%PDF- %PDF-
Mini Shell

Mini Shell

Direktori : /backups/router/usr/local/include/boost/charconv/detail/fast_float/
Upload File :
Create Path :
Current File : //backups/router/usr/local/include/boost/charconv/detail/fast_float/float_common.hpp

// Copyright 2020-2023 Daniel Lemire
// Copyright 2023 Matt Borland
// Distributed under the Boost Software License, Version 1.0.
// https://www.boost.org/LICENSE_1_0.txt
//
// Derivative of: https://github.com/fastfloat/fast_float

#ifndef BOOST_CHARCONV_DETAIL_FASTFLOAT_FLOAT_COMMON_HPP
#define BOOST_CHARCONV_DETAIL_FASTFLOAT_FLOAT_COMMON_HPP

#include <boost/charconv/detail/fast_float/constexpr_feature_detect.hpp>
#include <boost/charconv/detail/from_chars_result.hpp>
#include <boost/charconv/detail/config.hpp>
#include <boost/charconv/chars_format.hpp>
#include <cfloat>
#include <cstdint>
#include <cassert>
#include <cstring>
#include <type_traits>
#include <system_error>

namespace boost { namespace charconv { namespace detail { namespace fast_float {


template <typename UC>
struct parse_options_t {
  constexpr explicit parse_options_t(chars_format fmt = chars_format::general,
    UC dot = UC('.'))
    : format(fmt), decimal_point(dot) {}

  /** Which number formats are accepted */
  chars_format format;
  /** The character used as decimal point */
  UC decimal_point;
};
using parse_options = parse_options_t<char>;

}}}}

#if BOOST_CHARCONV_FASTFLOAT_HAS_BIT_CAST
#include <bit>
#endif

#if (defined(__x86_64) || defined(__x86_64__) || defined(_M_X64)   \
       || defined(__amd64) || defined(__aarch64__) || defined(_M_ARM64) \
       || defined(__MINGW64__)                                          \
       || defined(__s390x__)                                            \
       || (defined(__ppc64__) || defined(__PPC64__) || defined(__ppc64le__) || defined(__PPC64LE__)) )
#define BOOST_CHARCONV_FASTFLOAT_64BIT 1
#elif (defined(__i386) || defined(__i386__) || defined(_M_IX86)   \
     || defined(__arm__) || defined(_M_ARM) || defined(__ppc__)   \
     || defined(__MINGW32__) || defined(__EMSCRIPTEN__))
#define BOOST_CHARCONV_FASTFLOAT_32BIT 1
#else
  // Need to check incrementally, since SIZE_MAX is a size_t, avoid overflow.
  // We can never tell the register width, but the SIZE_MAX is a good approximation.
  // UINTPTR_MAX and INTPTR_MAX are optional, so avoid them for max portability.
  #if SIZE_MAX == 0xffff
    #error Unknown platform (16-bit, unsupported)
  #elif SIZE_MAX == 0xffffffff
    #define BOOST_CHARCONV_FASTFLOAT_32BIT 1
  #elif SIZE_MAX == 0xffffffffffffffff
    #define BOOST_CHARCONV_FASTFLOAT_64BIT 1
  #else
    #error Unknown platform (not 32-bit, not 64-bit?)
  #endif
#endif

#if ((defined(_WIN32) || defined(_WIN64)) && !defined(__clang__))
#include <intrin.h>
#endif

#if defined(_MSC_VER) && !defined(__clang__)
#define BOOST_CHARCONV_FASTFLOAT_VISUAL_STUDIO 1
#endif

#if defined __BYTE_ORDER__ && defined __ORDER_BIG_ENDIAN__
#define BOOST_CHARCONV_FASTFLOAT_IS_BIG_ENDIAN (__BYTE_ORDER__ == __ORDER_BIG_ENDIAN__)
#elif defined _WIN32
#define BOOST_CHARCONV_FASTFLOAT_IS_BIG_ENDIAN 0
#else
#if defined(__APPLE__) || defined(__FreeBSD__)
#include <machine/endian.h>
#elif defined(sun) || defined(__sun)
#include <sys/byteorder.h>
#else
#ifdef __has_include
#if __has_include(<endian.h>)
#include <endian.h>
#endif //__has_include(<endian.h>)
#endif //__has_include
#endif
#
#ifndef __BYTE_ORDER__
// safe choice
#define BOOST_CHARCONV_FASTFLOAT_IS_BIG_ENDIAN 0
#endif
#
#ifndef __ORDER_LITTLE_ENDIAN__
// safe choice
#define BOOST_CHARCONV_FASTFLOAT_IS_BIG_ENDIAN 0
#endif
#
#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
#define BOOST_CHARCONV_FASTFLOAT_IS_BIG_ENDIAN 0
#else
#define BOOST_CHARCONV_FASTFLOAT_IS_BIG_ENDIAN 1
#endif
#endif

#ifndef BOOST_CHARCONV_FASTFLOAT_ASSERT
#define BOOST_CHARCONV_FASTFLOAT_ASSERT(x)  { ((void)(x)); }
#endif

#ifndef BOOST_CHARCONV_FASTFLOAT_DEBUG_ASSERT
#define BOOST_CHARCONV_FASTFLOAT_DEBUG_ASSERT(x) { ((void)(x)); }
#endif

// rust style `try!()` macro, or `?` operator
#define BOOST_CHARCONV_FASTFLOAT_TRY(x) { if (!(x)) return false; }

namespace boost { namespace charconv { namespace detail { namespace fast_float {

BOOST_FORCEINLINE constexpr bool cpp20_and_in_constexpr() {
#if BOOST_CHARCONV_FASTFLOAT_HAS_IS_CONSTANT_EVALUATED
  return std::is_constant_evaluated();
#else
  return false;
#endif
}

// Compares two ASCII strings in a case insensitive manner.
template <typename UC>
inline BOOST_CHARCONV_FASTFLOAT_CONSTEXPR14 bool
fastfloat_strncasecmp(UC const * input1, UC const * input2, size_t length) {
  char running_diff{0};
  for (size_t i = 0; i < length; ++i) {
    running_diff |= (char(input1[i]) ^ char(input2[i]));
  }
  return (running_diff == 0) || (running_diff == 32);
}

#ifndef FLT_EVAL_METHOD
#error "FLT_EVAL_METHOD should be defined, please include cfloat."
#endif

// a pointer and a length to a contiguous block of memory
template <typename T>
struct span {
  const T* ptr;
  size_t length;
  constexpr span(const T* _ptr, size_t _length) : ptr(_ptr), length(_length) {}
  constexpr span() : ptr(nullptr), length(0) {}

  constexpr size_t len() const noexcept {
    return length;
  }

  BOOST_CHARCONV_FASTFLOAT_CONSTEXPR14 const T& operator[](size_t index) const noexcept {
    BOOST_CHARCONV_FASTFLOAT_DEBUG_ASSERT(index < length);
    return ptr[index];
  }
};

struct value128 {
  uint64_t low;
  uint64_t high;
  constexpr value128(uint64_t _low, uint64_t _high) : low(_low), high(_high) {}
  constexpr value128() : low(0), high(0) {}
};

/* Helper C++11 constexpr generic implementation of leading_zeroes */
BOOST_FORCEINLINE constexpr
int leading_zeroes_generic(uint64_t input_num, int last_bit = 0) {
  return (
    ((input_num & uint64_t(0xffffffff00000000)) && (input_num >>= 32, last_bit |= 32)),
    ((input_num & uint64_t(        0xffff0000)) && (input_num >>= 16, last_bit |= 16)),
    ((input_num & uint64_t(            0xff00)) && (input_num >>=  8, last_bit |=  8)),
    ((input_num & uint64_t(              0xf0)) && (input_num >>=  4, last_bit |=  4)),
    ((input_num & uint64_t(               0xc)) && (input_num >>=  2, last_bit |=  2)),
    ((input_num & uint64_t(               0x2)) && (input_num >>=  1, last_bit |=  1)),
    63 - last_bit
  );
}

/* result might be undefined when input_num is zero */
BOOST_FORCEINLINE BOOST_CHARCONV_FASTFLOAT_CONSTEXPR20
int leading_zeroes(uint64_t input_num) {
  assert(input_num > 0);
  if (cpp20_and_in_constexpr()) {
    return leading_zeroes_generic(input_num);
  }
#ifdef BOOST_CHARCONV_FASTFLOAT_VISUAL_STUDIO
  #if defined(_M_X64) || defined(_M_ARM64)
  unsigned long leading_zero = 0;
  // Search the mask data from most significant bit (MSB)
  // to least significant bit (LSB) for a set bit (1).
  _BitScanReverse64(&leading_zero, input_num);
  return (int)(63 - leading_zero);
  #else
  return leading_zeroes_generic(input_num);
  #endif
#else
  return __builtin_clzll(input_num);
#endif
}

// slow emulation routine for 32-bit
BOOST_FORCEINLINE constexpr uint64_t emulu(uint32_t x, uint32_t y) {
    return x * static_cast<uint64_t>(y);
}

BOOST_FORCEINLINE BOOST_CHARCONV_FASTFLOAT_CONSTEXPR14
uint64_t umul128_generic(uint64_t ab, uint64_t cd, uint64_t *hi) {
  uint64_t ad = emulu(static_cast<uint32_t>(ab >> 32), static_cast<uint32_t>(cd));
  uint64_t bd = emulu(static_cast<uint32_t>(ab), static_cast<uint32_t>(cd));
  uint64_t adbc = ad + emulu(static_cast<uint32_t>(ab), static_cast<uint32_t>(cd >> 32));
  uint64_t adbc_carry = !!(adbc < ad);
  uint64_t lo = bd + (adbc << 32);
  *hi = emulu(static_cast<uint32_t>(ab >> 32), static_cast<uint32_t>(cd >> 32)) + (adbc >> 32) +
        (adbc_carry << 32) + !!(lo < bd);
  return lo;
}

#ifdef BOOST_CHARCONV_FASTFLOAT_32BIT

// slow emulation routine for 32-bit
#if !defined(__MINGW64__)
BOOST_FORCEINLINE BOOST_CHARCONV_FASTFLOAT_CONSTEXPR14
uint64_t _umul128(uint64_t ab, uint64_t cd, uint64_t *hi) {
  return umul128_generic(ab, cd, hi);
}
#endif // !__MINGW64__

#endif // BOOST_CHARCONV_FASTFLOAT_32BIT


// compute 64-bit a*b
BOOST_FORCEINLINE BOOST_CHARCONV_FASTFLOAT_CONSTEXPR20
value128 full_multiplication(uint64_t a, uint64_t b) {
  if (cpp20_and_in_constexpr()) {
    value128 answer;
    answer.low = umul128_generic(a, b, &answer.high);
    return answer;
  }
  value128 answer;
#if defined(_M_ARM64) && !defined(__MINGW32__)
  // ARM64 has native support for 64-bit multiplications, no need to emulate
  // But MinGW on ARM64 doesn't have native support for 64-bit multiplications
  answer.high = __umulh(a, b);
  answer.low = a * b;
#elif defined(BOOST_CHARCONV_FASTFLOAT_32BIT) || (defined(_WIN64) && !defined(__clang__))
  unsigned long long high;
  answer.low = _umul128(a, b, &high); // _umul128 not available on ARM64
  answer.high = static_cast<uint64_t>(high);
#elif defined(BOOST_CHARCONV_FASTFLOAT_64BIT)
  __uint128_t r = (static_cast<__uint128_t>(a)) * b;
  answer.low = uint64_t(r);
  answer.high = uint64_t(r >> 64);
#else
  answer.low = umul128_generic(a, b, &answer.high);
#endif
  return answer;
}

struct adjusted_mantissa {
  uint64_t mantissa{0};
  int32_t power2{0}; // a negative value indicates an invalid result
  adjusted_mantissa() = default;
  constexpr bool operator==(const adjusted_mantissa &o) const {
    return mantissa == o.mantissa && power2 == o.power2;
  }
  constexpr bool operator!=(const adjusted_mantissa &o) const {
    return mantissa != o.mantissa || power2 != o.power2;
  }
};

// Bias so we can get the real exponent with an invalid adjusted_mantissa.
constexpr static int32_t invalid_am_bias = -0x8000;

// used for binary_format_lookup_tables<T>::max_mantissa
constexpr uint64_t constant_55555 = 5 * 5 * 5 * 5 * 5;

template <typename T, typename U = void>
struct binary_format_lookup_tables;

template <typename T> struct binary_format : binary_format_lookup_tables<T> {
  using equiv_uint = typename std::conditional<sizeof(T) == 4, uint32_t, uint64_t>::type;

  static inline constexpr int mantissa_explicit_bits();
  static inline constexpr int minimum_exponent();
  static inline constexpr int infinite_power();
  static inline constexpr int sign_index();
  static inline constexpr int min_exponent_fast_path(); // used when fegetround() == FE_TONEAREST
  static inline constexpr int max_exponent_fast_path();
  static inline constexpr int max_exponent_round_to_even();
  static inline constexpr int min_exponent_round_to_even();
  static inline constexpr uint64_t max_mantissa_fast_path(int64_t power);
  static inline constexpr uint64_t max_mantissa_fast_path(); // used when fegetround() == FE_TONEAREST
  static inline constexpr int largest_power_of_ten();
  static inline constexpr int smallest_power_of_ten();
  static inline constexpr T exact_power_of_ten(int64_t power);
  static inline constexpr size_t max_digits();
  static inline constexpr equiv_uint exponent_mask();
  static inline constexpr equiv_uint mantissa_mask();
  static inline constexpr equiv_uint hidden_bit_mask();
};

template <typename U>
struct binary_format_lookup_tables<double, U> {
  static constexpr double powers_of_ten[] = {
      1e0,  1e1,  1e2,  1e3,  1e4,  1e5,  1e6,  1e7,  1e8,  1e9,  1e10, 1e11,
      1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19, 1e20, 1e21, 1e22};

  // Largest integer value v so that (5**index * v) <= 1<<53.
  // 0x10000000000000 == 1 << 53
  static constexpr std::uint64_t max_mantissa[] = {
    UINT64_C(0x10000000000000),
    UINT64_C(0x10000000000000) / UINT64_C(5),
    UINT64_C(0x10000000000000) / (UINT64_C(5) * UINT64_C(5)),
    UINT64_C(0x10000000000000) / (UINT64_C(5) * UINT64_C(5) * UINT64_C(5)),
    UINT64_C(0x10000000000000) / (UINT64_C(5) * UINT64_C(5) * UINT64_C(5) * UINT64_C(5)),
    UINT64_C(0x10000000000000) / (constant_55555),
    UINT64_C(0x10000000000000) / (constant_55555 * UINT64_C(5)),
    UINT64_C(0x10000000000000) / (constant_55555 * UINT64_C(5) * UINT64_C(5)),
    UINT64_C(0x10000000000000) / (constant_55555 * UINT64_C(5) * UINT64_C(5) * UINT64_C(5)),
    UINT64_C(0x10000000000000) / (constant_55555 * UINT64_C(5) * UINT64_C(5) * UINT64_C(5) * UINT64_C(5)),
    UINT64_C(0x10000000000000) / (constant_55555 * constant_55555),
    UINT64_C(0x10000000000000) / (constant_55555 * constant_55555 * UINT64_C(5)),
    UINT64_C(0x10000000000000) / (constant_55555 * constant_55555 * UINT64_C(5) * UINT64_C(5)),
    UINT64_C(0x10000000000000) / (constant_55555 * constant_55555 * UINT64_C(5) * UINT64_C(5) * UINT64_C(5)),
    UINT64_C(0x10000000000000) / (constant_55555 * constant_55555 * constant_55555),
    UINT64_C(0x10000000000000) / (constant_55555 * constant_55555 * constant_55555 * UINT64_C(5)),
    UINT64_C(0x10000000000000) / (constant_55555 * constant_55555 * constant_55555 * UINT64_C(5) * UINT64_C(5)),
    UINT64_C(0x10000000000000) / (constant_55555 * constant_55555 * constant_55555 * UINT64_C(5) * UINT64_C(5) * UINT64_C(5)),
    UINT64_C(0x10000000000000) / (constant_55555 * constant_55555 * constant_55555 * UINT64_C(5) * UINT64_C(5) * UINT64_C(5) * UINT64_C(5)),
    UINT64_C(0x10000000000000) / (constant_55555 * constant_55555 * constant_55555 * constant_55555),
    UINT64_C(0x10000000000000) / (constant_55555 * constant_55555 * constant_55555 * constant_55555 * UINT64_C(5)),
    UINT64_C(0x10000000000000) / (constant_55555 * constant_55555 * constant_55555 * constant_55555 * UINT64_C(5) * UINT64_C(5)),
    UINT64_C(0x10000000000000) / (constant_55555 * constant_55555 * constant_55555 * constant_55555 * UINT64_C(5) * UINT64_C(5) * UINT64_C(5)),
    UINT64_C(0x10000000000000) / (constant_55555 * constant_55555 * constant_55555 * constant_55555 * UINT64_C(5) * UINT64_C(5) * UINT64_C(5) * UINT64_C(5))};
};

template <typename U>
constexpr double binary_format_lookup_tables<double, U>::powers_of_ten[];

template <typename U>
constexpr uint64_t binary_format_lookup_tables<double, U>::max_mantissa[];

template <typename U>
struct binary_format_lookup_tables<float, U> {
  static constexpr float powers_of_ten[] = {1e0f, 1e1f, 1e2f, 1e3f, 1e4f, 1e5f,
                                     1e6f, 1e7f, 1e8f, 1e9f, 1e10f};

  // Largest integer value v so that (5**index * v) <= 1<<24.
  // 0x1000000 == 1<<24
  static constexpr uint64_t max_mantissa[] = {
    UINT64_C(0x1000000),
    UINT64_C(0x1000000) / UINT64_C(5),
    UINT64_C(0x1000000) / (UINT64_C(5) * UINT64_C(5)),
    UINT64_C(0x1000000) / (UINT64_C(5) * UINT64_C(5) * UINT64_C(5)),
    UINT64_C(0x1000000) / (UINT64_C(5) * UINT64_C(5) * UINT64_C(5) * UINT64_C(5)),
    UINT64_C(0x1000000) / (constant_55555),
    UINT64_C(0x1000000) / (constant_55555 * UINT64_C(5)),
    UINT64_C(0x1000000) / (constant_55555 * UINT64_C(5) * UINT64_C(5)),
    UINT64_C(0x1000000) / (constant_55555 * UINT64_C(5) * UINT64_C(5) * UINT64_C(5)),
    UINT64_C(0x1000000) / (constant_55555 * UINT64_C(5) * UINT64_C(5) * UINT64_C(5) * UINT64_C(5)),
    UINT64_C(0x1000000) / (constant_55555 * constant_55555),
    UINT64_C(0x1000000) / (constant_55555 * constant_55555 * UINT64_C(5))};
};

template <typename U>
constexpr float binary_format_lookup_tables<float, U>::powers_of_ten[];

template <typename U>
constexpr uint64_t binary_format_lookup_tables<float, U>::max_mantissa[];

template <> inline constexpr int binary_format<double>::min_exponent_fast_path() {
#if (FLT_EVAL_METHOD != 1) && (FLT_EVAL_METHOD != 0)
  return 0;
#else
  return -22;
#endif
}

template <> inline constexpr int binary_format<float>::min_exponent_fast_path() {
#if (FLT_EVAL_METHOD != 1) && (FLT_EVAL_METHOD != 0)
  return 0;
#else
  return -10;
#endif
}

template <> inline constexpr int binary_format<double>::mantissa_explicit_bits() {
  return 52;
}
template <> inline constexpr int binary_format<float>::mantissa_explicit_bits() {
  return 23;
}

template <> inline constexpr int binary_format<double>::max_exponent_round_to_even() {
  return 23;
}

template <> inline constexpr int binary_format<float>::max_exponent_round_to_even() {
  return 10;
}

template <> inline constexpr int binary_format<double>::min_exponent_round_to_even() {
  return -4;
}

template <> inline constexpr int binary_format<float>::min_exponent_round_to_even() {
  return -17;
}

template <> inline constexpr int binary_format<double>::minimum_exponent() {
  return -1023;
}
template <> inline constexpr int binary_format<float>::minimum_exponent() {
  return -127;
}

template <> inline constexpr int binary_format<double>::infinite_power() {
  return 0x7FF;
}
template <> inline constexpr int binary_format<float>::infinite_power() {
  return 0xFF;
}

template <> inline constexpr int binary_format<double>::sign_index() { return 63; }
template <> inline constexpr int binary_format<float>::sign_index() { return 31; }

template <> inline constexpr int binary_format<double>::max_exponent_fast_path() {
  return 22;
}
template <> inline constexpr int binary_format<float>::max_exponent_fast_path() {
  return 10;
}

template <> inline constexpr uint64_t binary_format<double>::max_mantissa_fast_path() {
  return uint64_t(2) << mantissa_explicit_bits();
}
template <> inline constexpr uint64_t binary_format<double>::max_mantissa_fast_path(int64_t power) {
  // caller is responsible to ensure that
  // power >= 0 && power <= 22
  //
  // Work around clang bug https://godbolt.org/z/zedh7rrhc
  return (void)max_mantissa[0], max_mantissa[power];
}
template <> inline constexpr uint64_t binary_format<float>::max_mantissa_fast_path() {
  return uint64_t(2) << mantissa_explicit_bits();
}
template <> inline constexpr uint64_t binary_format<float>::max_mantissa_fast_path(int64_t power) {
  // caller is responsible to ensure that
  // power >= 0 && power <= 10
  //
  // Work around clang bug https://godbolt.org/z/zedh7rrhc
  return (void)max_mantissa[0], max_mantissa[power];
}

template <>
inline constexpr double binary_format<double>::exact_power_of_ten(int64_t power) {
  // Work around clang bug https://godbolt.org/z/zedh7rrhc
  return (void)powers_of_ten[0], powers_of_ten[power];
}
template <>
inline constexpr float binary_format<float>::exact_power_of_ten(int64_t power) {
  // Work around clang bug https://godbolt.org/z/zedh7rrhc
  return (void)powers_of_ten[0], powers_of_ten[power];
}


template <>
inline constexpr int binary_format<double>::largest_power_of_ten() {
  return 308;
}
template <>
inline constexpr int binary_format<float>::largest_power_of_ten() {
  return 38;
}

template <>
inline constexpr int binary_format<double>::smallest_power_of_ten() {
  return -342;
}
template <>
inline constexpr int binary_format<float>::smallest_power_of_ten() {
  return -65;
}

template <> inline constexpr size_t binary_format<double>::max_digits() {
  return 769;
}
template <> inline constexpr size_t binary_format<float>::max_digits() {
  return 114;
}

template <> inline constexpr binary_format<float>::equiv_uint
    binary_format<float>::exponent_mask() {
  return 0x7F800000;
}
template <> inline constexpr binary_format<double>::equiv_uint
    binary_format<double>::exponent_mask() {
  return 0x7FF0000000000000;
}

template <> inline constexpr binary_format<float>::equiv_uint
    binary_format<float>::mantissa_mask() {
  return 0x007FFFFF;
}
template <> inline constexpr binary_format<double>::equiv_uint
    binary_format<double>::mantissa_mask() {
  return 0x000FFFFFFFFFFFFF;
}

template <> inline constexpr binary_format<float>::equiv_uint
    binary_format<float>::hidden_bit_mask() {
  return 0x00800000;
}
template <> inline constexpr binary_format<double>::equiv_uint
    binary_format<double>::hidden_bit_mask() {
  return 0x0010000000000000;
}

template<typename T>
BOOST_FORCEINLINE BOOST_CHARCONV_FASTFLOAT_CONSTEXPR20
void to_float(bool negative, adjusted_mantissa am, T &value) {
  using uint = typename binary_format<T>::equiv_uint;
  uint word = static_cast<uint>(am.mantissa);
  word |= uint(am.power2) << binary_format<T>::mantissa_explicit_bits();
  word |= uint(negative) << binary_format<T>::sign_index();
#if BOOST_CHARCONV_FASTFLOAT_HAS_BIT_CAST
  value = std::bit_cast<T>(word);
#else
  ::memcpy(&value, &word, sizeof(T));
#endif
}

#ifdef BOOST_CHARCONV_FASTFLOAT_SKIP_WHITE_SPACE // disabled by default
template <typename = void>
struct space_lut {
  static constexpr bool value[] = {
    0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
};

template <typename T>
constexpr bool space_lut<T>::value[];

inline constexpr bool is_space(uint8_t c) { return space_lut<>::value[c]; }
#endif

template<typename UC>
static constexpr uint64_t int_cmp_zeros()
{
    static_assert((sizeof(UC) == 1) || (sizeof(UC) == 2) || (sizeof(UC) == 4), "Unsupported character size");
    return (sizeof(UC) == 1) ? 0x3030303030303030 : (sizeof(UC) == 2) ? (uint64_t(UC('0')) << 48 | uint64_t(UC('0')) << 32 | uint64_t(UC('0')) << 16 | UC('0')) : (uint64_t(UC('0')) << 32 | UC('0'));
}
template<typename UC>
static constexpr int int_cmp_len()
{
    return sizeof(uint64_t) / sizeof(UC);
}
template<typename UC>
static constexpr UC const * str_const_nan()
{
    return nullptr;
}
template<>
constexpr char const * str_const_nan<char>()
{
    return "nan";
}
template<>
constexpr wchar_t const * str_const_nan<wchar_t>()
{
    return L"nan";
}
template<>
constexpr char16_t const * str_const_nan<char16_t>()
{
    return u"nan";
}
template<>
constexpr char32_t const * str_const_nan<char32_t>()
{
    return U"nan";
}
template<typename UC>
static constexpr UC const * str_const_inf()
{
    return nullptr;
}
template<>
constexpr char const * str_const_inf<char>()
{
    return "infinity";
}
template<>
constexpr wchar_t const * str_const_inf<wchar_t>()
{
    return L"infinity";
}
template<>
constexpr char16_t const * str_const_inf<char16_t>()
{
    return u"infinity";
}
template<>
constexpr char32_t const * str_const_inf<char32_t>()
{
    return U"infinity";
}

}}}} // namespaces

#endif

Zerion Mini Shell 1.0