%PDF- %PDF-
Direktori : /backups/router/usr/local/include/boost/geometry/algorithms/detail/distance/ |
Current File : //backups/router/usr/local/include/boost/geometry/algorithms/detail/distance/interface.hpp |
// Boost.Geometry (aka GGL, Generic Geometry Library) // Copyright (c) 2007-2014 Barend Gehrels, Amsterdam, the Netherlands. // Copyright (c) 2008-2014 Bruno Lalande, Paris, France. // Copyright (c) 2009-2014 Mateusz Loskot, London, UK. // Copyright (c) 2013-2014 Adam Wulkiewicz, Lodz, Poland. // Copyright (c) 2014 Samuel Debionne, Grenoble, France. // This file was modified by Oracle on 2014-2021. // Modifications copyright (c) 2014-2021, Oracle and/or its affiliates. // Contributed and/or modified by Menelaos Karavelas, on behalf of Oracle // Contributed and/or modified by Adam Wulkiewicz, on behalf of Oracle // Parts of Boost.Geometry are redesigned from Geodan's Geographic Library // (geolib/GGL), copyright (c) 1995-2010 Geodan, Amsterdam, the Netherlands. // Use, modification and distribution is subject to the Boost Software License, // Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at // http://www.boost.org/LICENSE_1_0.txt) #ifndef BOOST_GEOMETRY_ALGORITHMS_DETAIL_DISTANCE_INTERFACE_HPP #define BOOST_GEOMETRY_ALGORITHMS_DETAIL_DISTANCE_INTERFACE_HPP #include <boost/concept_check.hpp> #include <boost/geometry/algorithms/detail/throw_on_empty_input.hpp> #include <boost/geometry/algorithms/dispatch/distance.hpp> #include <boost/geometry/core/point_type.hpp> #include <boost/geometry/core/visit.hpp> #include <boost/geometry/geometries/adapted/boost_variant.hpp> // For backward compatibility #include <boost/geometry/geometries/concepts/check.hpp> // TODO: move these to algorithms #include <boost/geometry/strategies/default_distance_result.hpp> #include <boost/geometry/strategies/distance_result.hpp> #include <boost/geometry/strategies/default_strategy.hpp> #include <boost/geometry/strategies/detail.hpp> #include <boost/geometry/strategies/distance/services.hpp> namespace boost { namespace geometry { #ifndef DOXYGEN_NO_DISPATCH namespace dispatch { // If reversal is needed, perform it template < typename Geometry1, typename Geometry2, typename Strategy, typename Tag1, typename Tag2, typename StrategyTag > struct distance < Geometry1, Geometry2, Strategy, Tag1, Tag2, StrategyTag, true > : distance<Geometry2, Geometry1, Strategy, Tag2, Tag1, StrategyTag, false> { static inline auto apply(Geometry1 const& g1, Geometry2 const& g2, Strategy const& strategy) { return distance < Geometry2, Geometry1, Strategy, Tag2, Tag1, StrategyTag, false >::apply(g2, g1, strategy); } }; } // namespace dispatch #endif // DOXYGEN_NO_DISPATCH namespace resolve_strategy { template < typename Strategy, bool IsUmbrella = strategies::detail::is_umbrella_strategy<Strategy>::value > struct distance { template <typename Geometry1, typename Geometry2> static inline auto apply(Geometry1 const& geometry1, Geometry2 const& geometry2, Strategy const& strategy) { return dispatch::distance < Geometry1, Geometry2, Strategy >::apply(geometry1, geometry2, strategy); } }; template <typename Strategy> struct is_strategy_converter_specialized { typedef strategies::distance::services::strategy_converter<Strategy> converter; static const bool value = ! std::is_same < decltype(converter::get(std::declval<Strategy>())), strategies::detail::not_implemented >::value; }; template <typename Strategy> struct distance<Strategy, false> { template < typename Geometry1, typename Geometry2, typename S, std::enable_if_t<is_strategy_converter_specialized<S>::value, int> = 0 > static inline auto apply(Geometry1 const& geometry1, Geometry2 const& geometry2, S const& strategy) { typedef strategies::distance::services::strategy_converter<Strategy> converter; typedef decltype(converter::get(strategy)) strategy_type; return dispatch::distance < Geometry1, Geometry2, strategy_type >::apply(geometry1, geometry2, converter::get(strategy)); } template < typename Geometry1, typename Geometry2, typename S, std::enable_if_t<! is_strategy_converter_specialized<S>::value, int> = 0 > static inline auto apply(Geometry1 const& geometry1, Geometry2 const& geometry2, S const& strategy) { typedef strategies::distance::services::custom_strategy_converter < Geometry1, Geometry2, Strategy > converter; typedef decltype(converter::get(strategy)) strategy_type; return dispatch::distance < Geometry1, Geometry2, strategy_type >::apply(geometry1, geometry2, converter::get(strategy)); } }; template <> struct distance<default_strategy, false> { template <typename Geometry1, typename Geometry2> static inline auto apply(Geometry1 const& geometry1, Geometry2 const& geometry2, default_strategy) { typedef typename strategies::distance::services::default_strategy < Geometry1, Geometry2 >::type strategy_type; return dispatch::distance < Geometry1, Geometry2, strategy_type >::apply(geometry1, geometry2, strategy_type()); } }; } // namespace resolve_strategy namespace resolve_dynamic { template < typename Geometry1, typename Geometry2, typename Tag1 = typename geometry::tag<Geometry1>::type, typename Tag2 = typename geometry::tag<Geometry2>::type > struct distance { template <typename Strategy> static inline auto apply(Geometry1 const& geometry1, Geometry2 const& geometry2, Strategy const& strategy) { return resolve_strategy::distance < Strategy >::apply(geometry1, geometry2, strategy); } }; template <typename DynamicGeometry1, typename Geometry2, typename Tag2> struct distance<DynamicGeometry1, Geometry2, dynamic_geometry_tag, Tag2> { template <typename Strategy> static inline auto apply(DynamicGeometry1 const& geometry1, Geometry2 const& geometry2, Strategy const& strategy) { using result_t = typename geometry::distance_result<DynamicGeometry1, Geometry2, Strategy>::type; result_t result = 0; traits::visit<DynamicGeometry1>::apply([&](auto const& g1) { result = resolve_strategy::distance < Strategy >::apply(g1, geometry2, strategy); }, geometry1); return result; } }; template <typename Geometry1, typename DynamicGeometry2, typename Tag1> struct distance<Geometry1, DynamicGeometry2, Tag1, dynamic_geometry_tag> { template <typename Strategy> static inline auto apply(Geometry1 const& geometry1, DynamicGeometry2 const& geometry2, Strategy const& strategy) { using result_t = typename geometry::distance_result<Geometry1, DynamicGeometry2, Strategy>::type; result_t result = 0; traits::visit<DynamicGeometry2>::apply([&](auto const& g2) { result = resolve_strategy::distance < Strategy >::apply(geometry1, g2, strategy); }, geometry2); return result; } }; template <typename DynamicGeometry1, typename DynamicGeometry2> struct distance<DynamicGeometry1, DynamicGeometry2, dynamic_geometry_tag, dynamic_geometry_tag> { template <typename Strategy> static inline auto apply(DynamicGeometry1 const& geometry1, DynamicGeometry2 const& geometry2, Strategy const& strategy) { using result_t = typename geometry::distance_result<DynamicGeometry1, DynamicGeometry2, Strategy>::type; result_t result = 0; traits::visit<DynamicGeometry1, DynamicGeometry2>::apply([&](auto const& g1, auto const& g2) { result = resolve_strategy::distance < Strategy >::apply(g1, g2, strategy); }, geometry1, geometry2); return result; } }; } // namespace resolve_dynamic /*! \brief Calculate the distance between two geometries \brief_strategy \ingroup distance \details \details The free function distance calculates the distance between two geometries \brief_strategy. \details_strategy_reasons \tparam Geometry1 \tparam_geometry \tparam Geometry2 \tparam_geometry \tparam Strategy \tparam_strategy{Distance} \param geometry1 \param_geometry \param geometry2 \param_geometry \param strategy \param_strategy{distance} \return \return_calc{distance} \note The strategy can be a point-point strategy. In case of distance point-line/point-polygon it may also be a point-segment strategy. \qbk{distinguish,with strategy} \qbk{ [heading Available Strategies] \* [link geometry.reference.strategies.strategy_distance_pythagoras Pythagoras (cartesian)] \* [link geometry.reference.strategies.strategy_distance_haversine Haversine (spherical)] \* [link geometry.reference.strategies.strategy_distance_cross_track Cross track (spherical\, point-to-segment)] \* [link geometry.reference.strategies.strategy_distance_projected_point Projected point (cartesian\, point-to-segment)] \* more (currently extensions): Vincenty\, Andoyer (geographic) } */ /* Note, in case of a Compilation Error: if you get: - "Failed to specialize function template ..." - "error: no matching function for call to ..." for distance, it is probably so that there is no specialization for return_type<...> for your strategy. */ template <typename Geometry1, typename Geometry2, typename Strategy> inline auto distance(Geometry1 const& geometry1, Geometry2 const& geometry2, Strategy const& strategy) { concepts::check<Geometry1 const>(); concepts::check<Geometry2 const>(); detail::throw_on_empty_input(geometry1); detail::throw_on_empty_input(geometry2); return resolve_dynamic::distance < Geometry1, Geometry2 >::apply(geometry1, geometry2, strategy); } /*! \brief Calculate the distance between two geometries. \ingroup distance \details The free function distance calculates the distance between two geometries. \details_default_strategy \tparam Geometry1 \tparam_geometry \tparam Geometry2 \tparam_geometry \param geometry1 \param_geometry \param geometry2 \param_geometry \return \return_calc{distance} \qbk{[include reference/algorithms/distance.qbk]} */ template <typename Geometry1, typename Geometry2> inline auto distance(Geometry1 const& geometry1, Geometry2 const& geometry2) { return geometry::distance(geometry1, geometry2, default_strategy()); } }} // namespace boost::geometry #endif // BOOST_GEOMETRY_ALGORITHMS_DETAIL_DISTANCE_INTERFACE_HPP