::size_t... Is, class... TupleArgs> std::tuple<typename std::add_lvalue_reference<Args>::type...> to_std_tuple_impl(boost::mp11::mp_list<Args...>, Tuple<TupleArgs...>& tuple, boost::mp11::index_sequence<Is...>) { (void)tuple; using std::get; return std::tuple<typename std::add_lvalue_reference<Args>::type...>( get<Is>(tuple)...); } template <class T> using add_lvalue_reference_t = typename std::add_lvalue_reference<T>::type; template <template <class...> class Tuple, class... Args> boost::mp11::mp_transform<add_lvalue_reference_t, boost::mp11::mp_remove<std::tuple<Args...>, boost::tuples::null_type> > to_std_tuple(Tuple<Args...>& tuple) { using list = boost::mp11::mp_remove<boost::mp11::mp_list<Args...>, boost::tuples::null_type>; using list_size = boost::mp11::mp_size<list>; using index_seq = boost::mp11::make_index_sequence<list_size::value>; return to_std_tuple_impl(list{}, tuple, index_seq{}); } template <typename Alloc, typename A, typename B, typename A0, typename A1, typename A2> inline typename std::enable_if<use_piecewise<A0>::value && !detect_std_tuple<A1>::value && !detect_std_tuple<A2>::value, void>::type construct_from_args( Alloc& alloc, std::pair<A, B>* address, A0&&, A1&& a1, A2&& a2) { boost::allocator_construct(alloc, address, std::piecewise_construct, to_std_tuple(a1), to_std_tuple(a2)); } } // namespace func } // namespace detail } // namespace unordered } // namespace boost namespace boost { namespace unordered { namespace detail { /////////////////////////////////////////////////////////////////// // // Node construction template <typename NodeAlloc> struct node_constructor { typedef NodeAlloc node_allocator; typedef boost::unordered::detail::allocator_traits<NodeAlloc> node_allocator_traits; typedef typename node_allocator_traits::value_type node; typedef typename node_allocator_traits::pointer node_pointer; typedef typename node::value_type value_type; node_allocator& alloc_; node_pointer node_; node_constructor(node_allocator& n) : alloc_(n), node_() {} ~node_constructor(); void create_node(); // no throw node_pointer release() { BOOST_ASSERT(node_); node_pointer p = node_; node_ = node_pointer(); return p; } private: node_constructor(node_constructor const&); node_constructor& operator=(node_constructor const&); }; template <typename Alloc> node_constructor<Alloc>::~node_constructor() { if (node_) { boost::unordered::detail::func::destroy(boost::to_address(node_)); node_allocator_traits::deallocate(alloc_, node_, 1); } } template <typename Alloc> void node_constructor<Alloc>::create_node() { BOOST_ASSERT(!node_); node_ = node_allocator_traits::allocate(alloc_, 1); new ((void*)boost::to_address(node_)) node(); } template <typename NodeAlloc> struct node_tmp { typedef typename boost::allocator_value_type<NodeAlloc>::type node; typedef typename boost::allocator_pointer<NodeAlloc>::type node_pointer; typedef typename node::value_type value_type; typedef typename boost::allocator_rebind<NodeAlloc, value_type>::type value_allocator; NodeAlloc& alloc_; node_pointer node_; explicit node_tmp(node_pointer n, NodeAlloc& a) : alloc_(a), node_(n) {} ~node_tmp(); // no throw node_pointer release() { node_pointer p = node_; node_ = node_pointer(); return p; } }; template <typename Alloc> node_tmp<Alloc>::~node_tmp() { if (node_) { value_allocator val_alloc(alloc_); boost::allocator_destroy(val_alloc, node_->value_ptr()); boost::allocator_deallocate(alloc_, node_, 1); } } } // namespace detail } // namespace unordered } // namespace boost namespace boost { namespace unordered { namespace detail { namespace func { // Some nicer construct_node functions, might try to // improve implementation later. template <typename Alloc, typename... Args> inline typename boost::allocator_pointer<Alloc>::type construct_node_from_args(Alloc& alloc, Args&&... args) { typedef typename boost::allocator_value_type<Alloc>::type node; typedef typename node::value_type value_type; typedef typename boost::allocator_rebind<Alloc, value_type>::type value_allocator; value_allocator val_alloc(alloc); node_constructor<Alloc> a(alloc); a.create_node(); construct_from_args( val_alloc, a.node_->value_ptr(), std::forward<Args>(args)...); return a.release(); } template <typename Alloc, typename U> inline typename boost::allocator_pointer<Alloc>::type construct_node( Alloc& alloc, U&& x) { node_constructor<Alloc> a(alloc); a.create_node(); typedef typename boost::allocator_value_type<Alloc>::type node; typedef typename node::value_type value_type; typedef typename boost::allocator_rebind<Alloc, value_type>::type value_allocator; value_allocator val_alloc(alloc); boost::allocator_construct( val_alloc, a.node_->value_ptr(), std::forward<U>(x)); return a.release(); } template <typename Alloc, typename Key> inline typename boost::allocator_pointer<Alloc>::type construct_node_pair(Alloc& alloc, Key&& k) { node_constructor<Alloc> a(alloc); a.create_node(); typedef typename boost::allocator_value_type<Alloc>::type node; typedef typename node::value_type value_type; typedef typename boost::allocator_rebind<Alloc, value_type>::type value_allocator; value_allocator val_alloc(alloc); boost::allocator_construct(val_alloc, a.node_->value_ptr(), std::piecewise_construct, std::forward_as_tuple(std::forward<Key>(k)), std::forward_as_tuple()); return a.release(); } template <typename Alloc, typename Key, typename Mapped> inline typename boost::allocator_pointer<Alloc>::type construct_node_pair(Alloc& alloc, Key&& k, Mapped&& m) { node_constructor<Alloc> a(alloc); a.create_node(); typedef typename boost::allocator_value_type<Alloc>::type node; typedef typename node::value_type value_type; typedef typename boost::allocator_rebind<Alloc, value_type>::type value_allocator; value_allocator val_alloc(alloc); boost::allocator_construct(val_alloc, a.node_->value_ptr(), std::piecewise_construct, std::forward_as_tuple(std::forward<Key>(k)), std::forward_as_tuple(std::forward<Mapped>(m))); return a.release(); } template <typename Alloc, typename Key, typename... Args> inline typename boost::allocator_pointer<Alloc>::type construct_node_pair_from_args(Alloc& alloc, Key&& k, Args&&... args) { node_constructor<Alloc> a(alloc); a.create_node(); typedef typename boost::allocator_value_type<Alloc>::type node; typedef typename node::value_type value_type; typedef typename boost::allocator_rebind<Alloc, value_type>::type value_allocator; value_allocator val_alloc(alloc); boost::allocator_construct(val_alloc, a.node_->value_ptr(), std::piecewise_construct, std::forward_as_tuple(std::forward<Key>(k)), std::forward_as_tuple(std::forward<Args>(args)...)); return a.release(); } template <typename T, typename Alloc, typename Key> inline typename boost::allocator_pointer<Alloc>::type construct_node_from_key(T*, Alloc& alloc, Key&& k) { return construct_node(alloc, std::forward<Key>(k)); } template <typename T, typename V, typename Alloc, typename Key> inline typename boost::allocator_pointer<Alloc>::type construct_node_from_key(std::pair<T const, V>*, Alloc& alloc, Key&& k) { return construct_node_pair(alloc, std::forward<Key>(k)); } } // namespace func } // namespace detail } // namespace unordered } // namespace boost #if defined(BOOST_MSVC) #pragma warning(pop) #endif namespace boost { namespace unordered { namespace detail { ////////////////////////////////////////////////////////////////////////// // Functions // // This double buffers the storage for the hash function and key equality // predicate in order to have exception safe copy/swap. To do so, // use 'construct_spare' to construct in the spare space, and then when // ready to use 'switch_functions' to switch to the new functions. // If an exception is thrown between these two calls, use // 'cleanup_spare_functions' to destroy the unused constructed functions. #if defined(_GLIBCXX_HAVE_BUILTIN_LAUNDER) // gcc-12 warns when accessing the `current_functions` of our `functions` // class below with `-Wmaybe-unitialized`. By laundering the pointer, we // silence the warning and assure the compiler that a valid object exists // in that region of storage. This warning is also generated in C++03 // which does not have `std::launder`. The compiler builtin is always // available, regardless of the C++ standard used when compiling. template <class T> T* launder(T* p) noexcept { return __builtin_launder(p); } #else template <class T> T* launder(T* p) noexcept { return p; } #endif template <class H, class P> class functions { public: static const bool nothrow_move_assignable = std::is_nothrow_move_assignable<H>::value && std::is_nothrow_move_assignable<P>::value; static const bool nothrow_move_constructible = std::is_nothrow_move_constructible<H>::value && std::is_nothrow_move_constructible<P>::value; static const bool nothrow_swappable = boost::unordered::detail::is_nothrow_swappable<H>::value && boost::unordered::detail::is_nothrow_swappable<P>::value; private: functions& operator=(functions const&); typedef compressed<H, P> function_pair; unsigned char current_; // 0/1 - Currently active functions // +2 - Both constructed opt_storage<function_pair> funcs_[2]; public: functions(H const& hf, P const& eq) : current_(0) { construct_functions(current_, hf, eq); } functions(functions const& bf) : current_(0) { construct_functions(current_, bf.current_functions()); } functions(functions& bf, boost::unordered::detail::move_tag) : current_(0) { construct_functions(current_, bf.current_functions(), std::integral_constant<bool, nothrow_move_constructible>()); } ~functions() { BOOST_ASSERT(!(current_ & 2)); destroy_functions(current_); } H const& hash_function() const { return current_functions().first(); } P const& key_eq() const { return current_functions().second(); } function_pair const& current_functions() const { return *::boost::unordered::detail::launder( static_cast<function_pair const*>( static_cast<void const*>(funcs_[current_ & 1].address()))); } function_pair& current_functions() { return *::boost::unordered::detail::launder( static_cast<function_pair*>( static_cast<void*>(funcs_[current_ & 1].address()))); } void construct_spare_functions(function_pair const& f) { BOOST_ASSERT(!(current_ & 2)); construct_functions(current_ ^ 1, f); current_ |= 2; } void cleanup_spare_functions() { if (current_ & 2) { current_ = static_cast<unsigned char>(current_ & 1); destroy_functions(current_ ^ 1); } } void switch_functions() { BOOST_ASSERT(current_ & 2); destroy_functions(static_cast<unsigned char>(current_ & 1)); current_ ^= 3; } private: void construct_functions(unsigned char which, H const& hf, P const& eq) { BOOST_ASSERT(!(which & 2)); new ((void*)&funcs_[which]) function_pair(hf, eq); } void construct_functions( unsigned char which, function_pair const& f, std::false_type = {}) { BOOST_ASSERT(!(which & 2)); new ((void*)&funcs_[which]) function_pair(f); } void construct_functions( unsigned char which, function_pair& f, std::true_type) { BOOST_ASSERT(!(which & 2)); new ((void*)&funcs_[which]) function_pair(f, boost::unordered::detail::move_tag()); } void destroy_functions(unsigned char which) { BOOST_ASSERT(!(which & 2)); boost::unordered::detail::func::destroy( (function_pair*)(&funcs_[which])); } }; #if defined(BOOST_MSVC) #pragma warning(push) #pragma warning(disable : 4127) // conditional expression is constant #endif ////////////////////////////////////////////////////////////////////////// // convert double to std::size_t inline std::size_t double_to_size(double f) { return f >= static_cast<double>( (std::numeric_limits<std::size_t>::max)()) ? (std::numeric_limits<std::size_t>::max)() : static_cast<std::size_t>(f); } ////////////////////////////////////////////////////////////////////////// // iterator definitions namespace iterator_detail { template <class Node, class Bucket> class c_iterator; template <class Node, class Bucket> class iterator { public: typedef typename Node::value_type value_type; typedef value_type element_type; typedef value_type* pointer; typedef value_type& reference; typedef std::ptrdiff_t difference_type; typedef std::forward_iterator_tag iterator_category; iterator() : p(), itb() {} reference operator*() const noexcept { return dereference(); } pointer operator->() const noexcept { pointer x = std::addressof(p->value()); return x; } iterator& operator++() noexcept { increment(); return *this; } iterator operator++(int) noexcept { iterator old = *this; increment(); return old; } bool operator==(iterator const& other) const noexcept { return equal(other); } bool operator!=(iterator const& other) const noexcept { return !equal(other); } bool operator==( boost::unordered::detail::iterator_detail::c_iterator<Node, Bucket> const& other) const noexcept { return equal(other); } bool operator!=( boost::unordered::detail::iterator_detail::c_iterator<Node, Bucket> const& other) const noexcept { return !equal(other); } private: typedef typename Node::node_pointer node_pointer; typedef grouped_bucket_iterator<Bucket> bucket_iterator; node_pointer p; bucket_iterator itb; template <class Types> friend struct boost::unordered::detail::table; template <class N, class B> friend class c_iterator; iterator(node_pointer p_, bucket_iterator itb_) : p(p_), itb(itb_) {} value_type& dereference() const noexcept { return p->value(); } bool equal(const iterator& x) const noexcept { return (p == x.p); } bool equal( const boost::unordered::detail::iterator_detail::c_iterator<Node, Bucket>& x) const noexcept { return (p == x.p); } void increment() noexcept { p = p->next; if (!p) { p = (++itb)->next; } } template <typename Archive> friend void serialization_track(Archive& ar, const iterator& x) { if (x.p) { track_address(ar, x.p); serialization_track(ar, x.itb); } } friend class boost::serialization::access; template <typename Archive> void serialize(Archive& ar, unsigned int) { if (!p) itb = bucket_iterator(); serialize_tracked_address(ar, p); ar& core::make_nvp("bucket_iterator", itb); } }; template <class Node, class Bucket> class c_iterator { public: typedef typename Node::value_type value_type; typedef value_type const element_type; typedef value_type const* pointer; typedef value_type const& reference; typedef std::ptrdiff_t difference_type; typedef std::forward_iterator_tag iterator_category; c_iterator() : p(), itb() {} c_iterator(iterator<Node, Bucket> it) : p(it.p), itb(it.itb) {} reference operator*() const noexcept { return dereference(); } pointer operator->() const noexcept { pointer x = std::addressof(p->value()); return x; } c_iterator& operator++() noexcept { increment(); return *this; } c_iterator operator++(int) noexcept { c_iterator old = *this; increment(); return old; } bool operator==(c_iterator const& other) const noexcept { return equal(other); } bool operator!=(c_iterator const& other) const noexcept { return !equal(other); } bool operator==( boost::unordered::detail::iterator_detail::iterator<Node, Bucket> const& other) const noexcept { return equal(other); } bool operator!=( boost::unordered::detail::iterator_detail::iterator<Node, Bucket> const& other) const noexcept { return !equal(other); } private: typedef typename Node::node_pointer node_pointer; typedef grouped_bucket_iterator<Bucket> bucket_iterator; node_pointer p; bucket_iterator itb; template <class Types> friend struct boost::unordered::detail::table; template <class, class> friend class iterator; c_iterator(node_pointer p_, bucket_iterator itb_) : p(p_), itb(itb_) { } value_type const& dereference() const noexcept { return p->value(); } bool equal(const c_iterator& x) const noexcept { return (p == x.p); } void increment() noexcept { p = p->next; if (!p) { p = (++itb)->next; } } template <typename Archive> friend void serialization_track(Archive& ar, const c_iterator& x) { if (x.p) { track_address(ar, x.p); serialization_track(ar, x.itb); } } friend class boost::serialization::access; template <typename Archive> void serialize(Archive& ar, unsigned int) { if (!p) itb = bucket_iterator(); serialize_tracked_address(ar, p); ar& core::make_nvp("bucket_iterator", itb); } }; } // namespace iterator_detail ////////////////////////////////////////////////////////////////////////// // table structure used by the containers template <typename Types> struct table : boost::unordered::detail::functions<typename Types::hasher, typename Types::key_equal> { private: table(table const&); table& operator=(table const&); public: typedef typename Types::hasher hasher; typedef typename Types::key_equal key_equal; typedef typename Types::const_key_type const_key_type; typedef typename Types::extractor extractor; typedef typename Types::value_type value_type; typedef typename Types::table table_impl; typedef boost::unordered::detail::functions<typename Types::hasher, typename Types::key_equal> functions; typedef typename Types::value_allocator value_allocator; typedef typename boost::allocator_void_pointer<value_allocator>::type void_pointer; typedef node<value_type, void_pointer> node_type; typedef boost::unordered::detail::grouped_bucket_array< bucket<node_type, void_pointer>, value_allocator, prime_fmod_size<> > bucket_array_type; typedef typename bucket_array_type::node_allocator_type node_allocator_type; typedef typename boost::allocator_pointer<node_allocator_type>::type node_pointer; typedef boost::unordered::detail::node_constructor<node_allocator_type> node_constructor; typedef boost::unordered::detail::node_tmp<node_allocator_type> node_tmp; typedef typename bucket_array_type::bucket_type bucket_type; typedef typename bucket_array_type::iterator bucket_iterator; typedef typename bucket_array_type::local_iterator l_iterator; typedef typename bucket_array_type::const_local_iterator cl_iterator; typedef std::size_t size_type; typedef iterator_detail::iterator<node_type, bucket_type> iterator; typedef iterator_detail::c_iterator<node_type, bucket_type> c_iterator; typedef std::pair<iterator, bool> emplace_return; //////////////////////////////////////////////////////////////////////// // Members std::size_t size_; float mlf_; std::size_t max_load_; bucket_array_type buckets_; public: //////////////////////////////////////////////////////////////////////// // Data access size_type bucket_count() const { return buckets_.bucket_count(); } template <class Key> iterator next_group(Key const& k, c_iterator n) const { c_iterator last = this->end(); while (n != last && this->key_eq()(k, extractor::extract(*n))) { ++n; } return iterator(n.p, n.itb); } template <class Key> std::size_t group_count(Key const& k) const { if (size_ == 0) { return 0; } std::size_t c = 0; std::size_t const key_hash = this->hash(k); bucket_iterator itb = buckets_.at(buckets_.position(key_hash)); bool found = false; for (node_pointer pos = itb->next; pos; pos = pos->next) { if (this->key_eq()(k, this->get_key(pos))) { ++c; found = true; } else if (found) { break; } } return c; } node_allocator_type const& node_alloc() const { return buckets_.get_node_allocator(); } node_allocator_type& node_alloc() { return buckets_.get_node_allocator(); } std::size_t max_bucket_count() const { typedef typename bucket_array_type::size_policy size_policy; return size_policy::size(size_policy::size_index( boost::allocator_max_size(this->node_alloc()))); } iterator begin() const { if (size_ == 0) { return end(); } bucket_iterator itb = buckets_.begin(); return iterator(itb->next, itb); } iterator end() const { return iterator(); } l_iterator begin(std::size_t bucket_index) const { return buckets_.begin(bucket_index); } std::size_t hash_to_bucket(std::size_t hash_value) const { return buckets_.position(hash_value); } std::size_t bucket_size(std::size_t index) const { std::size_t count = 0; if (size_ > 0) { bucket_iterator itb = buckets_.at(index); node_pointer n = itb->next; while (n) { ++count; n = n->next; } } return count; } //////////////////////////////////////////////////////////////////////// // Load methods void recalculate_max_load() { // From 6.3.1/13: // Only resize when size >= mlf_ * count std::size_t const bc = buckets_.bucket_count(); // it's important we do the `bc == 0` check here because the `mlf_` // can be specified to be infinity. The operation `n * INF` is `INF` // for all `n > 0` but NaN for `n == 0`. // max_load_ = bc == 0 ? 0 : boost::unordered::detail::double_to_size( static_cast<double>(mlf_) * static_cast<double>(bc)); } void max_load_factor(float z) { BOOST_ASSERT(z > 0); mlf_ = (std::max)(z, minimum_max_load_factor); recalculate_max_load(); } //////////////////////////////////////////////////////////////////////// // Constructors table() : functions(hasher(), key_equal()), size_(0), mlf_(1.0f), max_load_(0) { } table(std::size_t num_buckets, hasher const& hf, key_equal const& eq, value_allocator const& a) : functions(hf, eq), size_(0), mlf_(1.0f), max_load_(0), buckets_(num_buckets, a) { recalculate_max_load(); } table(table const& x, value_allocator const& a) : functions(x), size_(0), mlf_(x.mlf_), max_load_(0), buckets_(x.size_, a) { recalculate_max_load(); } table(table& x, boost::unordered::detail::move_tag m) : functions(x, m), size_(x.size_), mlf_(x.mlf_), max_load_(x.max_load_), buckets_(std::move(x.buckets_)) { x.size_ = 0; x.max_load_ = 0; } table(table& x, value_allocator const& a, boost::unordered::detail::move_tag m) : functions(x, m), size_(0), mlf_(x.mlf_), max_load_(0), buckets_(x.bucket_count(), a) { recalculate_max_load(); } //////////////////////////////////////////////////////////////////////// // Swap and Move void swap_allocators(table& other, std::false_type) { boost::unordered::detail::func::ignore_unused_variable_warning(other); // According to 23.2.1.8, if propagate_on_container_swap is // false the behaviour is undefined unless the allocators // are equal. BOOST_ASSERT(node_alloc() == other.node_alloc()); } // Not nothrow swappable void swap(table& x, std::false_type) { if (this == &x) { return; } this->construct_spare_functions(x.current_functions()); BOOST_TRY { x.construct_spare_functions(this->current_functions()); } BOOST_CATCH(...) { this->cleanup_spare_functions(); BOOST_RETHROW } BOOST_CATCH_END this->switch_functions(); x.switch_functions(); buckets_.swap(x.buckets_); boost::core::invoke_swap(size_, x.size_); std::swap(mlf_, x.mlf_); std::swap(max_load_, x.max_load_); } // Nothrow swappable void swap(table& x, std::true_type) { buckets_.swap(x.buckets_); boost::core::invoke_swap(size_, x.size_); std::swap(mlf_, x.mlf_); std::swap(max_load_, x.max_load_); this->current_functions().swap(x.current_functions()); } // Only swaps the allocators if propagate_on_container_swap. // If not propagate_on_container_swap and allocators aren't // equal, behaviour is undefined. void swap(table& x) { BOOST_ASSERT(boost::allocator_propagate_on_container_swap< node_allocator_type>::type::value || node_alloc() == x.node_alloc()); swap(x, std::integral_constant<bool, functions::nothrow_swappable>()); } // Only call with nodes allocated with the currect allocator, or // one that is equal to it. (Can't assert because other's // allocators might have already been moved). void move_buckets_from(table& other) { buckets_ = std::move(other.buckets_); size_ = other.size_; max_load_ = other.max_load_; other.size_ = 0; other.max_load_ = 0; } // For use in the constructor when allocators might be different. void move_construct_buckets(table& src) { if (this->node_alloc() == src.node_alloc()) { move_buckets_from(src); return; } if (src.size_ == 0) { return; } BOOST_ASSERT(buckets_.bucket_count() == src.buckets_.bucket_count()); this->reserve(src.size_); for (iterator pos = src.begin(); pos != src.end(); ++pos) { node_tmp b(detail::func::construct_node( this->node_alloc(), std::move(pos.p->value())), this->node_alloc()); const_key_type& k = this->get_key(b.node_); std::size_t key_hash = this->hash(k); bucket_iterator itb = buckets_.at(buckets_.position(key_hash)); buckets_.insert_node(itb, b.release()); ++size_; } } //////////////////////////////////////////////////////////////////////// // Delete/destruct ~table() { delete_buckets(); } void delete_node(node_pointer p) { node_allocator_type alloc = this->node_alloc(); value_allocator val_alloc(alloc); boost::allocator_destroy(val_alloc, p->value_ptr()); boost::unordered::detail::func::destroy(boost::to_address(p)); boost::allocator_deallocate(alloc, p, 1); } void delete_buckets() { iterator pos = begin(), last = this->end(); for (; pos != last;) { node_pointer p = pos.p; bucket_iterator itb = pos.itb; ++pos; buckets_.extract_node(itb, p); delete_node(p); --size_; } buckets_.clear(); } //////////////////////////////////////////////////////////////////////// // Clear void clear_impl(); //////////////////////////////////////////////////////////////////////// // Assignment template <typename UniqueType> void assign(table const& x, UniqueType is_unique) { typedef typename boost::allocator_propagate_on_container_copy_assignment< node_allocator_type>::type pocca; if (this != &x) { assign(x, is_unique, std::integral_constant<bool, pocca::value>()); } } template <typename UniqueType> void assign(table const& x, UniqueType is_unique, std::false_type) { // Strong exception safety. this->construct_spare_functions(x.current_functions()); BOOST_TRY { mlf_ = x.mlf_; recalculate_max_load(); this->reserve_for_insert(x.size_); this->clear_impl(); } BOOST_CATCH(...) { this->cleanup_spare_functions(); BOOST_RETHROW } BOOST_CATCH_END this->switch_functions(); copy_buckets(x, is_unique); } template <typename UniqueType> void assign(table const& x, UniqueType is_unique, std::true_type) { if (node_alloc() == x.node_alloc()) { buckets_.reset_allocator(x.node_alloc()); assign(x, is_unique, std::false_type()); } else { bucket_array_type new_buckets(x.size_, x.node_alloc()); this->construct_spare_functions(x.current_functions()); this->switch_functions(); // Delete everything with current allocators before assigning // the new ones. delete_buckets(); buckets_.reset_allocator(x.node_alloc()); buckets_ = std::move(new_buckets); // Copy over other data, all no throw. mlf_ = x.mlf_; reserve(x.size_); // Finally copy the elements. if (x.size_) { copy_buckets(x, is_unique); } } } template <typename UniqueType> void move_assign(table& x, UniqueType is_unique) { if (this != &x) { move_assign(x, is_unique, std::integral_constant<bool, boost::allocator_propagate_on_container_move_assignment< node_allocator_type>::type::value>()); } } // Propagate allocator template <typename UniqueType> void move_assign(table& x, UniqueType, std::true_type) { if (!functions::nothrow_move_assignable) { this->construct_spare_functions(x.current_functions()); this->switch_functions(); } else { this->current_functions().move_assign(x.current_functions()); } delete_buckets(); buckets_.reset_allocator(x.buckets_.get_node_allocator()); mlf_ = x.mlf_; move_buckets_from(x); } // Don't propagate allocator template <typename UniqueType> void move_assign(table& x, UniqueType is_unique, std::false_type) { if (node_alloc() == x.node_alloc()) { move_assign_equal_alloc(x); } else { move_assign_realloc(x, is_unique); } } void move_assign_equal_alloc(table& x) { if (!functions::nothrow_move_assignable) { this->construct_spare_functions(x.current_functions()); this->switch_functions(); } else { this->current_functions().move_assign(x.current_functions()); } delete_buckets(); mlf_ = x.mlf_; move_buckets_from(x); } template <typename UniqueType> void move_assign_realloc(table& x, UniqueType is_unique) { this->construct_spare_functions(x.current_functions()); BOOST_TRY { mlf_ = x.mlf_; recalculate_max_load(); if (x.size_ > 0) { this->reserve_for_insert(x.size_); } this->clear_impl(); } BOOST_CATCH(...) { this->cleanup_spare_functions(); BOOST_RETHROW } BOOST_CATCH_END this->switch_functions(); move_assign_buckets(x, is_unique); } // Accessors const_key_type& get_key(node_pointer n) const { return extractor::extract(n->value()); } template <class Key> std::size_t hash(Key const& k) const { return this->hash_function()(k); } // Find Node template <class Key> node_pointer find_node_impl(Key const& x, bucket_iterator itb) const { node_pointer p = node_pointer(); if (itb != buckets_.end()) { key_equal const& pred = this->key_eq(); p = itb->next; for (; p; p = p->next) { if (pred(x, extractor::extract(p->value()))) { break; } } } return p; } template <class Key> node_pointer find_node(Key const& k) const { std::size_t const key_hash = this->hash(k); return find_node_impl(k, buckets_.at(buckets_.position(key_hash))); } node_pointer find_node(const_key_type& k, bucket_iterator itb) const { return find_node_impl(k, itb); } template <class Key> iterator find(Key const& k) const { return this->transparent_find( k, this->hash_function(), this->key_eq()); } template <class Key, class Hash, class Pred> inline iterator transparent_find( Key const& k, Hash const& h, Pred const& pred) const { if (size_ > 0) { std::size_t const key_hash = h(k); bucket_iterator itb = buckets_.at(buckets_.position(key_hash)); for (node_pointer p = itb->next; p; p = p->next) { if (BOOST_LIKELY(pred(k, extractor::extract(p->value())))) { return iterator(p, itb); } } } return this->end(); } template <class Key> node_pointer* find_prev(Key const& key, bucket_iterator itb) { if (size_ > 0) { key_equal pred = this->key_eq(); for (node_pointer* pp = std::addressof(itb->next); *pp; pp = std::addressof((*pp)->next)) { if (pred(key, extractor::extract((*pp)->value()))) { return pp; } } } typedef node_pointer* node_pointer_pointer; return node_pointer_pointer(); } // Extract and erase template <class Key> node_pointer extract_by_key_impl(Key const& k) { iterator it = this->find(k); if (it == this->end()) { return node_pointer(); } buckets_.extract_node(it.itb, it.p); --size_; return it.p; } // Reserve and rehash void transfer_node( node_pointer p, bucket_type&, bucket_array_type& new_buckets) { const_key_type& key = extractor::extract(p->value()); std::size_t const h = this->hash(key); bucket_iterator itnewb = new_buckets.at(new_buckets.position(h)); new_buckets.insert_node(itnewb, p); } static std::size_t min_buckets(std::size_t num_elements, float mlf) { std::size_t num_buckets = static_cast<std::size_t>( std::ceil(static_cast<float>(num_elements) / mlf)); if (num_buckets == 0 && num_elements > 0) { // mlf == inf num_buckets = 1; } return num_buckets; } void rehash(std::size_t); void reserve(std::size_t); void reserve_for_insert(std::size_t); void rehash_impl(std::size_t); //////////////////////////////////////////////////////////////////////// // Unique keys // equals bool equals_unique(table const& other) const { if (this->size_ != other.size_) return false; c_iterator pos = this->begin(); c_iterator last = this->end(); while (pos != last) { node_pointer p = pos.p; node_pointer p2 = other.find_node(this->get_key(p)); if (!p2 || !(p->value() == p2->value())) { return false; } ++pos; } return true; } // Emplace/Insert template <typename... Args> iterator emplace_hint_unique( c_iterator hint, const_key_type& k, Args&&... args) { if (hint.p && this->key_eq()(k, this->get_key(hint.p))) { return iterator(hint.p, hint.itb); } else { return emplace_unique(k, std::forward<Args>(args)...).first; } } template <typename... Args> emplace_return emplace_unique(const_key_type& k, Args&&... args) { std::size_t key_hash = this->hash(k); bucket_iterator itb = buckets_.at(buckets_.position(key_hash)); node_pointer pos = this->find_node_impl(k, itb); if (pos) { return emplace_return(iterator(pos, itb), false); } else { node_tmp b(boost::unordered::detail::func::construct_node_from_args( this->node_alloc(), std::forward<Args>(args)...), this->node_alloc()); if (size_ + 1 > max_load_) { reserve(size_ + 1); itb = buckets_.at(buckets_.position(key_hash)); } node_pointer p = b.release(); buckets_.insert_node(itb, p); ++size_; return emplace_return(iterator(p, itb), true); } } template <typename... Args> iterator emplace_hint_unique(c_iterator hint, no_key, Args&&... args) { node_tmp b(boost::unordered::detail::func::construct_node_from_args( this->node_alloc(), std::forward<Args>(args)...), this->node_alloc()); const_key_type& k = this->get_key(b.node_); if (hint.p && this->key_eq()(k, this->get_key(hint.p))) { return iterator(hint.p, hint.itb); } std::size_t const key_hash = this->hash(k); bucket_iterator itb = buckets_.at(buckets_.position(key_hash)); node_pointer p = this->find_node_impl(k, itb); if (p) { return iterator(p, itb); } if (size_ + 1 > max_load_) { this->reserve(size_ + 1); itb = buckets_.at(buckets_.position(key_hash)); } p = b.release(); buckets_.insert_node(itb, p); ++size_; return iterator(p, itb); } template <typename... Args> emplace_return emplace_unique(no_key, Args&&... args) { node_tmp b(boost::unordered::detail::func::construct_node_from_args( this->node_alloc(), std::forward<Args>(args)...), this->node_alloc()); const_key_type& k = this->get_key(b.node_); std::size_t key_hash = this->hash(k); bucket_iterator itb = buckets_.at(buckets_.position(key_hash)); node_pointer pos = this->find_node_impl(k, itb); if (pos) { return emplace_return(iterator(pos, itb), false); } else { if (size_ + 1 > max_load_) { reserve(size_ + 1); itb = buckets_.at(buckets_.position(key_hash)); } node_pointer p = b.release(); buckets_.insert_node(itb, p); ++size_; return emplace_return(iterator(p, itb), true); } } template <typename K, typename V> emplace_return emplace_unique(converting_key, K&& k, V&& v) { using alloc_cted = allocator_constructed<node_allocator_type, typename Types::key_type>; alloc_cted key(this->node_alloc(), std::forward<K>(k)); return emplace_unique( key.value(), std::move(key.value()), std::forward<V>(v)); } template <typename Key> emplace_return try_emplace_unique(Key&& k) { std::size_t key_hash = this->hash(k); bucket_iterator itb = buckets_.at(buckets_.position(key_hash)); node_pointer pos = this->find_node_impl(k, itb); if (pos) { return emplace_return(iterator(pos, itb), false); } else { node_allocator_type alloc = node_alloc(); value_type* dispatch = BOOST_NULLPTR; node_tmp tmp(detail::func::construct_node_from_key( dispatch, alloc, std::forward<Key>(k)), alloc); if (size_ + 1 > max_load_) { reserve(size_ + 1); itb = buckets_.at(buckets_.position(key_hash)); } node_pointer p = tmp.release(); buckets_.insert_node(itb, p); ++size_; return emplace_return(iterator(p, itb), true); } } template <typename Key> iterator try_emplace_hint_unique(c_iterator hint, Key&& k) { if (hint.p && this->key_eq()(extractor::extract(*hint), k)) { return iterator(hint.p, hint.itb); } else { return try_emplace_unique(k).first; } } template <typename Key, typename... Args> emplace_return try_emplace_unique(Key&& k, Args&&... args) { std::size_t key_hash = this->hash(k); bucket_iterator itb = buckets_.at(buckets_.position(key_hash)); node_pointer pos = this->find_node_impl(k, itb); if (pos) { return emplace_return(iterator(pos, itb), false); } node_tmp b( boost::unordered::detail::func::construct_node_pair_from_args( this->node_alloc(), k, std::forward<Args>(args)...), this->node_alloc()); if (size_ + 1 > max_load_) { reserve(size_ + 1); itb = buckets_.at(buckets_.position(key_hash)); } pos = b.release(); buckets_.insert_node(itb, pos); ++size_; return emplace_return(iterator(pos, itb), true); } template <typename Key, typename... Args> iterator try_emplace_hint_unique( c_iterator hint, Key&& k, Args&&... args) { if (hint.p && this->key_eq()(hint->first, k)) { return iterator(hint.p, hint.itb); } else { return try_emplace_unique(k, std::forward<Args>(args)...).first; } } template <typename Key, typename M> emplace_return insert_or_assign_unique(Key&& k, M&& obj) { std::size_t key_hash = this->hash(k); bucket_iterator itb = buckets_.at(buckets_.position(key_hash)); node_pointer p = this->find_node_impl(k, itb); if (p) { p->value().second = std::forward<M>(obj); return emplace_return(iterator(p, itb), false); } node_tmp b( boost::unordered::detail::func::construct_node_pair( this->node_alloc(), std::forward<Key>(k), std::forward<M>(obj)), node_alloc()); if (size_ + 1 > max_load_) { reserve(size_ + 1); itb = buckets_.at(buckets_.position(key_hash)); } p = b.release(); buckets_.insert_node(itb, p); ++size_; return emplace_return(iterator(p, itb), true); } template <typename NodeType, typename InsertReturnType> void move_insert_node_type_unique( NodeType& np, InsertReturnType& result) { if (!np) { result.position = this->end(); result.inserted = false; return; } const_key_type& k = this->get_key(np.ptr_); std::size_t const key_hash = this->hash(k); bucket_iterator itb = buckets_.at(buckets_.position(key_hash)); node_pointer p = this->find_node_impl(k, itb); if (p) { iterator pos(p, itb); result.node = std::move(np); result.position = pos; result.inserted = false; return; } this->reserve_for_insert(size_ + 1); p = np.ptr_; itb = buckets_.at(buckets_.position(key_hash)); buckets_.insert_node(itb, p); np.ptr_ = node_pointer(); ++size_; result.position = iterator(p, itb); result.inserted = true; } template <typename NodeType> iterator move_insert_node_type_with_hint_unique( c_iterator hint, NodeType& np) { if (!np) { return this->end(); } const_key_type& k = this->get_key(np.ptr_); if (hint.p && this->key_eq()(k, this->get_key(hint.p))) { return iterator(hint.p, hint.itb); } std::size_t const key_hash = this->hash(k); bucket_iterator itb = buckets_.at(buckets_.position(key_hash)); node_pointer p = this->find_node_impl(k, itb); if (p) { return iterator(p, itb); } p = np.ptr_; if (size_ + 1 > max_load_) { this->reserve(size_ + 1); itb = buckets_.at(buckets_.position(key_hash)); } buckets_.insert_node(itb, p); ++size_; np.ptr_ = node_pointer(); return iterator(p, itb); } template <typename Types2> void merge_unique(boost::unordered::detail::table<Types2>& other) { typedef boost::unordered::detail::table<Types2> other_table; BOOST_UNORDERED_STATIC_ASSERT( (std::is_same<node_type, typename other_table::node_type>::value)); BOOST_ASSERT(this->node_alloc() == other.node_alloc()); if (other.size_ == 0) { return; } this->reserve_for_insert(size_ + other.size_); iterator last = other.end(); for (iterator pos = other.begin(); pos != last;) { const_key_type& key = other.get_key(pos.p); std::size_t const key_hash = this->hash(key); bucket_iterator itb = buckets_.at(buckets_.position(key_hash)); if (this->find_node_impl(key, itb)) { ++pos; continue; } iterator old = pos; ++pos; node_pointer p = other.extract_by_iterator_unique(old); buckets_.insert_node(itb, p); ++size_; } } //////////////////////////////////////////////////////////////////////// // Insert range methods // // if hash function throws, or inserting > 1 element, basic exception // safety strong otherwise template <class InputIt> void insert_range_unique(no_key, InputIt i, InputIt j) { hasher const& hf = this->hash_function(); node_allocator_type alloc = this->node_alloc(); for (; i != j; ++i) { node_tmp tmp(detail::func::construct_node(alloc, *i), alloc); value_type const& value = tmp.node_->value(); const_key_type& key = extractor::extract(value); std::size_t const h = hf(key); bucket_iterator itb = buckets_.at(buckets_.position(h)); node_pointer it = find_node_impl(key, itb); if (it) { continue; } if (size_ + 1 > max_load_) { reserve(size_ + 1); itb = buckets_.at(buckets_.position(h)); } node_pointer nptr = tmp.release(); buckets_.insert_node(itb, nptr); ++size_; } } //////////////////////////////////////////////////////////////////////// // Extract inline node_pointer extract_by_iterator_unique(c_iterator i) { node_pointer p = i.p; bucket_iterator itb = i.itb; buckets_.extract_node(itb, p); --size_; return p; } //////////////////////////////////////////////////////////////////////// // Erase // template <class Key> std::size_t erase_key_unique_impl(Key const& k) { bucket_iterator itb = buckets_.at(buckets_.position(this->hash(k))); node_pointer* pp = this->find_prev(k, itb); if (!pp) { return 0; } node_pointer p = *pp; buckets_.extract_node_after(itb, pp); this->delete_node(p); --size_; return 1; } iterator erase_node(c_iterator pos) { c_iterator next = pos; ++next; bucket_iterator itb = pos.itb; node_pointer* pp = std::addressof(itb->next); while (*pp != pos.p) { pp = std::addressof((*pp)->next); } buckets_.extract_node_after(itb, pp); this->delete_node(pos.p); --size_; return iterator(next.p, next.itb); } iterator erase_nodes_range(c_iterator first, c_iterator last) { if (first == last) { return iterator(last.p, last.itb); } // though `first` stores of a copy of a pointer to a node, we wish to // mutate the pointers stored internally by the singly-linked list in // each bucket group so we have to retrieve it manually by iterating // bucket_iterator itb = first.itb; node_pointer* pp = std::addressof(itb->next); while (*pp != first.p) { pp = std::addressof((*pp)->next); } while (*pp != last.p) { node_pointer p = *pp; *pp = (*pp)->next; this->delete_node(p); --size_; bool const at_end = !(*pp); bool const is_empty_bucket = !itb->next; if (at_end) { if (is_empty_bucket) { buckets_.unlink_bucket(itb++); } else { ++itb; } pp = std::addressof(itb->next); } } return iterator(last.p, last.itb); } //////////////////////////////////////////////////////////////////////// // fill_buckets_unique void copy_buckets(table const& src, std::true_type) { BOOST_ASSERT(size_ == 0); this->reserve_for_insert(src.size_); for (iterator pos = src.begin(); pos != src.end(); ++pos) { value_type const& value = *pos; const_key_type& key = extractor::extract(value); std::size_t const key_hash = this->hash(key); bucket_iterator itb = buckets_.at(buckets_.position(key_hash)); node_allocator_type alloc = this->node_alloc(); node_tmp tmp(detail::func::construct_node(alloc, value), alloc); buckets_.insert_node(itb, tmp.release()); ++size_; } } void move_assign_buckets(table& src, std::true_type) { BOOST_ASSERT(size_ == 0); BOOST_ASSERT(max_load_ >= src.size_); iterator last = src.end(); node_allocator_type alloc = this->node_alloc(); for (iterator pos = src.begin(); pos != last; ++pos) { value_type value = std::move(*pos); const_key_type& key = extractor::extract(value); std::size_t const key_hash = this->hash(key); bucket_iterator itb = buckets_.at(buckets_.position(key_hash)); node_tmp tmp( detail::func::construct_node(alloc, std::move(value)), alloc); buckets_.insert_node(itb, tmp.release()); ++size_; } } //////////////////////////////////////////////////////////////////////// // Equivalent keys // Equality bool equals_equiv(table const& other) const { if (this->size_ != other.size_) return false; iterator last = this->end(); for (iterator n1 = this->begin(); n1 != last;) { const_key_type& k = extractor::extract(*n1); iterator n2 = other.find(k); if (n2 == other.end()) { return false; } iterator end1 = this->next_group(k, n1); iterator end2 = other.next_group(k, n2); if (!group_equals_equiv(n1, end1, n2, end2)) { return false; } n1 = end1; } return true; } static bool group_equals_equiv( iterator n1, iterator end1, iterator n2, iterator end2) { for (;;) { if (*n1 != *n2) break; ++n1; ++n2; if (n1 == end1) return n2 == end2; if (n2 == end2) return false; } for (iterator n1a = n1, n2a = n2;;) { ++n1a; ++n2a; if (n1a == end1) { if (n2a == end2) break; else return false; } if (n2a == end2) return false; } iterator start = n1; for (; n1 != end1; ++n1) { value_type const& v = *n1; if (!find_equiv(start, n1, v)) { std::size_t matches = count_equal_equiv(n2, end2, v); if (!matches) return false; iterator t = n1; if (matches != 1 + count_equal_equiv(++t, end1, v)) return false; } } return true; } static bool find_equiv(iterator n, iterator last, value_type const& v) { for (; n != last; ++n) if (*n == v) return true; return false; } static std::size_t count_equal_equiv( iterator n, iterator last, value_type const& v) { std::size_t count = 0; for (; n != last; ++n) if (*n == v) ++count; return count; } // Emplace/Insert iterator emplace_equiv(node_pointer n) { node_tmp a(n, this->node_alloc()); const_key_type& k = this->get_key(a.node_); std::size_t key_hash = this->hash(k); bucket_iterator itb = buckets_.at(buckets_.position(key_hash)); node_pointer hint = this->find_node_impl(k, itb); if (size_ + 1 > max_load_) { this->reserve(size_ + 1); itb = buckets_.at(buckets_.position(key_hash)); } node_pointer p = a.release(); buckets_.insert_node_hint(itb, p, hint); ++size_; return iterator(p, itb); } iterator emplace_hint_equiv(c_iterator hint, node_pointer n) { node_tmp a(n, this->node_alloc()); const_key_type& k = this->get_key(a.node_); bucket_iterator itb = hint.itb; node_pointer p = hint.p; std::size_t key_hash = 0u; bool const needs_rehash = (size_ + 1 > max_load_); bool const usable_hint = (p && this->key_eq()(k, this->get_key(p))); if (!usable_hint) { key_hash = this->hash(k); itb = buckets_.at(buckets_.position(key_hash)); p = this->find_node_impl(k, itb); } else if (usable_hint && needs_rehash) { key_hash = this->hash(k); } if (needs_rehash) { this->reserve(size_ + 1); itb = buckets_.at(buckets_.position(key_hash)); } a.release(); buckets_.insert_node_hint(itb, n, p); ++size_; return iterator(n, itb); } void emplace_no_rehash_equiv(node_pointer n) { BOOST_ASSERT(size_ + 1 <= max_load_); node_tmp a(n, this->node_alloc()); const_key_type& k = this->get_key(a.node_); std::size_t key_hash = this->hash(k); bucket_iterator itb = buckets_.at(buckets_.position(key_hash)); node_pointer hint = this->find_node_impl(k, itb); node_pointer p = a.release(); buckets_.insert_node_hint(itb, p, hint); ++size_; } template <typename NodeType> iterator move_insert_node_type_equiv(NodeType& np) { iterator result; if (np) { this->reserve_for_insert(size_ + 1); const_key_type& k = this->get_key(np.ptr_); std::size_t key_hash = this->hash(k); bucket_iterator itb = buckets_.at(buckets_.position(key_hash)); node_pointer hint = this->find_node_impl(k, itb); buckets_.insert_node_hint(itb, np.ptr_, hint); ++size_; result = iterator(np.ptr_, itb); np.ptr_ = node_pointer(); } return result; } template <typename NodeType> iterator move_insert_node_type_with_hint_equiv( c_iterator hint, NodeType& np) { iterator result; if (np) { bucket_iterator itb = hint.itb; node_pointer pos = hint.p; const_key_type& k = this->get_key(np.ptr_); std::size_t key_hash = this->hash(k); if (size_ + 1 > max_load_) { this->reserve(size_ + 1); itb = buckets_.at(buckets_.position(key_hash)); } if (hint.p && this->key_eq()(k, this->get_key(hint.p))) { } else { itb = buckets_.at(buckets_.position(key_hash)); pos = this->find_node_impl(k, itb); } buckets_.insert_node_hint(itb, np.ptr_, pos); ++size_; result = iterator(np.ptr_, itb); np.ptr_ = node_pointer(); } return result; } //////////////////////////////////////////////////////////////////////// // Insert range methods // if hash function throws, or inserting > 1 element, basic exception // safety. Strong otherwise template <class I> typename boost::unordered::detail::enable_if_forward<I, void>::type insert_range_equiv(I i, I j) { if (i == j) return; std::size_t distance = static_cast<std::size_t>(std::distance(i, j)); if (distance == 1) { emplace_equiv(boost::unordered::detail::func::construct_node( this->node_alloc(), *i)); } else { // Only require basic exception safety here this->reserve_for_insert(size_ + distance); for (; i != j; ++i) { emplace_no_rehash_equiv( boost::unordered::detail::func::construct_node( this->node_alloc(), *i)); } } } template <class I> typename boost::unordered::detail::disable_if_forward<I, void>::type insert_range_equiv(I i, I j) { for (; i != j; ++i) { emplace_equiv(boost::unordered::detail::func::construct_node( this->node_alloc(), *i)); } } //////////////////////////////////////////////////////////////////////// // Extract inline node_pointer extract_by_iterator_equiv(c_iterator n) { node_pointer p = n.p; bucket_iterator itb = n.itb; buckets_.extract_node(itb, p); --size_; return p; } //////////////////////////////////////////////////////////////////////// // Erase // // no throw template <class Key> std::size_t erase_key_equiv_impl(Key const& k) { std::size_t deleted_count = 0; bucket_iterator itb = buckets_.at(buckets_.position(this->hash(k))); node_pointer* pp = this->find_prev(k, itb); if (pp) { while (*pp && this->key_eq()(this->get_key(*pp), k)) { node_pointer p = *pp; *pp = (*pp)->next; this->delete_node(p); --size_; ++deleted_count; } if (!itb->next) { buckets_.unlink_bucket(itb); } } return deleted_count; } std::size_t erase_key_equiv(const_key_type& k) { return this->erase_key_equiv_impl(k); } //////////////////////////////////////////////////////////////////////// // fill_buckets void copy_buckets(table const& src, std::false_type) { BOOST_ASSERT(size_ == 0); this->reserve_for_insert(src.size_); iterator last = src.end(); for (iterator pos = src.begin(); pos != last; ++pos) { value_type const& value = *pos; const_key_type& key = extractor::extract(value); std::size_t const key_hash = this->hash(key); bucket_iterator itb = buckets_.at(buckets_.position(key_hash)); node_allocator_type alloc = this->node_alloc(); node_tmp tmp(detail::func::construct_node(alloc, value), alloc); node_pointer hint = this->find_node_impl(key, itb); buckets_.insert_node_hint(itb, tmp.release(), hint); ++size_; } } void move_assign_buckets(table& src, std::false_type) { BOOST_ASSERT(size_ == 0); BOOST_ASSERT(max_load_ >= src.size_); iterator last = src.end(); node_allocator_type alloc = this->node_alloc(); for (iterator pos = src.begin(); pos != last; ++pos) { value_type value = std::move(*pos); const_key_type& key = extractor::extract(value); std::size_t const key_hash = this->hash(key); bucket_iterator itb = buckets_.at(buckets_.position(key_hash)); node_pointer hint = this->find_node_impl(key, itb); node_tmp tmp( detail::func::construct_node(alloc, std::move(value)), alloc); buckets_.insert_node_hint(itb, tmp.release(), hint); ++size_; } } }; ////////////////////////////////////////////////////////////////////////// // Clear template <typename Types> inline void table<Types>::clear_impl() { bucket_iterator itb = buckets_.begin(), last = buckets_.end(); for (; itb != last;) { bucket_iterator next_itb = itb; ++next_itb; node_pointer* pp = std::addressof(itb->next); while (*pp) { node_pointer p = *pp; buckets_.extract_node_after(itb, pp); this->delete_node(p); --size_; } itb = next_itb; } } ////////////////////////////////////////////////////////////////////////// // Reserve & Rehash // if hash function throws, basic exception safety // strong otherwise. template <typename Types> inline void table<Types>::rehash(std::size_t num_buckets) { num_buckets = buckets_.bucket_count_for( (std::max)(min_buckets(size_, mlf_), num_buckets)); if (num_buckets != this->bucket_count()) { this->rehash_impl(num_buckets); } } template <class Types> inline void table<Types>::reserve(std::size_t num_elements) { std::size_t num_buckets = min_buckets(num_elements, mlf_); this->rehash(num_buckets); } template <class Types> inline void table<Types>::reserve_for_insert(std::size_t num_elements) { if (num_elements > max_load_) { std::size_t const num_buckets = static_cast<std::size_t>( 1.0f + std::ceil(static_cast<float>(num_elements) / mlf_)); this->rehash_impl(num_buckets); } } template <class Types> inline void table<Types>::rehash_impl(std::size_t num_buckets) { bucket_array_type new_buckets( num_buckets, buckets_.get_allocator()); BOOST_TRY { boost::unordered::detail::span<bucket_type> bspan = buckets_.raw(); bucket_type* pos = bspan.data; std::size_t size = bspan.size; bucket_type* last = pos + size; for (; pos != last; ++pos) { bucket_type& b = *pos; for (node_pointer p = b.next; p;) { node_pointer next_p = p->next; transfer_node(p, b, new_buckets); p = next_p; b.next = p; } } } BOOST_CATCH(...) { for (bucket_iterator pos = new_buckets.begin(); pos != new_buckets.end(); ++pos) { bucket_type& b = *pos; for (node_pointer p = b.next; p;) { node_pointer next_p = p->next; delete_node(p); --size_; p = next_p; } } buckets_.unlink_empty_buckets(); BOOST_RETHROW } BOOST_CATCH_END buckets_ = std::move(new_buckets); recalculate_max_load(); } #if defined(BOOST_MSVC) #pragma warning(pop) #endif //////////////////////////////////////////////////////////////////////// // key extractors // // no throw // // 'extract_key' is called with the emplace parameters to return a // key if available or 'no_key' is one isn't and will need to be // constructed. This could be done by overloading the emplace // implementation // for the different cases, but that's a bit tricky on compilers without // variadic templates. template <typename Key, typename T> struct is_key { template <typename T2> static choice1::type test(T2 const&); static choice2::type test(Key const&); enum { value = sizeof(test(boost::unordered::detail::make<T>())) == sizeof(choice2::type) }; typedef typename std::conditional<value, Key const&, no_key>::type type; }; template <class ValueType> struct set_extractor { typedef ValueType value_type; typedef ValueType key_type; static key_type const& extract(value_type const& v) { return v; } static key_type const& extract(value_type&& v) { return v; } static no_key extract() { return no_key(); } template <class Arg> static no_key extract(Arg const&) { return no_key(); } template <class Arg1, class Arg2, class... Args> static no_key extract(Arg1 const&, Arg2 const&, Args const&...) { return no_key(); } }; template <class ValueType> struct map_extractor { typedef ValueType value_type; typedef typename std::remove_const<typename boost::unordered::detail:: pair_traits<ValueType>::first_type>::type key_type; static key_type const& extract(value_type const& v) { return v.first; } template <class Second> static key_type const& extract(std::pair<key_type, Second> const& v) { return v.first; } template <class Second> static key_type const& extract( std::pair<key_type const, Second> const& v) { return v.first; } template <class Arg1> static key_type const& extract(key_type const& k, Arg1 const&) { return k; } static no_key extract() { return no_key(); } template <class Arg> static no_key extract(Arg const&) { return no_key(); } template <class Arg1, class Arg2> static typename std::conditional< (is_similar<Arg1, key_type>::value || is_complete_and_move_constructible<key_type>::value), converting_key, no_key>::type extract(Arg1 const&, Arg2 const&) { return {}; } template <class Arg1, class Arg2, class Arg3, class... Args> static no_key extract( Arg1 const&, Arg2 const&, Arg3 const&, Args const&...) { return no_key(); } template <template <class...> class Tuple, typename T2> static no_key extract( std::piecewise_construct_t, Tuple<> const&, T2 const&) { return no_key(); } template <template <typename...> class Tuple, typename T, typename T2, typename... Args> static auto extract( std::piecewise_construct_t, Tuple<T, Args...> const& k, T2 const&) -> typename std::enable_if< !std::is_same<T, boost::tuples::null_type>::value, typename is_key<key_type, T>::type>::type { using std::get; return typename is_key<key_type, T>::type(get<0>(k)); } }; template <class Container, class Predicate> typename Container::size_type erase_if(Container& c, Predicate& pred) { typedef typename Container::size_type size_type; typedef typename Container::iterator iterator; size_type const size = c.size(); for (iterator pos = c.begin(), last = c.end(); pos != last;) { if (pred(*pos)) { pos = c.erase(pos); } else { ++pos; } } return (size - c.size()); } } // namespace detail } // namespace unordered } // namespace boost #endif