%PDF- %PDF-
| Direktori : /proc/self/root/usr/share/virtualbox/src/vboxhost/vboxdrv/ |
| Current File : //proc/self/root/usr/share/virtualbox/src/vboxhost/vboxdrv/SUPDrv.c |
/* $Id: SUPDrv.cpp 162362 2024-03-21 10:25:28Z vgalitsy $ */
/** @file
* VBoxDrv - The VirtualBox Support Driver - Common code.
*/
/*
* Copyright (C) 2006-2023 Oracle and/or its affiliates.
*
* This file is part of VirtualBox base platform packages, as
* available from https://www.virtualbox.org.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation, in version 3 of the
* License.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see <https://www.gnu.org/licenses>.
*
* The contents of this file may alternatively be used under the terms
* of the Common Development and Distribution License Version 1.0
* (CDDL), a copy of it is provided in the "COPYING.CDDL" file included
* in the VirtualBox distribution, in which case the provisions of the
* CDDL are applicable instead of those of the GPL.
*
* You may elect to license modified versions of this file under the
* terms and conditions of either the GPL or the CDDL or both.
*
* SPDX-License-Identifier: GPL-3.0-only OR CDDL-1.0
*/
/*********************************************************************************************************************************
* Header Files *
*********************************************************************************************************************************/
#define LOG_GROUP LOG_GROUP_SUP_DRV
#define SUPDRV_AGNOSTIC
#include "SUPDrvInternal.h"
#ifndef PAGE_SHIFT
# include <iprt/param.h>
#endif
#include <iprt/asm.h>
#include <iprt/asm-amd64-x86.h>
#include <iprt/asm-math.h>
#include <iprt/cpuset.h>
#if defined(RT_OS_DARWIN) || defined(RT_OS_SOLARIS) || defined(RT_OS_WINDOWS)
# include <iprt/dbg.h>
#endif
#include <iprt/handletable.h>
#include <iprt/mem.h>
#include <iprt/mp.h>
#include <iprt/power.h>
#include <iprt/process.h>
#include <iprt/semaphore.h>
#include <iprt/spinlock.h>
#include <iprt/thread.h>
#include <iprt/uuid.h>
#include <iprt/net.h>
#include <iprt/crc.h>
#include <iprt/string.h>
#include <iprt/timer.h>
#if defined(RT_OS_DARWIN) || defined(RT_OS_SOLARIS) || defined(RT_OS_FREEBSD)
# include <iprt/rand.h>
# include <iprt/path.h>
#endif
#include <iprt/uint128.h>
#include <iprt/x86.h>
#include <VBox/param.h>
#include <VBox/log.h>
#include <VBox/err.h>
#include <VBox/vmm/hm_vmx.h>
#if defined(RT_OS_SOLARIS) || defined(RT_OS_DARWIN)
# include "dtrace/SUPDrv.h"
#else
# define VBOXDRV_SESSION_CREATE(pvSession, fUser) do { } while (0)
# define VBOXDRV_SESSION_CLOSE(pvSession) do { } while (0)
# define VBOXDRV_IOCTL_ENTRY(pvSession, uIOCtl, pvReqHdr) do { } while (0)
# define VBOXDRV_IOCTL_RETURN(pvSession, uIOCtl, pvReqHdr, rcRet, rcReq) do { } while (0)
#endif
#ifdef __cplusplus
# if __cplusplus >= 201100 || RT_MSC_PREREQ(RT_MSC_VER_VS2019)
# define SUPDRV_CAN_COUNT_FUNCTION_ARGS
# ifdef _MSC_VER
# pragma warning(push)
# pragma warning(disable:4577)
# include <type_traits>
# pragma warning(pop)
# elif defined(RT_OS_DARWIN)
# define _LIBCPP_CSTDDEF
# include <__nullptr>
# include <type_traits>
# else
# include <type_traits>
# endif
# endif
#endif
/*
* Logging assignments:
* Log - useful stuff, like failures.
* LogFlow - program flow, except the really noisy bits.
* Log2 - Cleanup.
* Log3 - Loader flow noise.
* Log4 - Call VMMR0 flow noise.
* Log5 - Native yet-to-be-defined noise.
* Log6 - Native ioctl flow noise.
*
* Logging requires KBUILD_TYPE=debug and possibly changes to the logger
* instantiation in log-vbox.c(pp).
*/
/*********************************************************************************************************************************
* Defined Constants And Macros *
*********************************************************************************************************************************/
/** @def VBOX_SVN_REV
* The makefile should define this if it can. */
#ifndef VBOX_SVN_REV
# define VBOX_SVN_REV 0
#endif
/** @ SUPDRV_CHECK_SMAP_SETUP
* SMAP check setup. */
/** @def SUPDRV_CHECK_SMAP_CHECK
* Checks that the AC flag is set if SMAP is enabled. If AC is not set, it
* will be logged and @a a_BadExpr is executed. */
#if (defined(RT_OS_DARWIN) || defined(RT_OS_LINUX)) && !defined(VBOX_WITHOUT_EFLAGS_AC_SET_IN_VBOXDRV)
# define SUPDRV_CHECK_SMAP_SETUP() uint32_t const fKernelFeatures = SUPR0GetKernelFeatures()
# define SUPDRV_CHECK_SMAP_CHECK(a_pDevExt, a_BadExpr) \
do { \
if (fKernelFeatures & SUPKERNELFEATURES_SMAP) \
{ \
RTCCUINTREG fEfl = ASMGetFlags(); \
if (RT_LIKELY(fEfl & X86_EFL_AC)) \
{ /* likely */ } \
else \
{ \
supdrvBadContext(a_pDevExt, "SUPDrv.cpp", __LINE__, "EFLAGS.AC is 0!"); \
a_BadExpr; \
} \
} \
} while (0)
#else
# define SUPDRV_CHECK_SMAP_SETUP() uint32_t const fKernelFeatures = 0
# define SUPDRV_CHECK_SMAP_CHECK(a_pDevExt, a_BadExpr) NOREF(fKernelFeatures)
#endif
/*********************************************************************************************************************************
* Internal Functions *
*********************************************************************************************************************************/
static DECLCALLBACK(int) supdrvSessionObjHandleRetain(RTHANDLETABLE hHandleTable, void *pvObj, void *pvCtx, void *pvUser);
static DECLCALLBACK(void) supdrvSessionObjHandleDelete(RTHANDLETABLE hHandleTable, uint32_t h, void *pvObj, void *pvCtx, void *pvUser);
static int supdrvMemAdd(PSUPDRVMEMREF pMem, PSUPDRVSESSION pSession);
static int supdrvMemRelease(PSUPDRVSESSION pSession, RTHCUINTPTR uPtr, SUPDRVMEMREFTYPE eType);
static int supdrvIOCtl_LdrOpen(PSUPDRVDEVEXT pDevExt, PSUPDRVSESSION pSession, PSUPLDROPEN pReq);
static int supdrvIOCtl_LdrLoad(PSUPDRVDEVEXT pDevExt, PSUPDRVSESSION pSession, PSUPLDRLOAD pReq);
static int supdrvIOCtl_LdrFree(PSUPDRVDEVEXT pDevExt, PSUPDRVSESSION pSession, PSUPLDRFREE pReq);
static int supdrvIOCtl_LdrLockDown(PSUPDRVDEVEXT pDevExt);
static int supdrvIOCtl_LdrQuerySymbol(PSUPDRVDEVEXT pDevExt, PSUPDRVSESSION pSession, PSUPLDRGETSYMBOL pReq);
static int supdrvIDC_LdrGetSymbol(PSUPDRVDEVEXT pDevExt, PSUPDRVSESSION pSession, PSUPDRVIDCREQGETSYM pReq);
static int supdrvLdrAddUsage(PSUPDRVDEVEXT pDevExt, PSUPDRVSESSION pSession, PSUPDRVLDRIMAGE pImage, bool fRing3Usage);
DECLINLINE(void) supdrvLdrSubtractUsage(PSUPDRVDEVEXT pDevExt, PSUPDRVLDRIMAGE pImage, uint32_t cReference);
static void supdrvLdrFree(PSUPDRVDEVEXT pDevExt, PSUPDRVLDRIMAGE pImage);
DECLINLINE(int) supdrvLdrLock(PSUPDRVDEVEXT pDevExt);
DECLINLINE(int) supdrvLdrUnlock(PSUPDRVDEVEXT pDevExt);
static int supdrvIOCtl_CallServiceModule(PSUPDRVDEVEXT pDevExt, PSUPDRVSESSION pSession, PSUPCALLSERVICE pReq);
static int supdrvIOCtl_LoggerSettings(PSUPLOGGERSETTINGS pReq);
static int supdrvIOCtl_MsrProber(PSUPDRVDEVEXT pDevExt, PSUPMSRPROBER pReq);
static int supdrvIOCtl_ResumeSuspendedKbds(void);
/*********************************************************************************************************************************
* Global Variables *
*********************************************************************************************************************************/
/** @def SUPEXP_CHECK_ARGS
* This is for checking the argument count of the function in the entry,
* just to make sure we don't accidentally export something the wrapper
* can't deal with.
*
* Using some C++11 magic to do the counting.
*
* The error is reported by overflowing the SUPFUNC::cArgs field, so the
* warnings can probably be a little mysterious.
*
* @note Doesn't work for CLANG 11. Works for Visual C++, unless there
* are function pointers in the argument list.
*/
#if defined(SUPDRV_CAN_COUNT_FUNCTION_ARGS) && RT_CLANG_PREREQ(99, 0)
template <typename RetType, typename ... Types>
constexpr std::integral_constant<unsigned, sizeof ...(Types)>
CountFunctionArguments(RetType(RTCALL *)(Types ...))
{
return std::integral_constant<unsigned, sizeof ...(Types)>{};
}
# define SUPEXP_CHECK_ARGS(a_cArgs, a_Name) \
((a_cArgs) >= decltype(CountFunctionArguments(a_Name))::value ? (uint8_t)(a_cArgs) : 1023)
#else
# define SUPEXP_CHECK_ARGS(a_cArgs, a_Name) a_cArgs
#endif
/** @name Function table entry macros.
* @note The SUPEXP_STK_BACKF macro is because VC++ has trouble with functions
* with function pointer arguments (probably noexcept related).
* @{ */
#define SUPEXP_CUSTOM(a_cArgs, a_Name, a_Value) { #a_Name, a_cArgs, (void *)(uintptr_t)(a_Value) }
#define SUPEXP_STK_OKAY(a_cArgs, a_Name) { #a_Name, SUPEXP_CHECK_ARGS(a_cArgs, a_Name), (void *)(uintptr_t)a_Name }
#if 0
# define SUPEXP_STK_BACK(a_cArgs, a_Name) { "StkBack_" #a_Name, SUPEXP_CHECK_ARGS(a_cArgs, a_Name), (void *)(uintptr_t)a_Name }
# define SUPEXP_STK_BACKF(a_cArgs, a_Name) { "StkBack_" #a_Name, SUPEXP_CHECK_ARGS(a_cArgs, a_Name), (void *)(uintptr_t)a_Name }
#else
# define SUPEXP_STK_BACK(a_cArgs, a_Name) { #a_Name, SUPEXP_CHECK_ARGS(a_cArgs, a_Name), (void *)(uintptr_t)a_Name }
# ifdef _MSC_VER
# define SUPEXP_STK_BACKF(a_cArgs, a_Name) { #a_Name, a_cArgs, (void *)(uintptr_t)a_Name }
# else
# define SUPEXP_STK_BACKF(a_cArgs, a_Name) { #a_Name, SUPEXP_CHECK_ARGS(a_cArgs, a_Name), (void *)(uintptr_t)a_Name }
# endif
#endif
/** @} */
/**
* Array of the R0 SUP API.
*
* While making changes to these exports, make sure to update the IOC
* minor version (SUPDRV_IOC_VERSION).
*
* @remarks This array is processed by SUPR0-def-pe.sed and SUPR0-def-lx.sed to
* produce definition files from which import libraries are generated.
* Take care when commenting things and especially with \#ifdef'ing.
*/
static SUPFUNC g_aFunctions[] =
{
/* SED: START */
/* name function */
/* Entries with absolute addresses determined at runtime, fixup
code makes ugly ASSUMPTIONS about the order here: */
SUPEXP_CUSTOM( 0, SUPR0AbsIs64bit, 0),
SUPEXP_CUSTOM( 0, SUPR0Abs64bitKernelCS, 0),
SUPEXP_CUSTOM( 0, SUPR0Abs64bitKernelSS, 0),
SUPEXP_CUSTOM( 0, SUPR0Abs64bitKernelDS, 0),
SUPEXP_CUSTOM( 0, SUPR0AbsKernelCS, 0),
SUPEXP_CUSTOM( 0, SUPR0AbsKernelSS, 0),
SUPEXP_CUSTOM( 0, SUPR0AbsKernelDS, 0),
SUPEXP_CUSTOM( 0, SUPR0AbsKernelES, 0),
SUPEXP_CUSTOM( 0, SUPR0AbsKernelFS, 0),
SUPEXP_CUSTOM( 0, SUPR0AbsKernelGS, 0),
/* Normal function & data pointers: */
SUPEXP_CUSTOM( 0, g_pSUPGlobalInfoPage, &g_pSUPGlobalInfoPage), /* SED: DATA */
SUPEXP_STK_OKAY( 0, SUPGetGIP),
SUPEXP_STK_BACK( 1, SUPReadTscWithDelta),
SUPEXP_STK_BACK( 1, SUPGetTscDeltaSlow),
SUPEXP_STK_BACK( 1, SUPGetCpuHzFromGipForAsyncMode),
SUPEXP_STK_OKAY( 3, SUPIsTscFreqCompatible),
SUPEXP_STK_OKAY( 3, SUPIsTscFreqCompatibleEx),
SUPEXP_STK_BACK( 4, SUPR0BadContext),
SUPEXP_STK_BACK( 2, SUPR0ComponentDeregisterFactory),
SUPEXP_STK_BACK( 4, SUPR0ComponentQueryFactory),
SUPEXP_STK_BACK( 2, SUPR0ComponentRegisterFactory),
SUPEXP_STK_BACK( 5, SUPR0ContAlloc),
SUPEXP_STK_BACK( 2, SUPR0ContFree),
SUPEXP_STK_BACK( 2, SUPR0ChangeCR4),
SUPEXP_STK_BACK( 1, SUPR0EnableVTx),
SUPEXP_STK_OKAY( 1, SUPR0FpuBegin),
SUPEXP_STK_OKAY( 1, SUPR0FpuEnd),
SUPEXP_STK_BACK( 0, SUPR0SuspendVTxOnCpu),
SUPEXP_STK_BACK( 1, SUPR0ResumeVTxOnCpu),
SUPEXP_STK_OKAY( 1, SUPR0GetCurrentGdtRw),
SUPEXP_STK_OKAY( 0, SUPR0GetKernelFeatures),
SUPEXP_STK_BACK( 3, SUPR0GetHwvirtMsrs),
SUPEXP_STK_BACK( 0, SUPR0GetPagingMode),
SUPEXP_STK_BACK( 1, SUPR0GetSvmUsability),
SUPEXP_STK_BACK( 1, SUPR0GetVTSupport),
SUPEXP_STK_BACK( 1, SUPR0GetVmxUsability),
SUPEXP_STK_BACK( 2, SUPR0LdrIsLockOwnerByMod),
SUPEXP_STK_BACK( 1, SUPR0LdrLock),
SUPEXP_STK_BACK( 1, SUPR0LdrUnlock),
SUPEXP_STK_BACK( 3, SUPR0LdrModByName),
SUPEXP_STK_BACK( 2, SUPR0LdrModRelease),
SUPEXP_STK_BACK( 2, SUPR0LdrModRetain),
SUPEXP_STK_BACK( 4, SUPR0LockMem),
SUPEXP_STK_BACK( 5, SUPR0LowAlloc),
SUPEXP_STK_BACK( 2, SUPR0LowFree),
SUPEXP_STK_BACK( 4, SUPR0MemAlloc),
SUPEXP_STK_BACK( 2, SUPR0MemFree),
SUPEXP_STK_BACK( 3, SUPR0MemGetPhys),
SUPEXP_STK_BACK( 2, SUPR0ObjAddRef),
SUPEXP_STK_BACK( 3, SUPR0ObjAddRefEx),
SUPEXP_STK_BACKF( 5, SUPR0ObjRegister),
SUPEXP_STK_BACK( 2, SUPR0ObjRelease),
SUPEXP_STK_BACK( 3, SUPR0ObjVerifyAccess),
SUPEXP_STK_BACK( 6, SUPR0PageAllocEx),
SUPEXP_STK_BACK( 2, SUPR0PageFree),
SUPEXP_STK_BACK( 6, SUPR0PageMapKernel),
SUPEXP_STK_BACK( 6, SUPR0PageProtect),
#if defined(RT_OS_LINUX) || defined(RT_OS_SOLARIS) || defined(RT_OS_FREEBSD)
SUPEXP_STK_OKAY( 2, SUPR0HCPhysToVirt), /* only-linux, only-solaris, only-freebsd */
#endif
SUPEXP_STK_BACK( 2, SUPR0PrintfV),
SUPEXP_STK_BACK( 1, SUPR0GetSessionGVM),
SUPEXP_STK_BACK( 1, SUPR0GetSessionVM),
SUPEXP_STK_BACK( 3, SUPR0SetSessionVM),
SUPEXP_STK_BACK( 1, SUPR0GetSessionUid),
SUPEXP_STK_BACK( 6, SUPR0TscDeltaMeasureBySetIndex),
SUPEXP_STK_BACK( 1, SUPR0TracerDeregisterDrv),
SUPEXP_STK_BACK( 2, SUPR0TracerDeregisterImpl),
SUPEXP_STK_BACK( 6, SUPR0TracerFireProbe),
SUPEXP_STK_BACK( 3, SUPR0TracerRegisterDrv),
SUPEXP_STK_BACK( 4, SUPR0TracerRegisterImpl),
SUPEXP_STK_BACK( 2, SUPR0TracerRegisterModule),
SUPEXP_STK_BACK( 2, SUPR0TracerUmodProbeFire),
SUPEXP_STK_BACK( 2, SUPR0UnlockMem),
#ifdef RT_OS_WINDOWS
SUPEXP_STK_BACK( 4, SUPR0IoCtlSetupForHandle), /* only-windows */
SUPEXP_STK_BACK( 9, SUPR0IoCtlPerform), /* only-windows */
SUPEXP_STK_BACK( 1, SUPR0IoCtlCleanup), /* only-windows */
#endif
SUPEXP_STK_BACK( 2, SUPSemEventClose),
SUPEXP_STK_BACK( 2, SUPSemEventCreate),
SUPEXP_STK_BACK( 1, SUPSemEventGetResolution),
SUPEXP_STK_BACK( 2, SUPSemEventMultiClose),
SUPEXP_STK_BACK( 2, SUPSemEventMultiCreate),
SUPEXP_STK_BACK( 1, SUPSemEventMultiGetResolution),
SUPEXP_STK_BACK( 2, SUPSemEventMultiReset),
SUPEXP_STK_BACK( 2, SUPSemEventMultiSignal),
SUPEXP_STK_BACK( 3, SUPSemEventMultiWait),
SUPEXP_STK_BACK( 3, SUPSemEventMultiWaitNoResume),
SUPEXP_STK_BACK( 3, SUPSemEventMultiWaitNsAbsIntr),
SUPEXP_STK_BACK( 3, SUPSemEventMultiWaitNsRelIntr),
SUPEXP_STK_BACK( 2, SUPSemEventSignal),
SUPEXP_STK_BACK( 3, SUPSemEventWait),
SUPEXP_STK_BACK( 3, SUPSemEventWaitNoResume),
SUPEXP_STK_BACK( 3, SUPSemEventWaitNsAbsIntr),
SUPEXP_STK_BACK( 3, SUPSemEventWaitNsRelIntr),
SUPEXP_STK_BACK( 0, RTAssertAreQuiet),
SUPEXP_STK_BACK( 0, RTAssertMayPanic),
SUPEXP_STK_BACK( 4, RTAssertMsg1),
SUPEXP_STK_BACK( 2, RTAssertMsg2AddV),
SUPEXP_STK_BACK( 2, RTAssertMsg2V),
SUPEXP_STK_BACK( 1, RTAssertSetMayPanic),
SUPEXP_STK_BACK( 1, RTAssertSetQuiet),
SUPEXP_STK_OKAY( 2, RTCrc32),
SUPEXP_STK_OKAY( 1, RTCrc32Finish),
SUPEXP_STK_OKAY( 3, RTCrc32Process),
SUPEXP_STK_OKAY( 0, RTCrc32Start),
SUPEXP_STK_OKAY( 1, RTErrConvertFromErrno),
SUPEXP_STK_OKAY( 1, RTErrConvertToErrno),
SUPEXP_STK_BACK( 4, RTHandleTableAllocWithCtx),
SUPEXP_STK_BACK( 1, RTHandleTableCreate),
SUPEXP_STK_BACKF( 6, RTHandleTableCreateEx),
SUPEXP_STK_BACKF( 3, RTHandleTableDestroy),
SUPEXP_STK_BACK( 3, RTHandleTableFreeWithCtx),
SUPEXP_STK_BACK( 3, RTHandleTableLookupWithCtx),
SUPEXP_STK_BACK( 4, RTLogBulkNestedWrite),
SUPEXP_STK_BACK( 5, RTLogBulkUpdate),
SUPEXP_STK_BACK( 2, RTLogCheckGroupFlags),
SUPEXP_STK_BACKF( 17, RTLogCreateExV),
SUPEXP_STK_BACK( 1, RTLogDestroy),
SUPEXP_STK_BACK( 0, RTLogDefaultInstance),
SUPEXP_STK_BACK( 1, RTLogDefaultInstanceEx),
SUPEXP_STK_BACK( 1, SUPR0DefaultLogInstanceEx),
SUPEXP_STK_BACK( 0, RTLogGetDefaultInstance),
SUPEXP_STK_BACK( 1, RTLogGetDefaultInstanceEx),
SUPEXP_STK_BACK( 1, SUPR0GetDefaultLogInstanceEx),
SUPEXP_STK_BACK( 5, RTLogLoggerExV),
SUPEXP_STK_BACK( 2, RTLogPrintfV),
SUPEXP_STK_BACK( 0, RTLogRelGetDefaultInstance),
SUPEXP_STK_BACK( 1, RTLogRelGetDefaultInstanceEx),
SUPEXP_STK_BACK( 1, SUPR0GetDefaultLogRelInstanceEx),
SUPEXP_STK_BACK( 2, RTLogSetDefaultInstanceThread),
SUPEXP_STK_BACKF( 2, RTLogSetFlushCallback),
SUPEXP_STK_BACK( 2, RTLogSetR0ProgramStart),
SUPEXP_STK_BACK( 3, RTLogSetR0ThreadNameV),
SUPEXP_STK_BACK( 5, RTMemAllocExTag),
SUPEXP_STK_BACK( 2, RTMemAllocTag),
SUPEXP_STK_BACK( 2, RTMemAllocVarTag),
SUPEXP_STK_BACK( 2, RTMemAllocZTag),
SUPEXP_STK_BACK( 2, RTMemAllocZVarTag),
SUPEXP_STK_BACK( 4, RTMemDupExTag),
SUPEXP_STK_BACK( 3, RTMemDupTag),
SUPEXP_STK_BACK( 1, RTMemFree),
SUPEXP_STK_BACK( 2, RTMemFreeEx),
SUPEXP_STK_BACK( 3, RTMemReallocTag),
SUPEXP_STK_BACK( 0, RTMpCpuId),
SUPEXP_STK_BACK( 1, RTMpCpuIdFromSetIndex),
SUPEXP_STK_BACK( 1, RTMpCpuIdToSetIndex),
SUPEXP_STK_BACK( 0, RTMpCurSetIndex),
SUPEXP_STK_BACK( 1, RTMpCurSetIndexAndId),
SUPEXP_STK_BACK( 0, RTMpGetArraySize),
SUPEXP_STK_BACK( 0, RTMpGetCount),
SUPEXP_STK_BACK( 0, RTMpGetMaxCpuId),
SUPEXP_STK_BACK( 0, RTMpGetOnlineCount),
SUPEXP_STK_BACK( 1, RTMpGetOnlineSet),
SUPEXP_STK_BACK( 1, RTMpGetSet),
SUPEXP_STK_BACK( 1, RTMpIsCpuOnline),
SUPEXP_STK_BACK( 1, RTMpIsCpuPossible),
SUPEXP_STK_BACK( 0, RTMpIsCpuWorkPending),
SUPEXP_STK_BACKF( 2, RTMpNotificationDeregister),
SUPEXP_STK_BACKF( 2, RTMpNotificationRegister),
SUPEXP_STK_BACKF( 3, RTMpOnAll),
SUPEXP_STK_BACKF( 3, RTMpOnOthers),
SUPEXP_STK_BACKF( 4, RTMpOnSpecific),
SUPEXP_STK_BACK( 1, RTMpPokeCpu),
SUPEXP_STK_OKAY( 4, RTNetIPv4AddDataChecksum),
SUPEXP_STK_OKAY( 2, RTNetIPv4AddTCPChecksum),
SUPEXP_STK_OKAY( 2, RTNetIPv4AddUDPChecksum),
SUPEXP_STK_OKAY( 1, RTNetIPv4FinalizeChecksum),
SUPEXP_STK_OKAY( 1, RTNetIPv4HdrChecksum),
SUPEXP_STK_OKAY( 4, RTNetIPv4IsDHCPValid),
SUPEXP_STK_OKAY( 4, RTNetIPv4IsHdrValid),
SUPEXP_STK_OKAY( 4, RTNetIPv4IsTCPSizeValid),
SUPEXP_STK_OKAY( 6, RTNetIPv4IsTCPValid),
SUPEXP_STK_OKAY( 3, RTNetIPv4IsUDPSizeValid),
SUPEXP_STK_OKAY( 5, RTNetIPv4IsUDPValid),
SUPEXP_STK_OKAY( 1, RTNetIPv4PseudoChecksum),
SUPEXP_STK_OKAY( 4, RTNetIPv4PseudoChecksumBits),
SUPEXP_STK_OKAY( 3, RTNetIPv4TCPChecksum),
SUPEXP_STK_OKAY( 3, RTNetIPv4UDPChecksum),
SUPEXP_STK_OKAY( 1, RTNetIPv6PseudoChecksum),
SUPEXP_STK_OKAY( 4, RTNetIPv6PseudoChecksumBits),
SUPEXP_STK_OKAY( 3, RTNetIPv6PseudoChecksumEx),
SUPEXP_STK_OKAY( 4, RTNetTCPChecksum),
SUPEXP_STK_OKAY( 2, RTNetUDPChecksum),
SUPEXP_STK_BACKF( 2, RTPowerNotificationDeregister),
SUPEXP_STK_BACKF( 2, RTPowerNotificationRegister),
SUPEXP_STK_BACK( 0, RTProcSelf),
SUPEXP_STK_BACK( 0, RTR0AssertPanicSystem),
#if defined(RT_OS_DARWIN) || defined(RT_OS_SOLARIS) || defined(RT_OS_WINDOWS)
SUPEXP_STK_BACK( 2, RTR0DbgKrnlInfoOpen), /* only-darwin, only-solaris, only-windows */
SUPEXP_STK_BACK( 5, RTR0DbgKrnlInfoQueryMember), /* only-darwin, only-solaris, only-windows */
# if defined(RT_OS_SOLARIS)
SUPEXP_STK_BACK( 4, RTR0DbgKrnlInfoQuerySize), /* only-solaris */
# endif
SUPEXP_STK_BACK( 4, RTR0DbgKrnlInfoQuerySymbol), /* only-darwin, only-solaris, only-windows */
SUPEXP_STK_BACK( 1, RTR0DbgKrnlInfoRelease), /* only-darwin, only-solaris, only-windows */
SUPEXP_STK_BACK( 1, RTR0DbgKrnlInfoRetain), /* only-darwin, only-solaris, only-windows */
#endif
SUPEXP_STK_BACK( 0, RTR0MemAreKrnlAndUsrDifferent),
SUPEXP_STK_BACK( 1, RTR0MemKernelIsValidAddr),
SUPEXP_STK_BACK( 3, RTR0MemKernelCopyFrom),
SUPEXP_STK_BACK( 3, RTR0MemKernelCopyTo),
SUPEXP_STK_OKAY( 1, RTR0MemObjAddress),
SUPEXP_STK_OKAY( 1, RTR0MemObjAddressR3),
SUPEXP_STK_BACK( 4, RTR0MemObjAllocContTag),
SUPEXP_STK_BACK( 5, RTR0MemObjAllocLargeTag),
SUPEXP_STK_BACK( 4, RTR0MemObjAllocLowTag),
SUPEXP_STK_BACK( 4, RTR0MemObjAllocPageTag),
SUPEXP_STK_BACK( 5, RTR0MemObjAllocPhysExTag),
SUPEXP_STK_BACK( 4, RTR0MemObjAllocPhysNCTag),
SUPEXP_STK_BACK( 4, RTR0MemObjAllocPhysTag),
SUPEXP_STK_BACK( 5, RTR0MemObjEnterPhysTag),
SUPEXP_STK_BACK( 2, RTR0MemObjFree),
SUPEXP_STK_BACK( 2, RTR0MemObjGetPagePhysAddr),
SUPEXP_STK_OKAY( 1, RTR0MemObjIsMapping),
SUPEXP_STK_BACK( 6, RTR0MemObjLockUserTag),
SUPEXP_STK_BACK( 5, RTR0MemObjLockKernelTag),
SUPEXP_STK_BACK( 8, RTR0MemObjMapKernelExTag),
SUPEXP_STK_BACK( 6, RTR0MemObjMapKernelTag),
SUPEXP_STK_BACK( 9, RTR0MemObjMapUserExTag),
SUPEXP_STK_BACK( 7, RTR0MemObjMapUserTag),
SUPEXP_STK_BACK( 4, RTR0MemObjProtect),
SUPEXP_STK_OKAY( 1, RTR0MemObjSize),
SUPEXP_STK_OKAY( 1, RTR0MemObjWasZeroInitialized),
SUPEXP_STK_BACK( 3, RTR0MemUserCopyFrom),
SUPEXP_STK_BACK( 3, RTR0MemUserCopyTo),
SUPEXP_STK_BACK( 1, RTR0MemUserIsValidAddr),
SUPEXP_STK_BACK( 0, RTR0ProcHandleSelf),
SUPEXP_STK_BACK( 1, RTSemEventCreate),
SUPEXP_STK_BACK( 1, RTSemEventDestroy),
SUPEXP_STK_BACK( 0, RTSemEventGetResolution),
SUPEXP_STK_BACK( 0, RTSemEventIsSignalSafe),
SUPEXP_STK_BACK( 1, RTSemEventMultiCreate),
SUPEXP_STK_BACK( 1, RTSemEventMultiDestroy),
SUPEXP_STK_BACK( 0, RTSemEventMultiGetResolution),
SUPEXP_STK_BACK( 0, RTSemEventMultiIsSignalSafe),
SUPEXP_STK_BACK( 1, RTSemEventMultiReset),
SUPEXP_STK_BACK( 1, RTSemEventMultiSignal),
SUPEXP_STK_BACK( 2, RTSemEventMultiWait),
SUPEXP_STK_BACK( 3, RTSemEventMultiWaitEx),
SUPEXP_STK_BACK( 7, RTSemEventMultiWaitExDebug),
SUPEXP_STK_BACK( 2, RTSemEventMultiWaitNoResume),
SUPEXP_STK_BACK( 1, RTSemEventSignal),
SUPEXP_STK_BACK( 2, RTSemEventWait),
SUPEXP_STK_BACK( 3, RTSemEventWaitEx),
SUPEXP_STK_BACK( 7, RTSemEventWaitExDebug),
SUPEXP_STK_BACK( 2, RTSemEventWaitNoResume),
SUPEXP_STK_BACK( 1, RTSemFastMutexCreate),
SUPEXP_STK_BACK( 1, RTSemFastMutexDestroy),
SUPEXP_STK_BACK( 1, RTSemFastMutexRelease),
SUPEXP_STK_BACK( 1, RTSemFastMutexRequest),
SUPEXP_STK_BACK( 1, RTSemMutexCreate),
SUPEXP_STK_BACK( 1, RTSemMutexDestroy),
SUPEXP_STK_BACK( 1, RTSemMutexRelease),
SUPEXP_STK_BACK( 2, RTSemMutexRequest),
SUPEXP_STK_BACK( 6, RTSemMutexRequestDebug),
SUPEXP_STK_BACK( 2, RTSemMutexRequestNoResume),
SUPEXP_STK_BACK( 6, RTSemMutexRequestNoResumeDebug),
SUPEXP_STK_BACK( 1, RTSpinlockAcquire),
SUPEXP_STK_BACK( 3, RTSpinlockCreate),
SUPEXP_STK_BACK( 1, RTSpinlockDestroy),
SUPEXP_STK_BACK( 1, RTSpinlockRelease),
SUPEXP_STK_OKAY( 3, RTStrCopy),
SUPEXP_STK_BACK( 2, RTStrDupTag),
SUPEXP_STK_BACK( 6, RTStrFormatNumber),
SUPEXP_STK_BACK( 1, RTStrFormatTypeDeregister),
SUPEXP_STK_BACKF( 3, RTStrFormatTypeRegister),
SUPEXP_STK_BACKF( 2, RTStrFormatTypeSetUser),
SUPEXP_STK_BACKF( 6, RTStrFormatV),
SUPEXP_STK_BACK( 1, RTStrFree),
SUPEXP_STK_OKAY( 3, RTStrNCmp),
SUPEXP_STK_BACKF( 6, RTStrPrintfExV),
SUPEXP_STK_BACK( 4, RTStrPrintfV),
SUPEXP_STK_BACKF( 6, RTStrPrintf2ExV),
SUPEXP_STK_BACK( 4, RTStrPrintf2V),
SUPEXP_STK_BACKF( 7, RTThreadCreate),
SUPEXP_STK_BACK( 1, RTThreadCtxHookIsEnabled),
SUPEXP_STK_BACKF( 4, RTThreadCtxHookCreate),
SUPEXP_STK_BACK( 1, RTThreadCtxHookDestroy),
SUPEXP_STK_BACK( 1, RTThreadCtxHookDisable),
SUPEXP_STK_BACK( 1, RTThreadCtxHookEnable),
SUPEXP_STK_BACK( 1, RTThreadGetName),
SUPEXP_STK_BACK( 1, RTThreadGetNative),
SUPEXP_STK_BACK( 1, RTThreadGetType),
SUPEXP_STK_BACK( 1, RTThreadIsInInterrupt),
SUPEXP_STK_BACK( 0, RTThreadNativeSelf),
SUPEXP_STK_BACK( 1, RTThreadPreemptDisable),
SUPEXP_STK_BACK( 1, RTThreadPreemptIsEnabled),
SUPEXP_STK_BACK( 1, RTThreadPreemptIsPending),
SUPEXP_STK_BACK( 0, RTThreadPreemptIsPendingTrusty),
SUPEXP_STK_BACK( 0, RTThreadPreemptIsPossible),
SUPEXP_STK_BACK( 1, RTThreadPreemptRestore),
SUPEXP_STK_BACK( 1, RTThreadQueryTerminationStatus),
SUPEXP_STK_BACK( 0, RTThreadSelf),
SUPEXP_STK_BACK( 0, RTThreadSelfName),
SUPEXP_STK_BACK( 1, RTThreadSleep),
SUPEXP_STK_BACK( 1, RTThreadUserReset),
SUPEXP_STK_BACK( 1, RTThreadUserSignal),
SUPEXP_STK_BACK( 2, RTThreadUserWait),
SUPEXP_STK_BACK( 2, RTThreadUserWaitNoResume),
SUPEXP_STK_BACK( 3, RTThreadWait),
SUPEXP_STK_BACK( 3, RTThreadWaitNoResume),
SUPEXP_STK_BACK( 0, RTThreadYield),
SUPEXP_STK_BACK( 1, RTTimeNow),
SUPEXP_STK_BACK( 0, RTTimerCanDoHighResolution),
SUPEXP_STK_BACK( 2, RTTimerChangeInterval),
SUPEXP_STK_BACKF( 4, RTTimerCreate),
SUPEXP_STK_BACKF( 5, RTTimerCreateEx),
SUPEXP_STK_BACK( 1, RTTimerDestroy),
SUPEXP_STK_BACK( 0, RTTimerGetSystemGranularity),
SUPEXP_STK_BACK( 1, RTTimerReleaseSystemGranularity),
SUPEXP_STK_BACK( 2, RTTimerRequestSystemGranularity),
SUPEXP_STK_BACK( 2, RTTimerStart),
SUPEXP_STK_BACK( 1, RTTimerStop),
SUPEXP_STK_BACK( 0, RTTimeSystemMilliTS),
SUPEXP_STK_BACK( 0, RTTimeSystemNanoTS),
SUPEXP_STK_OKAY( 2, RTUuidCompare),
SUPEXP_STK_OKAY( 2, RTUuidCompareStr),
SUPEXP_STK_OKAY( 2, RTUuidFromStr),
/* SED: END */
};
#if defined(RT_OS_DARWIN) || defined(RT_OS_SOLARIS) || defined(RT_OS_FREEBSD)
/**
* Drag in the rest of IRPT since we share it with the
* rest of the kernel modules on darwin.
*/
struct CLANG11WERIDNESS { PFNRT pfn; } g_apfnVBoxDrvIPRTDeps[] =
{
/* VBoxNetAdp */
{ (PFNRT)RTRandBytes },
/* VBoxUSB */
{ (PFNRT)RTPathStripFilename },
#if !defined(RT_OS_FREEBSD)
{ (PFNRT)RTHandleTableAlloc },
{ (PFNRT)RTStrPurgeEncoding },
#endif
{ NULL }
};
#endif /* RT_OS_DARWIN || RT_OS_SOLARIS || RT_OS_FREEBSD */
/**
* Initializes the device extentsion structure.
*
* @returns IPRT status code.
* @param pDevExt The device extension to initialize.
* @param cbSession The size of the session structure. The size of
* SUPDRVSESSION may be smaller when SUPDRV_AGNOSTIC is
* defined because we're skipping the OS specific members
* then.
*/
int VBOXCALL supdrvInitDevExt(PSUPDRVDEVEXT pDevExt, size_t cbSession)
{
int rc;
#ifdef SUPDRV_WITH_RELEASE_LOGGER
/*
* Create the release log.
*/
static const char * const s_apszGroups[] = VBOX_LOGGROUP_NAMES;
PRTLOGGER pRelLogger;
rc = RTLogCreate(&pRelLogger, 0 /* fFlags */, "all",
"VBOX_RELEASE_LOG", RT_ELEMENTS(s_apszGroups), s_apszGroups, RTLOGDEST_STDOUT | RTLOGDEST_DEBUGGER, NULL);
if (RT_SUCCESS(rc))
RTLogRelSetDefaultInstance(pRelLogger);
/** @todo Add native hook for getting logger config parameters and setting
* them. On linux we should use the module parameter stuff... */
#endif
#if (defined(RT_ARCH_AMD64) || defined(RT_ARCH_X86)) && !defined(VBOX_WITH_OLD_CPU_SUPPORT)
/*
* Require SSE2 to be present.
*/
if (!(ASMCpuId_EDX(1) & X86_CPUID_FEATURE_EDX_SSE2))
{
SUPR0Printf("vboxdrv: Requires SSE2 (cpuid(0).EDX=%#x)\n", ASMCpuId_EDX(1));
return VERR_UNSUPPORTED_CPU;
}
#endif
/*
* Initialize it.
*/
memset(pDevExt, 0, sizeof(*pDevExt)); /* Does not wipe OS specific tail section of the structure. */
pDevExt->Spinlock = NIL_RTSPINLOCK;
pDevExt->hGipSpinlock = NIL_RTSPINLOCK;
pDevExt->hSessionHashTabSpinlock = NIL_RTSPINLOCK;
#ifdef SUPDRV_USE_MUTEX_FOR_LDR
pDevExt->mtxLdr = NIL_RTSEMMUTEX;
#else
pDevExt->mtxLdr = NIL_RTSEMFASTMUTEX;
#endif
#ifdef SUPDRV_USE_MUTEX_FOR_GIP
pDevExt->mtxGip = NIL_RTSEMMUTEX;
pDevExt->mtxTscDelta = NIL_RTSEMMUTEX;
#else
pDevExt->mtxGip = NIL_RTSEMFASTMUTEX;
pDevExt->mtxTscDelta = NIL_RTSEMFASTMUTEX;
#endif
rc = RTSpinlockCreate(&pDevExt->Spinlock, RTSPINLOCK_FLAGS_INTERRUPT_SAFE, "SUPDrvDevExt");
if (RT_SUCCESS(rc))
rc = RTSpinlockCreate(&pDevExt->hGipSpinlock, RTSPINLOCK_FLAGS_INTERRUPT_SAFE, "SUPDrvGip");
if (RT_SUCCESS(rc))
rc = RTSpinlockCreate(&pDevExt->hSessionHashTabSpinlock, RTSPINLOCK_FLAGS_INTERRUPT_SAFE, "SUPDrvSession");
if (RT_SUCCESS(rc))
#ifdef SUPDRV_USE_MUTEX_FOR_LDR
rc = RTSemMutexCreate(&pDevExt->mtxLdr);
#else
rc = RTSemFastMutexCreate(&pDevExt->mtxLdr);
#endif
if (RT_SUCCESS(rc))
#ifdef SUPDRV_USE_MUTEX_FOR_GIP
rc = RTSemMutexCreate(&pDevExt->mtxTscDelta);
#else
rc = RTSemFastMutexCreate(&pDevExt->mtxTscDelta);
#endif
if (RT_SUCCESS(rc))
{
rc = RTSemFastMutexCreate(&pDevExt->mtxComponentFactory);
if (RT_SUCCESS(rc))
{
#ifdef SUPDRV_USE_MUTEX_FOR_GIP
rc = RTSemMutexCreate(&pDevExt->mtxGip);
#else
rc = RTSemFastMutexCreate(&pDevExt->mtxGip);
#endif
if (RT_SUCCESS(rc))
{
rc = supdrvGipCreate(pDevExt);
if (RT_SUCCESS(rc))
{
rc = supdrvTracerInit(pDevExt);
if (RT_SUCCESS(rc))
{
pDevExt->pLdrInitImage = NULL;
pDevExt->hLdrInitThread = NIL_RTNATIVETHREAD;
pDevExt->hLdrTermThread = NIL_RTNATIVETHREAD;
pDevExt->u32Cookie = BIRD; /** @todo make this random? */
pDevExt->cbSession = (uint32_t)cbSession;
/*
* Fixup the absolute symbols.
*
* Because of the table indexing assumptions we'll have a little #ifdef orgy
* here rather than distributing this to OS specific files. At least for now.
*/
#ifdef RT_OS_DARWIN
# if ARCH_BITS == 32
if (SUPR0GetPagingMode() >= SUPPAGINGMODE_AMD64)
{
g_aFunctions[0].pfn = (void *)1; /* SUPR0AbsIs64bit */
g_aFunctions[1].pfn = (void *)0x80; /* SUPR0Abs64bitKernelCS - KERNEL64_CS, seg.h */
g_aFunctions[2].pfn = (void *)0x88; /* SUPR0Abs64bitKernelSS - KERNEL64_SS, seg.h */
g_aFunctions[3].pfn = (void *)0x88; /* SUPR0Abs64bitKernelDS - KERNEL64_SS, seg.h */
}
else
g_aFunctions[0].pfn = g_aFunctions[1].pfn = g_aFunctions[2].pfn = g_aFunctions[3].pfn = (void *)0;
g_aFunctions[4].pfn = (void *)0x08; /* SUPR0AbsKernelCS - KERNEL_CS, seg.h */
g_aFunctions[5].pfn = (void *)0x10; /* SUPR0AbsKernelSS - KERNEL_DS, seg.h */
g_aFunctions[6].pfn = (void *)0x10; /* SUPR0AbsKernelDS - KERNEL_DS, seg.h */
g_aFunctions[7].pfn = (void *)0x10; /* SUPR0AbsKernelES - KERNEL_DS, seg.h */
g_aFunctions[8].pfn = (void *)0x10; /* SUPR0AbsKernelFS - KERNEL_DS, seg.h */
g_aFunctions[9].pfn = (void *)0x48; /* SUPR0AbsKernelGS - CPU_DATA_GS, seg.h */
# else /* 64-bit darwin: */
g_aFunctions[0].pfn = (void *)1; /* SUPR0AbsIs64bit */
g_aFunctions[1].pfn = (void *)(uintptr_t)ASMGetCS(); /* SUPR0Abs64bitKernelCS */
g_aFunctions[2].pfn = (void *)(uintptr_t)ASMGetSS(); /* SUPR0Abs64bitKernelSS */
g_aFunctions[3].pfn = (void *)0; /* SUPR0Abs64bitKernelDS */
g_aFunctions[4].pfn = (void *)(uintptr_t)ASMGetCS(); /* SUPR0AbsKernelCS */
g_aFunctions[5].pfn = (void *)(uintptr_t)ASMGetSS(); /* SUPR0AbsKernelSS */
g_aFunctions[6].pfn = (void *)0; /* SUPR0AbsKernelDS */
g_aFunctions[7].pfn = (void *)0; /* SUPR0AbsKernelES */
g_aFunctions[8].pfn = (void *)0; /* SUPR0AbsKernelFS */
g_aFunctions[9].pfn = (void *)0; /* SUPR0AbsKernelGS */
# endif
#else /* !RT_OS_DARWIN */
# if ARCH_BITS == 64
g_aFunctions[0].pfn = (void *)1; /* SUPR0AbsIs64bit */
g_aFunctions[1].pfn = (void *)(uintptr_t)ASMGetCS(); /* SUPR0Abs64bitKernelCS */
g_aFunctions[2].pfn = (void *)(uintptr_t)ASMGetSS(); /* SUPR0Abs64bitKernelSS */
g_aFunctions[3].pfn = (void *)(uintptr_t)ASMGetDS(); /* SUPR0Abs64bitKernelDS */
# else
g_aFunctions[0].pfn = g_aFunctions[1].pfn = g_aFunctions[2].pfn = g_aFunctions[3].pfn = (void *)0;
# endif
g_aFunctions[4].pfn = (void *)(uintptr_t)ASMGetCS(); /* SUPR0AbsKernelCS */
g_aFunctions[5].pfn = (void *)(uintptr_t)ASMGetSS(); /* SUPR0AbsKernelSS */
g_aFunctions[6].pfn = (void *)(uintptr_t)ASMGetDS(); /* SUPR0AbsKernelDS */
g_aFunctions[7].pfn = (void *)(uintptr_t)ASMGetES(); /* SUPR0AbsKernelES */
g_aFunctions[8].pfn = (void *)(uintptr_t)ASMGetFS(); /* SUPR0AbsKernelFS */
g_aFunctions[9].pfn = (void *)(uintptr_t)ASMGetGS(); /* SUPR0AbsKernelGS */
#endif /* !RT_OS_DARWIN */
return VINF_SUCCESS;
}
supdrvGipDestroy(pDevExt);
}
#ifdef SUPDRV_USE_MUTEX_FOR_GIP
RTSemMutexDestroy(pDevExt->mtxGip);
pDevExt->mtxGip = NIL_RTSEMMUTEX;
#else
RTSemFastMutexDestroy(pDevExt->mtxGip);
pDevExt->mtxGip = NIL_RTSEMFASTMUTEX;
#endif
}
RTSemFastMutexDestroy(pDevExt->mtxComponentFactory);
pDevExt->mtxComponentFactory = NIL_RTSEMFASTMUTEX;
}
}
#ifdef SUPDRV_USE_MUTEX_FOR_GIP
RTSemMutexDestroy(pDevExt->mtxTscDelta);
pDevExt->mtxTscDelta = NIL_RTSEMMUTEX;
#else
RTSemFastMutexDestroy(pDevExt->mtxTscDelta);
pDevExt->mtxTscDelta = NIL_RTSEMFASTMUTEX;
#endif
#ifdef SUPDRV_USE_MUTEX_FOR_LDR
RTSemMutexDestroy(pDevExt->mtxLdr);
pDevExt->mtxLdr = NIL_RTSEMMUTEX;
#else
RTSemFastMutexDestroy(pDevExt->mtxLdr);
pDevExt->mtxLdr = NIL_RTSEMFASTMUTEX;
#endif
RTSpinlockDestroy(pDevExt->Spinlock);
pDevExt->Spinlock = NIL_RTSPINLOCK;
RTSpinlockDestroy(pDevExt->hGipSpinlock);
pDevExt->hGipSpinlock = NIL_RTSPINLOCK;
RTSpinlockDestroy(pDevExt->hSessionHashTabSpinlock);
pDevExt->hSessionHashTabSpinlock = NIL_RTSPINLOCK;
#ifdef SUPDRV_WITH_RELEASE_LOGGER
RTLogDestroy(RTLogRelSetDefaultInstance(NULL));
RTLogDestroy(RTLogSetDefaultInstance(NULL));
#endif
return rc;
}
/**
* Delete the device extension (e.g. cleanup members).
*
* @param pDevExt The device extension to delete.
*/
void VBOXCALL supdrvDeleteDevExt(PSUPDRVDEVEXT pDevExt)
{
PSUPDRVOBJ pObj;
PSUPDRVUSAGE pUsage;
/*
* Kill mutexes and spinlocks.
*/
#ifdef SUPDRV_USE_MUTEX_FOR_GIP
RTSemMutexDestroy(pDevExt->mtxGip);
pDevExt->mtxGip = NIL_RTSEMMUTEX;
RTSemMutexDestroy(pDevExt->mtxTscDelta);
pDevExt->mtxTscDelta = NIL_RTSEMMUTEX;
#else
RTSemFastMutexDestroy(pDevExt->mtxGip);
pDevExt->mtxGip = NIL_RTSEMFASTMUTEX;
RTSemFastMutexDestroy(pDevExt->mtxTscDelta);
pDevExt->mtxTscDelta = NIL_RTSEMFASTMUTEX;
#endif
#ifdef SUPDRV_USE_MUTEX_FOR_LDR
RTSemMutexDestroy(pDevExt->mtxLdr);
pDevExt->mtxLdr = NIL_RTSEMMUTEX;
#else
RTSemFastMutexDestroy(pDevExt->mtxLdr);
pDevExt->mtxLdr = NIL_RTSEMFASTMUTEX;
#endif
RTSpinlockDestroy(pDevExt->Spinlock);
pDevExt->Spinlock = NIL_RTSPINLOCK;
RTSemFastMutexDestroy(pDevExt->mtxComponentFactory);
pDevExt->mtxComponentFactory = NIL_RTSEMFASTMUTEX;
RTSpinlockDestroy(pDevExt->hSessionHashTabSpinlock);
pDevExt->hSessionHashTabSpinlock = NIL_RTSPINLOCK;
/*
* Free lists.
*/
/* objects. */
pObj = pDevExt->pObjs;
Assert(!pObj); /* (can trigger on forced unloads) */
pDevExt->pObjs = NULL;
while (pObj)
{
void *pvFree = pObj;
pObj = pObj->pNext;
RTMemFree(pvFree);
}
/* usage records. */
pUsage = pDevExt->pUsageFree;
pDevExt->pUsageFree = NULL;
while (pUsage)
{
void *pvFree = pUsage;
pUsage = pUsage->pNext;
RTMemFree(pvFree);
}
/* kill the GIP. */
supdrvGipDestroy(pDevExt);
RTSpinlockDestroy(pDevExt->hGipSpinlock);
pDevExt->hGipSpinlock = NIL_RTSPINLOCK;
supdrvTracerTerm(pDevExt);
#ifdef SUPDRV_WITH_RELEASE_LOGGER
/* destroy the loggers. */
RTLogDestroy(RTLogRelSetDefaultInstance(NULL));
RTLogDestroy(RTLogSetDefaultInstance(NULL));
#endif
}
/**
* Create session.
*
* @returns IPRT status code.
* @param pDevExt Device extension.
* @param fUser Flag indicating whether this is a user or kernel
* session.
* @param fUnrestricted Unrestricted access (system) or restricted access
* (user)?
* @param ppSession Where to store the pointer to the session data.
*/
int VBOXCALL supdrvCreateSession(PSUPDRVDEVEXT pDevExt, bool fUser, bool fUnrestricted, PSUPDRVSESSION *ppSession)
{
int rc;
PSUPDRVSESSION pSession;
if (!SUP_IS_DEVEXT_VALID(pDevExt))
return VERR_INVALID_PARAMETER;
/*
* Allocate memory for the session data.
*/
pSession = *ppSession = (PSUPDRVSESSION)RTMemAllocZ(pDevExt->cbSession);
if (pSession)
{
/* Initialize session data. */
rc = RTSpinlockCreate(&pSession->Spinlock, RTSPINLOCK_FLAGS_INTERRUPT_UNSAFE, "SUPDrvSession");
if (!rc)
{
rc = RTHandleTableCreateEx(&pSession->hHandleTable,
RTHANDLETABLE_FLAGS_LOCKED_IRQ_SAFE | RTHANDLETABLE_FLAGS_CONTEXT,
1 /*uBase*/, 32768 /*cMax*/, supdrvSessionObjHandleRetain, pSession);
if (RT_SUCCESS(rc))
{
Assert(pSession->Spinlock != NIL_RTSPINLOCK);
pSession->pDevExt = pDevExt;
pSession->u32Cookie = BIRD_INV;
pSession->fUnrestricted = fUnrestricted;
/*pSession->fInHashTable = false; */
pSession->cRefs = 1;
/*pSession->pCommonNextHash = NULL;
pSession->ppOsSessionPtr = NULL; */
if (fUser)
{
pSession->Process = RTProcSelf();
pSession->R0Process = RTR0ProcHandleSelf();
}
else
{
pSession->Process = NIL_RTPROCESS;
pSession->R0Process = NIL_RTR0PROCESS;
}
/*pSession->pLdrUsage = NULL;
pSession->pVM = NULL;
pSession->pUsage = NULL;
pSession->pGip = NULL;
pSession->fGipReferenced = false;
pSession->Bundle.cUsed = 0; */
pSession->Uid = NIL_RTUID;
pSession->Gid = NIL_RTGID;
/*pSession->uTracerData = 0;*/
pSession->hTracerCaller = NIL_RTNATIVETHREAD;
RTListInit(&pSession->TpProviders);
/*pSession->cTpProviders = 0;*/
/*pSession->cTpProbesFiring = 0;*/
RTListInit(&pSession->TpUmods);
/*RT_ZERO(pSession->apTpLookupTable);*/
VBOXDRV_SESSION_CREATE(pSession, fUser);
LogFlow(("Created session %p initial cookie=%#x\n", pSession, pSession->u32Cookie));
return VINF_SUCCESS;
}
RTSpinlockDestroy(pSession->Spinlock);
}
RTMemFree(pSession);
*ppSession = NULL;
Log(("Failed to create spinlock, rc=%d!\n", rc));
}
else
rc = VERR_NO_MEMORY;
return rc;
}
/**
* Cleans up the session in the context of the process to which it belongs, the
* caller will free the session and the session spinlock.
*
* This should normally occur when the session is closed or as the process
* exits. Careful reference counting in the OS specfic code makes sure that
* there cannot be any races between process/handle cleanup callbacks and
* threads doing I/O control calls.
*
* @param pDevExt The device extension.
* @param pSession Session data.
*/
static void supdrvCleanupSession(PSUPDRVDEVEXT pDevExt, PSUPDRVSESSION pSession)
{
int rc;
PSUPDRVBUNDLE pBundle;
LogFlow(("supdrvCleanupSession: pSession=%p\n", pSession));
Assert(!pSession->fInHashTable);
Assert(!pSession->ppOsSessionPtr);
AssertLogRelMsg(pSession->R0Process == RTR0ProcHandleSelf() || pSession->R0Process == NIL_RTR0PROCESS,
("R0Process=%p cur=%p; curpid=%u\n",
pSession->R0Process, RTR0ProcHandleSelf(), RTProcSelf()));
/*
* Remove logger instances related to this session.
*/
RTLogSetDefaultInstanceThread(NULL, (uintptr_t)pSession);
/*
* Destroy the handle table.
*/
rc = RTHandleTableDestroy(pSession->hHandleTable, supdrvSessionObjHandleDelete, pSession);
AssertRC(rc);
pSession->hHandleTable = NIL_RTHANDLETABLE;
/*
* Release object references made in this session.
* In theory there should be noone racing us in this session.
*/
Log2(("release objects - start\n"));
if (pSession->pUsage)
{
PSUPDRVUSAGE pUsage;
RTSpinlockAcquire(pDevExt->Spinlock);
while ((pUsage = pSession->pUsage) != NULL)
{
PSUPDRVOBJ pObj = pUsage->pObj;
pSession->pUsage = pUsage->pNext;
AssertMsg(pUsage->cUsage >= 1 && pObj->cUsage >= pUsage->cUsage, ("glob %d; sess %d\n", pObj->cUsage, pUsage->cUsage));
if (pUsage->cUsage < pObj->cUsage)
{
pObj->cUsage -= pUsage->cUsage;
RTSpinlockRelease(pDevExt->Spinlock);
}
else
{
/* Destroy the object and free the record. */
if (pDevExt->pObjs == pObj)
pDevExt->pObjs = pObj->pNext;
else
{
PSUPDRVOBJ pObjPrev;
for (pObjPrev = pDevExt->pObjs; pObjPrev; pObjPrev = pObjPrev->pNext)
if (pObjPrev->pNext == pObj)
{
pObjPrev->pNext = pObj->pNext;
break;
}
Assert(pObjPrev);
}
RTSpinlockRelease(pDevExt->Spinlock);
Log(("supdrvCleanupSession: destroying %p/%d (%p/%p) cpid=%RTproc pid=%RTproc dtor=%p\n",
pObj, pObj->enmType, pObj->pvUser1, pObj->pvUser2, pObj->CreatorProcess, RTProcSelf(), pObj->pfnDestructor));
if (pObj->pfnDestructor)
pObj->pfnDestructor(pObj, pObj->pvUser1, pObj->pvUser2);
RTMemFree(pObj);
}
/* free it and continue. */
RTMemFree(pUsage);
RTSpinlockAcquire(pDevExt->Spinlock);
}
RTSpinlockRelease(pDevExt->Spinlock);
AssertMsg(!pSession->pUsage, ("Some buster reregistered an object during desturction!\n"));
}
Log2(("release objects - done\n"));
/*
* Make sure the associated VM pointers are NULL.
*/
if (pSession->pSessionGVM || pSession->pSessionVM || pSession->pFastIoCtrlVM)
{
SUPR0Printf("supdrvCleanupSession: VM not disassociated! pSessionGVM=%p pSessionVM=%p pFastIoCtrlVM=%p\n",
pSession->pSessionGVM, pSession->pSessionVM, pSession->pFastIoCtrlVM);
pSession->pSessionGVM = NULL;
pSession->pSessionVM = NULL;
pSession->pFastIoCtrlVM = NULL;
}
/*
* Do tracer cleanups related to this session.
*/
Log2(("release tracer stuff - start\n"));
supdrvTracerCleanupSession(pDevExt, pSession);
Log2(("release tracer stuff - end\n"));
/*
* Release memory allocated in the session.
*
* We do not serialize this as we assume that the application will
* not allocated memory while closing the file handle object.
*/
Log2(("freeing memory:\n"));
pBundle = &pSession->Bundle;
while (pBundle)
{
PSUPDRVBUNDLE pToFree;
unsigned i;
/*
* Check and unlock all entries in the bundle.
*/
for (i = 0; i < RT_ELEMENTS(pBundle->aMem); i++)
{
if (pBundle->aMem[i].MemObj != NIL_RTR0MEMOBJ)
{
Log2(("eType=%d pvR0=%p pvR3=%p cb=%ld\n", pBundle->aMem[i].eType, RTR0MemObjAddress(pBundle->aMem[i].MemObj),
(void *)RTR0MemObjAddressR3(pBundle->aMem[i].MapObjR3), (long)RTR0MemObjSize(pBundle->aMem[i].MemObj)));
if (pBundle->aMem[i].MapObjR3 != NIL_RTR0MEMOBJ)
{
rc = RTR0MemObjFree(pBundle->aMem[i].MapObjR3, false);
AssertRC(rc); /** @todo figure out how to handle this. */
pBundle->aMem[i].MapObjR3 = NIL_RTR0MEMOBJ;
}
rc = RTR0MemObjFree(pBundle->aMem[i].MemObj, true /* fFreeMappings */);
AssertRC(rc); /** @todo figure out how to handle this. */
pBundle->aMem[i].MemObj = NIL_RTR0MEMOBJ;
pBundle->aMem[i].eType = MEMREF_TYPE_UNUSED;
}
}
/*
* Advance and free previous bundle.
*/
pToFree = pBundle;
pBundle = pBundle->pNext;
pToFree->pNext = NULL;
pToFree->cUsed = 0;
if (pToFree != &pSession->Bundle)
RTMemFree(pToFree);
}
Log2(("freeing memory - done\n"));
/*
* Deregister component factories.
*/
RTSemFastMutexRequest(pDevExt->mtxComponentFactory);
Log2(("deregistering component factories:\n"));
if (pDevExt->pComponentFactoryHead)
{
PSUPDRVFACTORYREG pPrev = NULL;
PSUPDRVFACTORYREG pCur = pDevExt->pComponentFactoryHead;
while (pCur)
{
if (pCur->pSession == pSession)
{
/* unlink it */
PSUPDRVFACTORYREG pNext = pCur->pNext;
if (pPrev)
pPrev->pNext = pNext;
else
pDevExt->pComponentFactoryHead = pNext;
/* free it */
pCur->pNext = NULL;
pCur->pSession = NULL;
pCur->pFactory = NULL;
RTMemFree(pCur);
/* next */
pCur = pNext;
}
else
{
/* next */
pPrev = pCur;
pCur = pCur->pNext;
}
}
}
RTSemFastMutexRelease(pDevExt->mtxComponentFactory);
Log2(("deregistering component factories - done\n"));
/*
* Loaded images needs to be dereferenced and possibly freed up.
*/
supdrvLdrLock(pDevExt);
Log2(("freeing images:\n"));
if (pSession->pLdrUsage)
{
PSUPDRVLDRUSAGE pUsage = pSession->pLdrUsage;
pSession->pLdrUsage = NULL;
while (pUsage)
{
void *pvFree = pUsage;
PSUPDRVLDRIMAGE pImage = pUsage->pImage;
uint32_t cUsage = pUsage->cRing0Usage + pUsage->cRing3Usage;
if (pImage->cImgUsage > cUsage)
supdrvLdrSubtractUsage(pDevExt, pImage, cUsage);
else
supdrvLdrFree(pDevExt, pImage);
pUsage->pImage = NULL;
pUsage = pUsage->pNext;
RTMemFree(pvFree);
}
}
supdrvLdrUnlock(pDevExt);
Log2(("freeing images - done\n"));
/*
* Unmap the GIP.
*/
Log2(("umapping GIP:\n"));
if (pSession->GipMapObjR3 != NIL_RTR0MEMOBJ)
{
SUPR0GipUnmap(pSession);
pSession->fGipReferenced = 0;
}
Log2(("umapping GIP - done\n"));
}
/**
* Common code for freeing a session when the reference count reaches zero.
*
* @param pDevExt Device extension.
* @param pSession Session data.
* This data will be freed by this routine.
*/
static void supdrvDestroySession(PSUPDRVDEVEXT pDevExt, PSUPDRVSESSION pSession)
{
VBOXDRV_SESSION_CLOSE(pSession);
/*
* Cleanup the session first.
*/
supdrvCleanupSession(pDevExt, pSession);
supdrvOSCleanupSession(pDevExt, pSession);
/*
* Free the rest of the session stuff.
*/
RTSpinlockDestroy(pSession->Spinlock);
pSession->Spinlock = NIL_RTSPINLOCK;
pSession->pDevExt = NULL;
RTMemFree(pSession);
LogFlow(("supdrvDestroySession: returns\n"));
}
/**
* Inserts the session into the global hash table.
*
* @retval VINF_SUCCESS on success.
* @retval VERR_WRONG_ORDER if the session was already inserted (asserted).
* @retval VERR_INVALID_PARAMETER if the session handle is invalid or a ring-0
* session (asserted).
* @retval VERR_DUPLICATE if there is already a session for that pid.
*
* @param pDevExt The device extension.
* @param pSession The session.
* @param ppOsSessionPtr Pointer to the OS session pointer, if any is
* available and used. This will set to point to the
* session while under the protection of the session
* hash table spinlock. It will also be kept in
* PSUPDRVSESSION::ppOsSessionPtr for lookup and
* cleanup use.
* @param pvUser Argument for supdrvOSSessionHashTabInserted.
*/
int VBOXCALL supdrvSessionHashTabInsert(PSUPDRVDEVEXT pDevExt, PSUPDRVSESSION pSession, PSUPDRVSESSION *ppOsSessionPtr,
void *pvUser)
{
PSUPDRVSESSION pCur;
unsigned iHash;
/*
* Validate input.
*/
AssertReturn(SUP_IS_SESSION_VALID(pSession), VERR_INVALID_PARAMETER);
AssertReturn(pSession->R0Process != NIL_RTR0PROCESS, VERR_INVALID_PARAMETER);
/*
* Calculate the hash table index and acquire the spinlock.
*/
iHash = SUPDRV_SESSION_HASH(pSession->Process);
RTSpinlockAcquire(pDevExt->hSessionHashTabSpinlock);
/*
* If there are a collisions, we need to carefully check if we got a
* duplicate. There can only be one open session per process.
*/
pCur = pDevExt->apSessionHashTab[iHash];
if (pCur)
{
while (pCur && pCur->Process != pSession->Process)
pCur = pCur->pCommonNextHash;
if (pCur)
{
RTSpinlockRelease(pDevExt->hSessionHashTabSpinlock);
if (pCur == pSession)
{
Assert(pSession->fInHashTable);
AssertFailed();
return VERR_WRONG_ORDER;
}
Assert(!pSession->fInHashTable);
if (pCur->R0Process == pSession->R0Process)
return VERR_RESOURCE_IN_USE;
return VERR_DUPLICATE;
}
}
Assert(!pSession->fInHashTable);
Assert(!pSession->ppOsSessionPtr);
/*
* Insert it, doing a callout to the OS specific code in case it has
* anything it wishes to do while we're holding the spinlock.
*/
pSession->pCommonNextHash = pDevExt->apSessionHashTab[iHash];
pDevExt->apSessionHashTab[iHash] = pSession;
pSession->fInHashTable = true;
ASMAtomicIncS32(&pDevExt->cSessions);
pSession->ppOsSessionPtr = ppOsSessionPtr;
if (ppOsSessionPtr)
ASMAtomicWritePtr(ppOsSessionPtr, pSession);
supdrvOSSessionHashTabInserted(pDevExt, pSession, pvUser);
/*
* Retain a reference for the pointer in the session table.
*/
ASMAtomicIncU32(&pSession->cRefs);
RTSpinlockRelease(pDevExt->hSessionHashTabSpinlock);
return VINF_SUCCESS;
}
/**
* Removes the session from the global hash table.
*
* @retval VINF_SUCCESS on success.
* @retval VERR_NOT_FOUND if the session was already removed (asserted).
* @retval VERR_INVALID_PARAMETER if the session handle is invalid or a ring-0
* session (asserted).
*
* @param pDevExt The device extension.
* @param pSession The session. The caller is expected to have a reference
* to this so it won't croak on us when we release the hash
* table reference.
* @param pvUser OS specific context value for the
* supdrvOSSessionHashTabInserted callback.
*/
int VBOXCALL supdrvSessionHashTabRemove(PSUPDRVDEVEXT pDevExt, PSUPDRVSESSION pSession, void *pvUser)
{
PSUPDRVSESSION pCur;
unsigned iHash;
int32_t cRefs;
/*
* Validate input.
*/
AssertReturn(SUP_IS_SESSION_VALID(pSession), VERR_INVALID_PARAMETER);
AssertReturn(pSession->R0Process != NIL_RTR0PROCESS, VERR_INVALID_PARAMETER);
/*
* Calculate the hash table index and acquire the spinlock.
*/
iHash = SUPDRV_SESSION_HASH(pSession->Process);
RTSpinlockAcquire(pDevExt->hSessionHashTabSpinlock);
/*
* Unlink it.
*/
pCur = pDevExt->apSessionHashTab[iHash];
if (pCur == pSession)
pDevExt->apSessionHashTab[iHash] = pSession->pCommonNextHash;
else
{
PSUPDRVSESSION pPrev = pCur;
while (pCur && pCur != pSession)
{
pPrev = pCur;
pCur = pCur->pCommonNextHash;
}
if (pCur)
pPrev->pCommonNextHash = pCur->pCommonNextHash;
else
{
Assert(!pSession->fInHashTable);
RTSpinlockRelease(pDevExt->hSessionHashTabSpinlock);
return VERR_NOT_FOUND;
}
}
pSession->pCommonNextHash = NULL;
pSession->fInHashTable = false;
ASMAtomicDecS32(&pDevExt->cSessions);
/*
* Clear OS specific session pointer if available and do the OS callback.
*/
if (pSession->ppOsSessionPtr)
{
ASMAtomicCmpXchgPtr(pSession->ppOsSessionPtr, NULL, pSession);
pSession->ppOsSessionPtr = NULL;
}
supdrvOSSessionHashTabRemoved(pDevExt, pSession, pvUser);
RTSpinlockRelease(pDevExt->hSessionHashTabSpinlock);
/*
* Drop the reference the hash table had to the session. This shouldn't
* be the last reference!
*/
cRefs = ASMAtomicDecU32(&pSession->cRefs);
Assert(cRefs > 0 && cRefs < _1M);
if (cRefs == 0)
supdrvDestroySession(pDevExt, pSession);
return VINF_SUCCESS;
}
/**
* Looks up the session for the current process in the global hash table or in
* OS specific pointer.
*
* @returns Pointer to the session with a reference that the caller must
* release. If no valid session was found, NULL is returned.
*
* @param pDevExt The device extension.
* @param Process The process ID.
* @param R0Process The ring-0 process handle.
* @param ppOsSessionPtr The OS session pointer if available. If not NULL,
* this is used instead of the hash table. For
* additional safety it must then be equal to the
* SUPDRVSESSION::ppOsSessionPtr member.
* This can be NULL even if the OS has a session
* pointer.
*/
PSUPDRVSESSION VBOXCALL supdrvSessionHashTabLookup(PSUPDRVDEVEXT pDevExt, RTPROCESS Process, RTR0PROCESS R0Process,
PSUPDRVSESSION *ppOsSessionPtr)
{
PSUPDRVSESSION pCur;
unsigned iHash;
/*
* Validate input.
*/
AssertReturn(R0Process != NIL_RTR0PROCESS, NULL);
/*
* Calculate the hash table index and acquire the spinlock.
*/
iHash = SUPDRV_SESSION_HASH(Process);
RTSpinlockAcquire(pDevExt->hSessionHashTabSpinlock);
/*
* If an OS session pointer is provided, always use it.
*/
if (ppOsSessionPtr)
{
pCur = *ppOsSessionPtr;
if ( pCur
&& ( pCur->ppOsSessionPtr != ppOsSessionPtr
|| pCur->Process != Process
|| pCur->R0Process != R0Process) )
pCur = NULL;
}
else
{
/*
* Otherwise, do the hash table lookup.
*/
pCur = pDevExt->apSessionHashTab[iHash];
while ( pCur
&& ( pCur->Process != Process
|| pCur->R0Process != R0Process) )
pCur = pCur->pCommonNextHash;
}
/*
* Retain the session.
*/
if (pCur)
{
uint32_t cRefs = ASMAtomicIncU32(&pCur->cRefs);
NOREF(cRefs);
Assert(cRefs > 1 && cRefs < _1M);
}
RTSpinlockRelease(pDevExt->hSessionHashTabSpinlock);
return pCur;
}
/**
* Retain a session to make sure it doesn't go away while it is in use.
*
* @returns New reference count on success, UINT32_MAX on failure.
* @param pSession Session data.
*/
uint32_t VBOXCALL supdrvSessionRetain(PSUPDRVSESSION pSession)
{
uint32_t cRefs;
AssertPtrReturn(pSession, UINT32_MAX);
AssertReturn(SUP_IS_SESSION_VALID(pSession), UINT32_MAX);
cRefs = ASMAtomicIncU32(&pSession->cRefs);
AssertMsg(cRefs > 1 && cRefs < _1M, ("%#x %p\n", cRefs, pSession));
return cRefs;
}
/**
* Releases a given session.
*
* @returns New reference count on success (0 if closed), UINT32_MAX on failure.
* @param pSession Session data.
*/
uint32_t VBOXCALL supdrvSessionRelease(PSUPDRVSESSION pSession)
{
uint32_t cRefs;
AssertPtrReturn(pSession, UINT32_MAX);
AssertReturn(SUP_IS_SESSION_VALID(pSession), UINT32_MAX);
cRefs = ASMAtomicDecU32(&pSession->cRefs);
AssertMsg(cRefs < _1M, ("%#x %p\n", cRefs, pSession));
if (cRefs == 0)
supdrvDestroySession(pSession->pDevExt, pSession);
return cRefs;
}
/**
* RTHandleTableDestroy callback used by supdrvCleanupSession.
*
* @returns IPRT status code, see SUPR0ObjAddRef.
* @param hHandleTable The handle table handle. Ignored.
* @param pvObj The object pointer.
* @param pvCtx Context, the handle type. Ignored.
* @param pvUser Session pointer.
*/
static DECLCALLBACK(int) supdrvSessionObjHandleRetain(RTHANDLETABLE hHandleTable, void *pvObj, void *pvCtx, void *pvUser)
{
NOREF(pvCtx);
NOREF(hHandleTable);
return SUPR0ObjAddRefEx(pvObj, (PSUPDRVSESSION)pvUser, true /*fNoBlocking*/);
}
/**
* RTHandleTableDestroy callback used by supdrvCleanupSession.
*
* @param hHandleTable The handle table handle. Ignored.
* @param h The handle value. Ignored.
* @param pvObj The object pointer.
* @param pvCtx Context, the handle type. Ignored.
* @param pvUser Session pointer.
*/
static DECLCALLBACK(void) supdrvSessionObjHandleDelete(RTHANDLETABLE hHandleTable, uint32_t h, void *pvObj, void *pvCtx, void *pvUser)
{
NOREF(pvCtx);
NOREF(h);
NOREF(hHandleTable);
SUPR0ObjRelease(pvObj, (PSUPDRVSESSION)pvUser);
}
/**
* Fast path I/O Control worker.
*
* @returns VBox status code that should be passed down to ring-3 unchanged.
* @param uOperation SUP_VMMR0_DO_XXX (not the I/O control number!).
* @param idCpu VMCPU id.
* @param pDevExt Device extention.
* @param pSession Session data.
*/
int VBOXCALL supdrvIOCtlFast(uintptr_t uOperation, VMCPUID idCpu, PSUPDRVDEVEXT pDevExt, PSUPDRVSESSION pSession)
{
/*
* Validate input and check that the VM has a session.
*/
if (RT_LIKELY(RT_VALID_PTR(pSession)))
{
PVM pVM = pSession->pSessionVM;
PGVM pGVM = pSession->pSessionGVM;
if (RT_LIKELY( pGVM != NULL
&& pVM != NULL
&& pVM == pSession->pFastIoCtrlVM))
{
if (RT_LIKELY(pDevExt->pfnVMMR0EntryFast))
{
/*
* Make the call.
*/
pDevExt->pfnVMMR0EntryFast(pGVM, pVM, idCpu, uOperation);
return VINF_SUCCESS;
}
SUPR0Printf("supdrvIOCtlFast: pfnVMMR0EntryFast is NULL\n");
}
else
SUPR0Printf("supdrvIOCtlFast: Misconfig session: pGVM=%p pVM=%p pFastIoCtrlVM=%p\n",
pGVM, pVM, pSession->pFastIoCtrlVM);
}
else
SUPR0Printf("supdrvIOCtlFast: Bad session pointer %p\n", pSession);
return VERR_INTERNAL_ERROR;
}
/**
* Helper for supdrvIOCtl used to validate module names passed to SUP_IOCTL_LDR_OPEN.
*
* Check if pszStr contains any character of pszChars. We would use strpbrk
* here if this function would be contained in the RedHat kABI white list, see
* http://www.kerneldrivers.org/RHEL5.
*
* @returns true if fine, false if not.
* @param pszName The module name to check.
*/
static bool supdrvIsLdrModuleNameValid(const char *pszName)
{
int chCur;
while ((chCur = *pszName++) != '\0')
{
static const char s_szInvalidChars[] = ";:()[]{}/\\|&*%#@!~`\"'";
unsigned offInv = RT_ELEMENTS(s_szInvalidChars);
while (offInv-- > 0)
if (s_szInvalidChars[offInv] == chCur)
return false;
}
return true;
}
/**
* I/O Control inner worker (tracing reasons).
*
* @returns IPRT status code.
* @retval VERR_INVALID_PARAMETER if the request is invalid.
*
* @param uIOCtl Function number.
* @param pDevExt Device extention.
* @param pSession Session data.
* @param pReqHdr The request header.
*/
static int supdrvIOCtlInnerUnrestricted(uintptr_t uIOCtl, PSUPDRVDEVEXT pDevExt, PSUPDRVSESSION pSession, PSUPREQHDR pReqHdr)
{
/*
* Validation macros
*/
#define REQ_CHECK_SIZES_EX(Name, cbInExpect, cbOutExpect) \
do { \
if (RT_UNLIKELY(pReqHdr->cbIn != (cbInExpect) || pReqHdr->cbOut != (cbOutExpect))) \
{ \
OSDBGPRINT(( #Name ": Invalid input/output sizes. cbIn=%ld expected %ld. cbOut=%ld expected %ld.\n", \
(long)pReqHdr->cbIn, (long)(cbInExpect), (long)pReqHdr->cbOut, (long)(cbOutExpect))); \
return pReqHdr->rc = VERR_INVALID_PARAMETER; \
} \
} while (0)
#define REQ_CHECK_SIZES(Name) REQ_CHECK_SIZES_EX(Name, Name ## _SIZE_IN, Name ## _SIZE_OUT)
#define REQ_CHECK_SIZE_IN(Name, cbInExpect) \
do { \
if (RT_UNLIKELY(pReqHdr->cbIn != (cbInExpect))) \
{ \
OSDBGPRINT(( #Name ": Invalid input/output sizes. cbIn=%ld expected %ld.\n", \
(long)pReqHdr->cbIn, (long)(cbInExpect))); \
return pReqHdr->rc = VERR_INVALID_PARAMETER; \
} \
} while (0)
#define REQ_CHECK_SIZE_OUT(Name, cbOutExpect) \
do { \
if (RT_UNLIKELY(pReqHdr->cbOut != (cbOutExpect))) \
{ \
OSDBGPRINT(( #Name ": Invalid input/output sizes. cbOut=%ld expected %ld.\n", \
(long)pReqHdr->cbOut, (long)(cbOutExpect))); \
return pReqHdr->rc = VERR_INVALID_PARAMETER; \
} \
} while (0)
#define REQ_CHECK_EXPR(Name, expr) \
do { \
if (RT_UNLIKELY(!(expr))) \
{ \
OSDBGPRINT(( #Name ": %s\n", #expr)); \
return pReqHdr->rc = VERR_INVALID_PARAMETER; \
} \
} while (0)
#define REQ_CHECK_EXPR_FMT(expr, fmt) \
do { \
if (RT_UNLIKELY(!(expr))) \
{ \
OSDBGPRINT( fmt ); \
return pReqHdr->rc = VERR_INVALID_PARAMETER; \
} \
} while (0)
/*
* The switch.
*/
switch (SUP_CTL_CODE_NO_SIZE(uIOCtl))
{
case SUP_CTL_CODE_NO_SIZE(SUP_IOCTL_COOKIE):
{
PSUPCOOKIE pReq = (PSUPCOOKIE)pReqHdr;
REQ_CHECK_SIZES(SUP_IOCTL_COOKIE);
if (strncmp(pReq->u.In.szMagic, SUPCOOKIE_MAGIC, sizeof(pReq->u.In.szMagic)))
{
OSDBGPRINT(("SUP_IOCTL_COOKIE: invalid magic %.16s\n", pReq->u.In.szMagic));
pReq->Hdr.rc = VERR_INVALID_MAGIC;
return 0;
}
#if 0
/*
* Call out to the OS specific code and let it do permission checks on the
* client process.
*/
if (!supdrvOSValidateClientProcess(pDevExt, pSession))
{
pReq->u.Out.u32Cookie = 0xffffffff;
pReq->u.Out.u32SessionCookie = 0xffffffff;
pReq->u.Out.u32SessionVersion = 0xffffffff;
pReq->u.Out.u32DriverVersion = SUPDRV_IOC_VERSION;
pReq->u.Out.pSession = NULL;
pReq->u.Out.cFunctions = 0;
pReq->Hdr.rc = VERR_PERMISSION_DENIED;
return 0;
}
#endif
/*
* Match the version.
* The current logic is very simple, match the major interface version.
*/
if ( pReq->u.In.u32MinVersion > SUPDRV_IOC_VERSION
|| (pReq->u.In.u32MinVersion & 0xffff0000) != (SUPDRV_IOC_VERSION & 0xffff0000))
{
OSDBGPRINT(("SUP_IOCTL_COOKIE: Version mismatch. Requested: %#x Min: %#x Current: %#x\n",
pReq->u.In.u32ReqVersion, pReq->u.In.u32MinVersion, SUPDRV_IOC_VERSION));
pReq->u.Out.u32Cookie = 0xffffffff;
pReq->u.Out.u32SessionCookie = 0xffffffff;
pReq->u.Out.u32SessionVersion = 0xffffffff;
pReq->u.Out.u32DriverVersion = SUPDRV_IOC_VERSION;
pReq->u.Out.pSession = NULL;
pReq->u.Out.cFunctions = 0;
pReq->Hdr.rc = VERR_VERSION_MISMATCH;
return 0;
}
/*
* Fill in return data and be gone.
* N.B. The first one to change SUPDRV_IOC_VERSION shall makes sure that
* u32SessionVersion <= u32ReqVersion!
*/
/** @todo Somehow validate the client and negotiate a secure cookie... */
pReq->u.Out.u32Cookie = pDevExt->u32Cookie;
pReq->u.Out.u32SessionCookie = pSession->u32Cookie;
pReq->u.Out.u32SessionVersion = SUPDRV_IOC_VERSION;
pReq->u.Out.u32DriverVersion = SUPDRV_IOC_VERSION;
pReq->u.Out.pSession = pSession;
pReq->u.Out.cFunctions = sizeof(g_aFunctions) / sizeof(g_aFunctions[0]);
pReq->Hdr.rc = VINF_SUCCESS;
return 0;
}
case SUP_CTL_CODE_NO_SIZE(SUP_IOCTL_QUERY_FUNCS(0)):
{
/* validate */
PSUPQUERYFUNCS pReq = (PSUPQUERYFUNCS)pReqHdr;
REQ_CHECK_SIZES_EX(SUP_IOCTL_QUERY_FUNCS, SUP_IOCTL_QUERY_FUNCS_SIZE_IN, SUP_IOCTL_QUERY_FUNCS_SIZE_OUT(RT_ELEMENTS(g_aFunctions)));
/* execute */
pReq->u.Out.cFunctions = RT_ELEMENTS(g_aFunctions);
RT_BCOPY_UNFORTIFIED(&pReq->u.Out.aFunctions[0], g_aFunctions, sizeof(g_aFunctions));
pReq->Hdr.rc = VINF_SUCCESS;
return 0;
}
case SUP_CTL_CODE_NO_SIZE(SUP_IOCTL_PAGE_LOCK):
{
/* validate */
PSUPPAGELOCK pReq = (PSUPPAGELOCK)pReqHdr;
REQ_CHECK_SIZE_IN(SUP_IOCTL_PAGE_LOCK, SUP_IOCTL_PAGE_LOCK_SIZE_IN);
REQ_CHECK_SIZE_OUT(SUP_IOCTL_PAGE_LOCK, SUP_IOCTL_PAGE_LOCK_SIZE_OUT(pReq->u.In.cPages));
REQ_CHECK_EXPR(SUP_IOCTL_PAGE_LOCK, pReq->u.In.cPages > 0);
REQ_CHECK_EXPR(SUP_IOCTL_PAGE_LOCK, pReq->u.In.pvR3 >= PAGE_SIZE);
/* execute */
pReq->Hdr.rc = SUPR0LockMem(pSession, pReq->u.In.pvR3, pReq->u.In.cPages, &pReq->u.Out.aPages[0]);
if (RT_FAILURE(pReq->Hdr.rc))
pReq->Hdr.cbOut = sizeof(pReq->Hdr);
return 0;
}
case SUP_CTL_CODE_NO_SIZE(SUP_IOCTL_PAGE_UNLOCK):
{
/* validate */
PSUPPAGEUNLOCK pReq = (PSUPPAGEUNLOCK)pReqHdr;
REQ_CHECK_SIZES(SUP_IOCTL_PAGE_UNLOCK);
/* execute */
pReq->Hdr.rc = SUPR0UnlockMem(pSession, pReq->u.In.pvR3);
return 0;
}
case SUP_CTL_CODE_NO_SIZE(SUP_IOCTL_CONT_ALLOC):
{
/* validate */
PSUPCONTALLOC pReq = (PSUPCONTALLOC)pReqHdr;
REQ_CHECK_SIZES(SUP_IOCTL_CONT_ALLOC);
/* execute */
pReq->Hdr.rc = SUPR0ContAlloc(pSession, pReq->u.In.cPages, &pReq->u.Out.pvR0, &pReq->u.Out.pvR3, &pReq->u.Out.HCPhys);
if (RT_FAILURE(pReq->Hdr.rc))
pReq->Hdr.cbOut = sizeof(pReq->Hdr);
return 0;
}
case SUP_CTL_CODE_NO_SIZE(SUP_IOCTL_CONT_FREE):
{
/* validate */
PSUPCONTFREE pReq = (PSUPCONTFREE)pReqHdr;
REQ_CHECK_SIZES(SUP_IOCTL_CONT_FREE);
/* execute */
pReq->Hdr.rc = SUPR0ContFree(pSession, (RTHCUINTPTR)pReq->u.In.pvR3);
return 0;
}
case SUP_CTL_CODE_NO_SIZE(SUP_IOCTL_LDR_OPEN):
{
/* validate */
PSUPLDROPEN pReq = (PSUPLDROPEN)pReqHdr;
REQ_CHECK_SIZES(SUP_IOCTL_LDR_OPEN);
if ( pReq->u.In.cbImageWithEverything != 0
|| pReq->u.In.cbImageBits != 0)
{
REQ_CHECK_EXPR(SUP_IOCTL_LDR_OPEN, pReq->u.In.cbImageWithEverything > 0);
REQ_CHECK_EXPR(SUP_IOCTL_LDR_OPEN, pReq->u.In.cbImageWithEverything < 16*_1M);
REQ_CHECK_EXPR(SUP_IOCTL_LDR_OPEN, pReq->u.In.cbImageBits > 0);
REQ_CHECK_EXPR(SUP_IOCTL_LDR_OPEN, pReq->u.In.cbImageBits < pReq->u.In.cbImageWithEverything);
}
REQ_CHECK_EXPR(SUP_IOCTL_LDR_OPEN, pReq->u.In.szName[0]);
REQ_CHECK_EXPR(SUP_IOCTL_LDR_OPEN, RTStrEnd(pReq->u.In.szName, sizeof(pReq->u.In.szName)));
REQ_CHECK_EXPR(SUP_IOCTL_LDR_OPEN, supdrvIsLdrModuleNameValid(pReq->u.In.szName));
REQ_CHECK_EXPR(SUP_IOCTL_LDR_OPEN, RTStrEnd(pReq->u.In.szFilename, sizeof(pReq->u.In.szFilename)));
/* execute */
pReq->Hdr.rc = supdrvIOCtl_LdrOpen(pDevExt, pSession, pReq);
return 0;
}
case SUP_CTL_CODE_NO_SIZE(SUP_IOCTL_LDR_LOAD):
{
/* validate */
PSUPLDRLOAD pReq = (PSUPLDRLOAD)pReqHdr;
uint8_t const * const pbSrcImage = pReq->u.In.abImage;
REQ_CHECK_EXPR(Name, pReq->Hdr.cbIn >= SUP_IOCTL_LDR_LOAD_SIZE_IN(32));
REQ_CHECK_SIZES_EX(SUP_IOCTL_LDR_LOAD, SUP_IOCTL_LDR_LOAD_SIZE_IN(pReq->u.In.cbImageWithEverything), SUP_IOCTL_LDR_LOAD_SIZE_OUT);
REQ_CHECK_EXPR_FMT( !pReq->u.In.cSymbols
|| ( pReq->u.In.cSymbols <= 16384
&& pReq->u.In.offSymbols >= pReq->u.In.cbImageBits
&& pReq->u.In.offSymbols < pReq->u.In.cbImageWithEverything
&& pReq->u.In.offSymbols + pReq->u.In.cSymbols * sizeof(SUPLDRSYM) <= pReq->u.In.cbImageWithEverything),
("SUP_IOCTL_LDR_LOAD: offSymbols=%#lx cSymbols=%#lx cbImageWithEverything=%#lx\n", (long)pReq->u.In.offSymbols,
(long)pReq->u.In.cSymbols, (long)pReq->u.In.cbImageWithEverything));
REQ_CHECK_EXPR_FMT( !pReq->u.In.cbStrTab
|| ( pReq->u.In.offStrTab < pReq->u.In.cbImageWithEverything
&& pReq->u.In.offStrTab >= pReq->u.In.cbImageBits
&& pReq->u.In.offStrTab + pReq->u.In.cbStrTab <= pReq->u.In.cbImageWithEverything
&& pReq->u.In.cbStrTab <= pReq->u.In.cbImageWithEverything),
("SUP_IOCTL_LDR_LOAD: offStrTab=%#lx cbStrTab=%#lx cbImageWithEverything=%#lx\n", (long)pReq->u.In.offStrTab,
(long)pReq->u.In.cbStrTab, (long)pReq->u.In.cbImageWithEverything));
REQ_CHECK_EXPR_FMT( pReq->u.In.cSegments >= 1
&& pReq->u.In.cSegments <= 128
&& pReq->u.In.cSegments <= (pReq->u.In.cbImageBits + PAGE_SIZE - 1) / PAGE_SIZE
&& pReq->u.In.offSegments >= pReq->u.In.cbImageBits
&& pReq->u.In.offSegments < pReq->u.In.cbImageWithEverything
&& pReq->u.In.offSegments + pReq->u.In.cSegments * sizeof(SUPLDRSEG) <= pReq->u.In.cbImageWithEverything,
("SUP_IOCTL_LDR_LOAD: offSegments=%#lx cSegments=%#lx cbImageWithEverything=%#lx\n", (long)pReq->u.In.offSegments,
(long)pReq->u.In.cSegments, (long)pReq->u.In.cbImageWithEverything));
if (pReq->u.In.cSymbols)
{
uint32_t i;
PSUPLDRSYM paSyms = (PSUPLDRSYM)(&pbSrcImage[pReq->u.In.offSymbols]);
for (i = 0; i < pReq->u.In.cSymbols; i++)
{
REQ_CHECK_EXPR_FMT(paSyms[i].offSymbol < pReq->u.In.cbImageWithEverything,
("SUP_IOCTL_LDR_LOAD: sym #%ld: symb off %#lx (max=%#lx)\n", (long)i, (long)paSyms[i].offSymbol, (long)pReq->u.In.cbImageWithEverything));
REQ_CHECK_EXPR_FMT(paSyms[i].offName < pReq->u.In.cbStrTab,
("SUP_IOCTL_LDR_LOAD: sym #%ld: name off %#lx (max=%#lx)\n", (long)i, (long)paSyms[i].offName, (long)pReq->u.In.cbImageWithEverything));
REQ_CHECK_EXPR_FMT(RTStrEnd((char const *)(&pbSrcImage[pReq->u.In.offStrTab + paSyms[i].offName]),
pReq->u.In.cbStrTab - paSyms[i].offName),
("SUP_IOCTL_LDR_LOAD: sym #%ld: unterminated name! (%#lx / %#lx)\n", (long)i, (long)paSyms[i].offName, (long)pReq->u.In.cbImageWithEverything));
}
}
{
uint32_t i;
uint32_t offPrevEnd = 0;
PSUPLDRSEG paSegs = (PSUPLDRSEG)(&pbSrcImage[pReq->u.In.offSegments]);
for (i = 0; i < pReq->u.In.cSegments; i++)
{
REQ_CHECK_EXPR_FMT(paSegs[i].off < pReq->u.In.cbImageBits && !(paSegs[i].off & PAGE_OFFSET_MASK),
("SUP_IOCTL_LDR_LOAD: seg #%ld: off %#lx (max=%#lx)\n", (long)i, (long)paSegs[i].off, (long)pReq->u.In.cbImageBits));
REQ_CHECK_EXPR_FMT(paSegs[i].cb <= pReq->u.In.cbImageBits,
("SUP_IOCTL_LDR_LOAD: seg #%ld: cb %#lx (max=%#lx)\n", (long)i, (long)paSegs[i].cb, (long)pReq->u.In.cbImageBits));
REQ_CHECK_EXPR_FMT(paSegs[i].off + paSegs[i].cb <= pReq->u.In.cbImageBits,
("SUP_IOCTL_LDR_LOAD: seg #%ld: off %#lx + cb %#lx = %#lx (max=%#lx)\n", (long)i, (long)paSegs[i].off, (long)paSegs[i].cb, (long)(paSegs[i].off + paSegs[i].cb), (long)pReq->u.In.cbImageBits));
REQ_CHECK_EXPR_FMT(paSegs[i].fProt != 0,
("SUP_IOCTL_LDR_LOAD: seg #%ld: off %#lx + cb %#lx\n", (long)i, (long)paSegs[i].off, (long)paSegs[i].cb));
REQ_CHECK_EXPR_FMT(paSegs[i].fUnused == 0, ("SUP_IOCTL_LDR_LOAD: seg #%ld: fUnused=1\n", (long)i));
REQ_CHECK_EXPR_FMT(offPrevEnd == paSegs[i].off,
("SUP_IOCTL_LDR_LOAD: seg #%ld: off %#lx offPrevEnd %#lx\n", (long)i, (long)paSegs[i].off, (long)offPrevEnd));
offPrevEnd = paSegs[i].off + paSegs[i].cb;
}
REQ_CHECK_EXPR_FMT(offPrevEnd == pReq->u.In.cbImageBits,
("SUP_IOCTL_LDR_LOAD: offPrevEnd %#lx cbImageBits %#lx\n", (long)i, (long)offPrevEnd, (long)pReq->u.In.cbImageBits));
}
REQ_CHECK_EXPR_FMT(!(pReq->u.In.fFlags & ~SUPLDRLOAD_F_VALID_MASK),
("SUP_IOCTL_LDR_LOAD: fFlags=%#x\n", (unsigned)pReq->u.In.fFlags));
/* execute */
pReq->Hdr.rc = supdrvIOCtl_LdrLoad(pDevExt, pSession, pReq);
return 0;
}
case SUP_CTL_CODE_NO_SIZE(SUP_IOCTL_LDR_FREE):
{
/* validate */
PSUPLDRFREE pReq = (PSUPLDRFREE)pReqHdr;
REQ_CHECK_SIZES(SUP_IOCTL_LDR_FREE);
/* execute */
pReq->Hdr.rc = supdrvIOCtl_LdrFree(pDevExt, pSession, pReq);
return 0;
}
case SUP_CTL_CODE_NO_SIZE(SUP_IOCTL_LDR_LOCK_DOWN):
{
/* validate */
REQ_CHECK_SIZES(SUP_IOCTL_LDR_LOCK_DOWN);
/* execute */
pReqHdr->rc = supdrvIOCtl_LdrLockDown(pDevExt);
return 0;
}
case SUP_CTL_CODE_NO_SIZE(SUP_IOCTL_LDR_GET_SYMBOL):
{
/* validate */
PSUPLDRGETSYMBOL pReq = (PSUPLDRGETSYMBOL)pReqHdr;
REQ_CHECK_SIZES(SUP_IOCTL_LDR_GET_SYMBOL);
REQ_CHECK_EXPR(SUP_IOCTL_LDR_GET_SYMBOL, RTStrEnd(pReq->u.In.szSymbol, sizeof(pReq->u.In.szSymbol)));
/* execute */
pReq->Hdr.rc = supdrvIOCtl_LdrQuerySymbol(pDevExt, pSession, pReq);
return 0;
}
case SUP_CTL_CODE_NO_SIZE(SUP_IOCTL_CALL_VMMR0_NO_SIZE()):
{
/* validate */
PSUPCALLVMMR0 pReq = (PSUPCALLVMMR0)pReqHdr;
Log4(("SUP_IOCTL_CALL_VMMR0: op=%u in=%u arg=%RX64 p/t=%RTproc/%RTthrd\n",
pReq->u.In.uOperation, pReq->Hdr.cbIn, pReq->u.In.u64Arg, RTProcSelf(), RTThreadNativeSelf()));
if (pReq->Hdr.cbIn == SUP_IOCTL_CALL_VMMR0_SIZE(0))
{
REQ_CHECK_SIZES_EX(SUP_IOCTL_CALL_VMMR0, SUP_IOCTL_CALL_VMMR0_SIZE_IN(0), SUP_IOCTL_CALL_VMMR0_SIZE_OUT(0));
/* execute */
if (RT_LIKELY(pDevExt->pfnVMMR0EntryEx))
{
if (pReq->u.In.pVMR0 == NULL)
pReq->Hdr.rc = pDevExt->pfnVMMR0EntryEx(NULL, NULL, pReq->u.In.idCpu,
pReq->u.In.uOperation, NULL, pReq->u.In.u64Arg, pSession);
else if (pReq->u.In.pVMR0 == pSession->pSessionVM)
pReq->Hdr.rc = pDevExt->pfnVMMR0EntryEx(pSession->pSessionGVM, pSession->pSessionVM, pReq->u.In.idCpu,
pReq->u.In.uOperation, NULL, pReq->u.In.u64Arg, pSession);
else
pReq->Hdr.rc = VERR_INVALID_VM_HANDLE;
}
else
pReq->Hdr.rc = VERR_WRONG_ORDER;
}
else
{
PSUPVMMR0REQHDR pVMMReq = (PSUPVMMR0REQHDR)&pReq->abReqPkt[0];
REQ_CHECK_EXPR_FMT(pReq->Hdr.cbIn >= SUP_IOCTL_CALL_VMMR0_SIZE(sizeof(SUPVMMR0REQHDR)),
("SUP_IOCTL_CALL_VMMR0: cbIn=%#x < %#lx\n", pReq->Hdr.cbIn, SUP_IOCTL_CALL_VMMR0_SIZE(sizeof(SUPVMMR0REQHDR))));
REQ_CHECK_EXPR(SUP_IOCTL_CALL_VMMR0, pVMMReq->u32Magic == SUPVMMR0REQHDR_MAGIC);
REQ_CHECK_SIZES_EX(SUP_IOCTL_CALL_VMMR0, SUP_IOCTL_CALL_VMMR0_SIZE_IN(pVMMReq->cbReq), SUP_IOCTL_CALL_VMMR0_SIZE_OUT(pVMMReq->cbReq));
/* execute */
if (RT_LIKELY(pDevExt->pfnVMMR0EntryEx))
{
if (pReq->u.In.pVMR0 == NULL)
pReq->Hdr.rc = pDevExt->pfnVMMR0EntryEx(NULL, NULL, pReq->u.In.idCpu,
pReq->u.In.uOperation, pVMMReq, pReq->u.In.u64Arg, pSession);
else if (pReq->u.In.pVMR0 == pSession->pSessionVM)
pReq->Hdr.rc = pDevExt->pfnVMMR0EntryEx(pSession->pSessionGVM, pSession->pSessionVM, pReq->u.In.idCpu,
pReq->u.In.uOperation, pVMMReq, pReq->u.In.u64Arg, pSession);
else
pReq->Hdr.rc = VERR_INVALID_VM_HANDLE;
}
else
pReq->Hdr.rc = VERR_WRONG_ORDER;
}
if ( RT_FAILURE(pReq->Hdr.rc)
&& pReq->Hdr.rc != VERR_INTERRUPTED
&& pReq->Hdr.rc != VERR_TIMEOUT)
Log(("SUP_IOCTL_CALL_VMMR0: rc=%Rrc op=%u out=%u arg=%RX64 p/t=%RTproc/%RTthrd\n",
pReq->Hdr.rc, pReq->u.In.uOperation, pReq->Hdr.cbOut, pReq->u.In.u64Arg, RTProcSelf(), RTThreadNativeSelf()));
else
Log4(("SUP_IOCTL_CALL_VMMR0: rc=%Rrc op=%u out=%u arg=%RX64 p/t=%RTproc/%RTthrd\n",
pReq->Hdr.rc, pReq->u.In.uOperation, pReq->Hdr.cbOut, pReq->u.In.u64Arg, RTProcSelf(), RTThreadNativeSelf()));
return 0;
}
case SUP_CTL_CODE_NO_SIZE(SUP_IOCTL_CALL_VMMR0_BIG):
{
/* validate */
PSUPCALLVMMR0 pReq = (PSUPCALLVMMR0)pReqHdr;
PSUPVMMR0REQHDR pVMMReq;
Log4(("SUP_IOCTL_CALL_VMMR0_BIG: op=%u in=%u arg=%RX64 p/t=%RTproc/%RTthrd\n",
pReq->u.In.uOperation, pReq->Hdr.cbIn, pReq->u.In.u64Arg, RTProcSelf(), RTThreadNativeSelf()));
pVMMReq = (PSUPVMMR0REQHDR)&pReq->abReqPkt[0];
REQ_CHECK_EXPR_FMT(pReq->Hdr.cbIn >= SUP_IOCTL_CALL_VMMR0_BIG_SIZE(sizeof(SUPVMMR0REQHDR)),
("SUP_IOCTL_CALL_VMMR0_BIG: cbIn=%#x < %#lx\n", pReq->Hdr.cbIn, SUP_IOCTL_CALL_VMMR0_BIG_SIZE(sizeof(SUPVMMR0REQHDR))));
REQ_CHECK_EXPR(SUP_IOCTL_CALL_VMMR0_BIG, pVMMReq->u32Magic == SUPVMMR0REQHDR_MAGIC);
REQ_CHECK_SIZES_EX(SUP_IOCTL_CALL_VMMR0_BIG, SUP_IOCTL_CALL_VMMR0_BIG_SIZE_IN(pVMMReq->cbReq), SUP_IOCTL_CALL_VMMR0_BIG_SIZE_OUT(pVMMReq->cbReq));
/* execute */
if (RT_LIKELY(pDevExt->pfnVMMR0EntryEx))
{
if (pReq->u.In.pVMR0 == NULL)
pReq->Hdr.rc = pDevExt->pfnVMMR0EntryEx(NULL, NULL, pReq->u.In.idCpu, pReq->u.In.uOperation, pVMMReq, pReq->u.In.u64Arg, pSession);
else if (pReq->u.In.pVMR0 == pSession->pSessionVM)
pReq->Hdr.rc = pDevExt->pfnVMMR0EntryEx(pSession->pSessionGVM, pSession->pSessionVM, pReq->u.In.idCpu,
pReq->u.In.uOperation, pVMMReq, pReq->u.In.u64Arg, pSession);
else
pReq->Hdr.rc = VERR_INVALID_VM_HANDLE;
}
else
pReq->Hdr.rc = VERR_WRONG_ORDER;
if ( RT_FAILURE(pReq->Hdr.rc)
&& pReq->Hdr.rc != VERR_INTERRUPTED
&& pReq->Hdr.rc != VERR_TIMEOUT)
Log(("SUP_IOCTL_CALL_VMMR0_BIG: rc=%Rrc op=%u out=%u arg=%RX64 p/t=%RTproc/%RTthrd\n",
pReq->Hdr.rc, pReq->u.In.uOperation, pReq->Hdr.cbOut, pReq->u.In.u64Arg, RTProcSelf(), RTThreadNativeSelf()));
else
Log4(("SUP_IOCTL_CALL_VMMR0_BIG: rc=%Rrc op=%u out=%u arg=%RX64 p/t=%RTproc/%RTthrd\n",
pReq->Hdr.rc, pReq->u.In.uOperation, pReq->Hdr.cbOut, pReq->u.In.u64Arg, RTProcSelf(), RTThreadNativeSelf()));
return 0;
}
case SUP_CTL_CODE_NO_SIZE(SUP_IOCTL_GET_PAGING_MODE):
{
/* validate */
PSUPGETPAGINGMODE pReq = (PSUPGETPAGINGMODE)pReqHdr;
REQ_CHECK_SIZES(SUP_IOCTL_GET_PAGING_MODE);
/* execute */
pReq->Hdr.rc = VINF_SUCCESS;
pReq->u.Out.enmMode = SUPR0GetPagingMode();
return 0;
}
case SUP_CTL_CODE_NO_SIZE(SUP_IOCTL_LOW_ALLOC):
{
/* validate */
PSUPLOWALLOC pReq = (PSUPLOWALLOC)pReqHdr;
REQ_CHECK_EXPR(SUP_IOCTL_LOW_ALLOC, pReq->Hdr.cbIn <= SUP_IOCTL_LOW_ALLOC_SIZE_IN);
REQ_CHECK_SIZES_EX(SUP_IOCTL_LOW_ALLOC, SUP_IOCTL_LOW_ALLOC_SIZE_IN, SUP_IOCTL_LOW_ALLOC_SIZE_OUT(pReq->u.In.cPages));
/* execute */
pReq->Hdr.rc = SUPR0LowAlloc(pSession, pReq->u.In.cPages, &pReq->u.Out.pvR0, &pReq->u.Out.pvR3, &pReq->u.Out.aPages[0]);
if (RT_FAILURE(pReq->Hdr.rc))
pReq->Hdr.cbOut = sizeof(pReq->Hdr);
return 0;
}
case SUP_CTL_CODE_NO_SIZE(SUP_IOCTL_LOW_FREE):
{
/* validate */
PSUPLOWFREE pReq = (PSUPLOWFREE)pReqHdr;
REQ_CHECK_SIZES(SUP_IOCTL_LOW_FREE);
/* execute */
pReq->Hdr.rc = SUPR0LowFree(pSession, (RTHCUINTPTR)pReq->u.In.pvR3);
return 0;
}
case SUP_CTL_CODE_NO_SIZE(SUP_IOCTL_GIP_MAP):
{
/* validate */
PSUPGIPMAP pReq = (PSUPGIPMAP)pReqHdr;
REQ_CHECK_SIZES(SUP_IOCTL_GIP_MAP);
/* execute */
pReq->Hdr.rc = SUPR0GipMap(pSession, &pReq->u.Out.pGipR3, &pReq->u.Out.HCPhysGip);
if (RT_SUCCESS(pReq->Hdr.rc))
pReq->u.Out.pGipR0 = pDevExt->pGip;
return 0;
}
case SUP_CTL_CODE_NO_SIZE(SUP_IOCTL_GIP_UNMAP):
{
/* validate */
PSUPGIPUNMAP pReq = (PSUPGIPUNMAP)pReqHdr;
REQ_CHECK_SIZES(SUP_IOCTL_GIP_UNMAP);
/* execute */
pReq->Hdr.rc = SUPR0GipUnmap(pSession);
return 0;
}
case SUP_CTL_CODE_NO_SIZE(SUP_IOCTL_SET_VM_FOR_FAST):
{
/* validate */
PSUPSETVMFORFAST pReq = (PSUPSETVMFORFAST)pReqHdr;
REQ_CHECK_SIZES(SUP_IOCTL_SET_VM_FOR_FAST);
REQ_CHECK_EXPR_FMT( !pReq->u.In.pVMR0
|| ( RT_VALID_PTR(pReq->u.In.pVMR0)
&& !((uintptr_t)pReq->u.In.pVMR0 & (PAGE_SIZE - 1))),
("SUP_IOCTL_SET_VM_FOR_FAST: pVMR0=%p!\n", pReq->u.In.pVMR0));
/* execute */
RTSpinlockAcquire(pDevExt->Spinlock);
if (pSession->pSessionVM == pReq->u.In.pVMR0)
{
if (pSession->pFastIoCtrlVM == NULL)
{
pSession->pFastIoCtrlVM = pSession->pSessionVM;
RTSpinlockRelease(pDevExt->Spinlock);
pReq->Hdr.rc = VINF_SUCCESS;
}
else
{
RTSpinlockRelease(pDevExt->Spinlock);
OSDBGPRINT(("SUP_IOCTL_SET_VM_FOR_FAST: pSession->pFastIoCtrlVM=%p! (pVMR0=%p)\n",
pSession->pFastIoCtrlVM, pReq->u.In.pVMR0));
pReq->Hdr.rc = VERR_ALREADY_EXISTS;
}
}
else
{
RTSpinlockRelease(pDevExt->Spinlock);
OSDBGPRINT(("SUP_IOCTL_SET_VM_FOR_FAST: pSession->pSessionVM=%p vs pVMR0=%p)\n",
pSession->pSessionVM, pReq->u.In.pVMR0));
pReq->Hdr.rc = pSession->pSessionVM ? VERR_ACCESS_DENIED : VERR_WRONG_ORDER;
}
return 0;
}
case SUP_CTL_CODE_NO_SIZE(SUP_IOCTL_PAGE_ALLOC_EX):
{
/* validate */
PSUPPAGEALLOCEX pReq = (PSUPPAGEALLOCEX)pReqHdr;
REQ_CHECK_EXPR(SUP_IOCTL_PAGE_ALLOC_EX, pReq->Hdr.cbIn <= SUP_IOCTL_PAGE_ALLOC_EX_SIZE_IN);
REQ_CHECK_SIZES_EX(SUP_IOCTL_PAGE_ALLOC_EX, SUP_IOCTL_PAGE_ALLOC_EX_SIZE_IN, SUP_IOCTL_PAGE_ALLOC_EX_SIZE_OUT(pReq->u.In.cPages));
REQ_CHECK_EXPR_FMT(pReq->u.In.fKernelMapping || pReq->u.In.fUserMapping,
("SUP_IOCTL_PAGE_ALLOC_EX: No mapping requested!\n"));
REQ_CHECK_EXPR_FMT(pReq->u.In.fUserMapping,
("SUP_IOCTL_PAGE_ALLOC_EX: Must have user mapping!\n"));
REQ_CHECK_EXPR_FMT(!pReq->u.In.fReserved0 && !pReq->u.In.fReserved1,
("SUP_IOCTL_PAGE_ALLOC_EX: fReserved0=%d fReserved1=%d\n", pReq->u.In.fReserved0, pReq->u.In.fReserved1));
/* execute */
pReq->Hdr.rc = SUPR0PageAllocEx(pSession, pReq->u.In.cPages, 0 /* fFlags */,
pReq->u.In.fUserMapping ? &pReq->u.Out.pvR3 : NULL,
pReq->u.In.fKernelMapping ? &pReq->u.Out.pvR0 : NULL,
&pReq->u.Out.aPages[0]);
if (RT_FAILURE(pReq->Hdr.rc))
pReq->Hdr.cbOut = sizeof(pReq->Hdr);
return 0;
}
case SUP_CTL_CODE_NO_SIZE(SUP_IOCTL_PAGE_MAP_KERNEL):
{
/* validate */
PSUPPAGEMAPKERNEL pReq = (PSUPPAGEMAPKERNEL)pReqHdr;
REQ_CHECK_SIZES(SUP_IOCTL_PAGE_MAP_KERNEL);
REQ_CHECK_EXPR_FMT(!pReq->u.In.fFlags, ("SUP_IOCTL_PAGE_MAP_KERNEL: fFlags=%#x! MBZ\n", pReq->u.In.fFlags));
REQ_CHECK_EXPR_FMT(!(pReq->u.In.offSub & PAGE_OFFSET_MASK), ("SUP_IOCTL_PAGE_MAP_KERNEL: offSub=%#x\n", pReq->u.In.offSub));
REQ_CHECK_EXPR_FMT(pReq->u.In.cbSub && !(pReq->u.In.cbSub & PAGE_OFFSET_MASK),
("SUP_IOCTL_PAGE_MAP_KERNEL: cbSub=%#x\n", pReq->u.In.cbSub));
/* execute */
pReq->Hdr.rc = SUPR0PageMapKernel(pSession, pReq->u.In.pvR3, pReq->u.In.offSub, pReq->u.In.cbSub,
pReq->u.In.fFlags, &pReq->u.Out.pvR0);
if (RT_FAILURE(pReq->Hdr.rc))
pReq->Hdr.cbOut = sizeof(pReq->Hdr);
return 0;
}
case SUP_CTL_CODE_NO_SIZE(SUP_IOCTL_PAGE_PROTECT):
{
/* validate */
PSUPPAGEPROTECT pReq = (PSUPPAGEPROTECT)pReqHdr;
REQ_CHECK_SIZES(SUP_IOCTL_PAGE_PROTECT);
REQ_CHECK_EXPR_FMT(!(pReq->u.In.fProt & ~(RTMEM_PROT_READ | RTMEM_PROT_WRITE | RTMEM_PROT_EXEC | RTMEM_PROT_NONE)),
("SUP_IOCTL_PAGE_PROTECT: fProt=%#x!\n", pReq->u.In.fProt));
REQ_CHECK_EXPR_FMT(!(pReq->u.In.offSub & PAGE_OFFSET_MASK), ("SUP_IOCTL_PAGE_PROTECT: offSub=%#x\n", pReq->u.In.offSub));
REQ_CHECK_EXPR_FMT(pReq->u.In.cbSub && !(pReq->u.In.cbSub & PAGE_OFFSET_MASK),
("SUP_IOCTL_PAGE_PROTECT: cbSub=%#x\n", pReq->u.In.cbSub));
/* execute */
pReq->Hdr.rc = SUPR0PageProtect(pSession, pReq->u.In.pvR3, pReq->u.In.pvR0, pReq->u.In.offSub, pReq->u.In.cbSub, pReq->u.In.fProt);
return 0;
}
case SUP_CTL_CODE_NO_SIZE(SUP_IOCTL_PAGE_FREE):
{
/* validate */
PSUPPAGEFREE pReq = (PSUPPAGEFREE)pReqHdr;
REQ_CHECK_SIZES(SUP_IOCTL_PAGE_FREE);
/* execute */
pReq->Hdr.rc = SUPR0PageFree(pSession, pReq->u.In.pvR3);
return 0;
}
case SUP_CTL_CODE_NO_SIZE(SUP_IOCTL_CALL_SERVICE_NO_SIZE()):
{
/* validate */
PSUPCALLSERVICE pReq = (PSUPCALLSERVICE)pReqHdr;
Log4(("SUP_IOCTL_CALL_SERVICE: op=%u in=%u arg=%RX64 p/t=%RTproc/%RTthrd\n",
pReq->u.In.uOperation, pReq->Hdr.cbIn, pReq->u.In.u64Arg, RTProcSelf(), RTThreadNativeSelf()));
if (pReq->Hdr.cbIn == SUP_IOCTL_CALL_SERVICE_SIZE(0))
REQ_CHECK_SIZES_EX(SUP_IOCTL_CALL_SERVICE, SUP_IOCTL_CALL_SERVICE_SIZE_IN(0), SUP_IOCTL_CALL_SERVICE_SIZE_OUT(0));
else
{
PSUPR0SERVICEREQHDR pSrvReq = (PSUPR0SERVICEREQHDR)&pReq->abReqPkt[0];
REQ_CHECK_EXPR_FMT(pReq->Hdr.cbIn >= SUP_IOCTL_CALL_SERVICE_SIZE(sizeof(SUPR0SERVICEREQHDR)),
("SUP_IOCTL_CALL_SERVICE: cbIn=%#x < %#lx\n", pReq->Hdr.cbIn, SUP_IOCTL_CALL_SERVICE_SIZE(sizeof(SUPR0SERVICEREQHDR))));
REQ_CHECK_EXPR(SUP_IOCTL_CALL_SERVICE, pSrvReq->u32Magic == SUPR0SERVICEREQHDR_MAGIC);
REQ_CHECK_SIZES_EX(SUP_IOCTL_CALL_SERVICE, SUP_IOCTL_CALL_SERVICE_SIZE_IN(pSrvReq->cbReq), SUP_IOCTL_CALL_SERVICE_SIZE_OUT(pSrvReq->cbReq));
}
REQ_CHECK_EXPR(SUP_IOCTL_CALL_SERVICE, RTStrEnd(pReq->u.In.szName, sizeof(pReq->u.In.szName)));
/* execute */
pReq->Hdr.rc = supdrvIOCtl_CallServiceModule(pDevExt, pSession, pReq);
return 0;
}
case SUP_CTL_CODE_NO_SIZE(SUP_IOCTL_LOGGER_SETTINGS_NO_SIZE()):
{
/* validate */
PSUPLOGGERSETTINGS pReq = (PSUPLOGGERSETTINGS)pReqHdr;
size_t cbStrTab;
REQ_CHECK_SIZE_OUT(SUP_IOCTL_LOGGER_SETTINGS, SUP_IOCTL_LOGGER_SETTINGS_SIZE_OUT);
REQ_CHECK_EXPR(SUP_IOCTL_LOGGER_SETTINGS, pReq->Hdr.cbIn >= SUP_IOCTL_LOGGER_SETTINGS_SIZE_IN(1));
cbStrTab = pReq->Hdr.cbIn - SUP_IOCTL_LOGGER_SETTINGS_SIZE_IN(0);
REQ_CHECK_EXPR(SUP_IOCTL_LOGGER_SETTINGS, pReq->u.In.offGroups < cbStrTab);
REQ_CHECK_EXPR(SUP_IOCTL_LOGGER_SETTINGS, pReq->u.In.offFlags < cbStrTab);
REQ_CHECK_EXPR(SUP_IOCTL_LOGGER_SETTINGS, pReq->u.In.offDestination < cbStrTab);
REQ_CHECK_EXPR_FMT(pReq->u.In.szStrings[cbStrTab - 1] == '\0',
("SUP_IOCTL_LOGGER_SETTINGS: cbIn=%#x cbStrTab=%#zx LastChar=%d\n",
pReq->Hdr.cbIn, cbStrTab, pReq->u.In.szStrings[cbStrTab - 1]));
REQ_CHECK_EXPR(SUP_IOCTL_LOGGER_SETTINGS, pReq->u.In.fWhich <= SUPLOGGERSETTINGS_WHICH_RELEASE);
REQ_CHECK_EXPR(SUP_IOCTL_LOGGER_SETTINGS, pReq->u.In.fWhat <= SUPLOGGERSETTINGS_WHAT_DESTROY);
/* execute */
pReq->Hdr.rc = supdrvIOCtl_LoggerSettings(pReq);
return 0;
}
case SUP_CTL_CODE_NO_SIZE(SUP_IOCTL_SEM_OP2):
{
/* validate */
PSUPSEMOP2 pReq = (PSUPSEMOP2)pReqHdr;
REQ_CHECK_SIZES_EX(SUP_IOCTL_SEM_OP2, SUP_IOCTL_SEM_OP2_SIZE_IN, SUP_IOCTL_SEM_OP2_SIZE_OUT);
REQ_CHECK_EXPR(SUP_IOCTL_SEM_OP2, pReq->u.In.uReserved == 0);
/* execute */
switch (pReq->u.In.uType)
{
case SUP_SEM_TYPE_EVENT:
{
SUPSEMEVENT hEvent = (SUPSEMEVENT)(uintptr_t)pReq->u.In.hSem;
switch (pReq->u.In.uOp)
{
case SUPSEMOP2_WAIT_MS_REL:
pReq->Hdr.rc = SUPSemEventWaitNoResume(pSession, hEvent, pReq->u.In.uArg.cRelMsTimeout);
break;
case SUPSEMOP2_WAIT_NS_ABS:
pReq->Hdr.rc = SUPSemEventWaitNsAbsIntr(pSession, hEvent, pReq->u.In.uArg.uAbsNsTimeout);
break;
case SUPSEMOP2_WAIT_NS_REL:
pReq->Hdr.rc = SUPSemEventWaitNsRelIntr(pSession, hEvent, pReq->u.In.uArg.cRelNsTimeout);
break;
case SUPSEMOP2_SIGNAL:
pReq->Hdr.rc = SUPSemEventSignal(pSession, hEvent);
break;
case SUPSEMOP2_CLOSE:
pReq->Hdr.rc = SUPSemEventClose(pSession, hEvent);
break;
case SUPSEMOP2_RESET:
default:
pReq->Hdr.rc = VERR_INVALID_FUNCTION;
break;
}
break;
}
case SUP_SEM_TYPE_EVENT_MULTI:
{
SUPSEMEVENTMULTI hEventMulti = (SUPSEMEVENTMULTI)(uintptr_t)pReq->u.In.hSem;
switch (pReq->u.In.uOp)
{
case SUPSEMOP2_WAIT_MS_REL:
pReq->Hdr.rc = SUPSemEventMultiWaitNoResume(pSession, hEventMulti, pReq->u.In.uArg.cRelMsTimeout);
break;
case SUPSEMOP2_WAIT_NS_ABS:
pReq->Hdr.rc = SUPSemEventMultiWaitNsAbsIntr(pSession, hEventMulti, pReq->u.In.uArg.uAbsNsTimeout);
break;
case SUPSEMOP2_WAIT_NS_REL:
pReq->Hdr.rc = SUPSemEventMultiWaitNsRelIntr(pSession, hEventMulti, pReq->u.In.uArg.cRelNsTimeout);
break;
case SUPSEMOP2_SIGNAL:
pReq->Hdr.rc = SUPSemEventMultiSignal(pSession, hEventMulti);
break;
case SUPSEMOP2_CLOSE:
pReq->Hdr.rc = SUPSemEventMultiClose(pSession, hEventMulti);
break;
case SUPSEMOP2_RESET:
pReq->Hdr.rc = SUPSemEventMultiReset(pSession, hEventMulti);
break;
default:
pReq->Hdr.rc = VERR_INVALID_FUNCTION;
break;
}
break;
}
default:
pReq->Hdr.rc = VERR_INVALID_PARAMETER;
break;
}
return 0;
}
case SUP_CTL_CODE_NO_SIZE(SUP_IOCTL_SEM_OP3):
{
/* validate */
PSUPSEMOP3 pReq = (PSUPSEMOP3)pReqHdr;
REQ_CHECK_SIZES_EX(SUP_IOCTL_SEM_OP3, SUP_IOCTL_SEM_OP3_SIZE_IN, SUP_IOCTL_SEM_OP3_SIZE_OUT);
REQ_CHECK_EXPR(SUP_IOCTL_SEM_OP3, pReq->u.In.u32Reserved == 0 && pReq->u.In.u64Reserved == 0);
/* execute */
switch (pReq->u.In.uType)
{
case SUP_SEM_TYPE_EVENT:
{
SUPSEMEVENT hEvent = (SUPSEMEVENT)(uintptr_t)pReq->u.In.hSem;
switch (pReq->u.In.uOp)
{
case SUPSEMOP3_CREATE:
REQ_CHECK_EXPR(SUP_IOCTL_SEM_OP3, hEvent == NIL_SUPSEMEVENT);
pReq->Hdr.rc = SUPSemEventCreate(pSession, &hEvent);
pReq->u.Out.hSem = (uint32_t)(uintptr_t)hEvent;
break;
case SUPSEMOP3_GET_RESOLUTION:
REQ_CHECK_EXPR(SUP_IOCTL_SEM_OP3, hEvent == NIL_SUPSEMEVENT);
pReq->Hdr.rc = VINF_SUCCESS;
pReq->Hdr.cbOut = sizeof(*pReq);
pReq->u.Out.cNsResolution = SUPSemEventGetResolution(pSession);
break;
default:
pReq->Hdr.rc = VERR_INVALID_FUNCTION;
break;
}
break;
}
case SUP_SEM_TYPE_EVENT_MULTI:
{
SUPSEMEVENTMULTI hEventMulti = (SUPSEMEVENTMULTI)(uintptr_t)pReq->u.In.hSem;
switch (pReq->u.In.uOp)
{
case SUPSEMOP3_CREATE:
REQ_CHECK_EXPR(SUP_IOCTL_SEM_OP3, hEventMulti == NIL_SUPSEMEVENTMULTI);
pReq->Hdr.rc = SUPSemEventMultiCreate(pSession, &hEventMulti);
pReq->u.Out.hSem = (uint32_t)(uintptr_t)hEventMulti;
break;
case SUPSEMOP3_GET_RESOLUTION:
REQ_CHECK_EXPR(SUP_IOCTL_SEM_OP3, hEventMulti == NIL_SUPSEMEVENTMULTI);
pReq->Hdr.rc = VINF_SUCCESS;
pReq->u.Out.cNsResolution = SUPSemEventMultiGetResolution(pSession);
break;
default:
pReq->Hdr.rc = VERR_INVALID_FUNCTION;
break;
}
break;
}
default:
pReq->Hdr.rc = VERR_INVALID_PARAMETER;
break;
}
return 0;
}
case SUP_CTL_CODE_NO_SIZE(SUP_IOCTL_VT_CAPS):
{
/* validate */
PSUPVTCAPS pReq = (PSUPVTCAPS)pReqHdr;
REQ_CHECK_SIZES(SUP_IOCTL_VT_CAPS);
/* execute */
pReq->Hdr.rc = SUPR0QueryVTCaps(pSession, &pReq->u.Out.fCaps);
if (RT_FAILURE(pReq->Hdr.rc))
pReq->Hdr.cbOut = sizeof(pReq->Hdr);
return 0;
}
case SUP_CTL_CODE_NO_SIZE(SUP_IOCTL_TRACER_OPEN):
{
/* validate */
PSUPTRACEROPEN pReq = (PSUPTRACEROPEN)pReqHdr;
REQ_CHECK_SIZES(SUP_IOCTL_TRACER_OPEN);
/* execute */
pReq->Hdr.rc = supdrvIOCtl_TracerOpen(pDevExt, pSession, pReq->u.In.uCookie, pReq->u.In.uArg);
return 0;
}
case SUP_CTL_CODE_NO_SIZE(SUP_IOCTL_TRACER_CLOSE):
{
/* validate */
REQ_CHECK_SIZES(SUP_IOCTL_TRACER_CLOSE);
/* execute */
pReqHdr->rc = supdrvIOCtl_TracerClose(pDevExt, pSession);
return 0;
}
case SUP_CTL_CODE_NO_SIZE(SUP_IOCTL_TRACER_IOCTL):
{
/* validate */
PSUPTRACERIOCTL pReq = (PSUPTRACERIOCTL)pReqHdr;
REQ_CHECK_SIZES(SUP_IOCTL_TRACER_IOCTL);
/* execute */
pReqHdr->rc = supdrvIOCtl_TracerIOCtl(pDevExt, pSession, pReq->u.In.uCmd, pReq->u.In.uArg, &pReq->u.Out.iRetVal);
return 0;
}
case SUP_CTL_CODE_NO_SIZE(SUP_IOCTL_TRACER_UMOD_REG):
{
/* validate */
PSUPTRACERUMODREG pReq = (PSUPTRACERUMODREG)pReqHdr;
REQ_CHECK_SIZES(SUP_IOCTL_TRACER_UMOD_REG);
if (!RTStrEnd(pReq->u.In.szName, sizeof(pReq->u.In.szName)))
return VERR_INVALID_PARAMETER;
/* execute */
pReqHdr->rc = supdrvIOCtl_TracerUmodRegister(pDevExt, pSession,
pReq->u.In.R3PtrVtgHdr, pReq->u.In.uVtgHdrAddr,
pReq->u.In.R3PtrStrTab, pReq->u.In.cbStrTab,
pReq->u.In.szName, pReq->u.In.fFlags);
return 0;
}
case SUP_CTL_CODE_NO_SIZE(SUP_IOCTL_TRACER_UMOD_DEREG):
{
/* validate */
PSUPTRACERUMODDEREG pReq = (PSUPTRACERUMODDEREG)pReqHdr;
REQ_CHECK_SIZES(SUP_IOCTL_TRACER_UMOD_DEREG);
/* execute */
pReqHdr->rc = supdrvIOCtl_TracerUmodDeregister(pDevExt, pSession, pReq->u.In.pVtgHdr);
return 0;
}
case SUP_CTL_CODE_NO_SIZE(SUP_IOCTL_TRACER_UMOD_FIRE_PROBE):
{
/* validate */
PSUPTRACERUMODFIREPROBE pReq = (PSUPTRACERUMODFIREPROBE)pReqHdr;
REQ_CHECK_SIZES(SUP_IOCTL_TRACER_UMOD_FIRE_PROBE);
supdrvIOCtl_TracerUmodProbeFire(pDevExt, pSession, &pReq->u.In);
pReqHdr->rc = VINF_SUCCESS;
return 0;
}
case SUP_CTL_CODE_NO_SIZE(SUP_IOCTL_MSR_PROBER):
{
/* validate */
PSUPMSRPROBER pReq = (PSUPMSRPROBER)pReqHdr;
REQ_CHECK_SIZES(SUP_IOCTL_MSR_PROBER);
REQ_CHECK_EXPR(SUP_IOCTL_MSR_PROBER,
pReq->u.In.enmOp > SUPMSRPROBEROP_INVALID && pReq->u.In.enmOp < SUPMSRPROBEROP_END);
pReqHdr->rc = supdrvIOCtl_MsrProber(pDevExt, pReq);
return 0;
}
case SUP_CTL_CODE_NO_SIZE(SUP_IOCTL_RESUME_SUSPENDED_KBDS):
{
/* validate */
REQ_CHECK_SIZES(SUP_IOCTL_RESUME_SUSPENDED_KBDS);
pReqHdr->rc = supdrvIOCtl_ResumeSuspendedKbds();
return 0;
}
case SUP_CTL_CODE_NO_SIZE(SUP_IOCTL_TSC_DELTA_MEASURE):
{
/* validate */
PSUPTSCDELTAMEASURE pReq = (PSUPTSCDELTAMEASURE)pReqHdr;
REQ_CHECK_SIZES(SUP_IOCTL_TSC_DELTA_MEASURE);
pReqHdr->rc = supdrvIOCtl_TscDeltaMeasure(pDevExt, pSession, pReq);
return 0;
}
case SUP_CTL_CODE_NO_SIZE(SUP_IOCTL_TSC_READ):
{
/* validate */
PSUPTSCREAD pReq = (PSUPTSCREAD)pReqHdr;
REQ_CHECK_SIZES(SUP_IOCTL_TSC_READ);
pReqHdr->rc = supdrvIOCtl_TscRead(pDevExt, pSession, pReq);
return 0;
}
case SUP_CTL_CODE_NO_SIZE(SUP_IOCTL_GIP_SET_FLAGS):
{
/* validate */
PSUPGIPSETFLAGS pReq = (PSUPGIPSETFLAGS)pReqHdr;
REQ_CHECK_SIZES(SUP_IOCTL_GIP_SET_FLAGS);
pReqHdr->rc = supdrvIOCtl_GipSetFlags(pDevExt, pSession, pReq->u.In.fOrMask, pReq->u.In.fAndMask);
return 0;
}
case SUP_CTL_CODE_NO_SIZE(SUP_IOCTL_UCODE_REV):
{
/* validate */
PSUPUCODEREV pReq = (PSUPUCODEREV)pReqHdr;
REQ_CHECK_SIZES(SUP_IOCTL_UCODE_REV);
/* execute */
pReq->Hdr.rc = SUPR0QueryUcodeRev(pSession, &pReq->u.Out.MicrocodeRev);
if (RT_FAILURE(pReq->Hdr.rc))
pReq->Hdr.cbOut = sizeof(pReq->Hdr);
return 0;
}
case SUP_CTL_CODE_NO_SIZE(SUP_IOCTL_GET_HWVIRT_MSRS):
{
/* validate */
PSUPGETHWVIRTMSRS pReq = (PSUPGETHWVIRTMSRS)pReqHdr;
REQ_CHECK_SIZES(SUP_IOCTL_GET_HWVIRT_MSRS);
REQ_CHECK_EXPR_FMT(!pReq->u.In.fReserved0 && !pReq->u.In.fReserved1 && !pReq->u.In.fReserved2,
("SUP_IOCTL_GET_HWVIRT_MSRS: fReserved0=%d fReserved1=%d fReserved2=%d\n", pReq->u.In.fReserved0,
pReq->u.In.fReserved1, pReq->u.In.fReserved2));
/* execute */
pReq->Hdr.rc = SUPR0GetHwvirtMsrs(&pReq->u.Out.HwvirtMsrs, 0 /* fCaps */, pReq->u.In.fForce);
if (RT_FAILURE(pReq->Hdr.rc))
pReq->Hdr.cbOut = sizeof(pReq->Hdr);
return 0;
}
default:
Log(("Unknown IOCTL %#lx\n", (long)uIOCtl));
break;
}
return VERR_GENERAL_FAILURE;
}
/**
* I/O Control inner worker for the restricted operations.
*
* @returns IPRT status code.
* @retval VERR_INVALID_PARAMETER if the request is invalid.
*
* @param uIOCtl Function number.
* @param pDevExt Device extention.
* @param pSession Session data.
* @param pReqHdr The request header.
*/
static int supdrvIOCtlInnerRestricted(uintptr_t uIOCtl, PSUPDRVDEVEXT pDevExt, PSUPDRVSESSION pSession, PSUPREQHDR pReqHdr)
{
/*
* The switch.
*/
switch (SUP_CTL_CODE_NO_SIZE(uIOCtl))
{
case SUP_CTL_CODE_NO_SIZE(SUP_IOCTL_COOKIE):
{
PSUPCOOKIE pReq = (PSUPCOOKIE)pReqHdr;
REQ_CHECK_SIZES(SUP_IOCTL_COOKIE);
if (strncmp(pReq->u.In.szMagic, SUPCOOKIE_MAGIC, sizeof(pReq->u.In.szMagic)))
{
OSDBGPRINT(("SUP_IOCTL_COOKIE: invalid magic %.16s\n", pReq->u.In.szMagic));
pReq->Hdr.rc = VERR_INVALID_MAGIC;
return 0;
}
/*
* Match the version.
* The current logic is very simple, match the major interface version.
*/
if ( pReq->u.In.u32MinVersion > SUPDRV_IOC_VERSION
|| (pReq->u.In.u32MinVersion & 0xffff0000) != (SUPDRV_IOC_VERSION & 0xffff0000))
{
OSDBGPRINT(("SUP_IOCTL_COOKIE: Version mismatch. Requested: %#x Min: %#x Current: %#x\n",
pReq->u.In.u32ReqVersion, pReq->u.In.u32MinVersion, SUPDRV_IOC_VERSION));
pReq->u.Out.u32Cookie = 0xffffffff;
pReq->u.Out.u32SessionCookie = 0xffffffff;
pReq->u.Out.u32SessionVersion = 0xffffffff;
pReq->u.Out.u32DriverVersion = SUPDRV_IOC_VERSION;
pReq->u.Out.pSession = NULL;
pReq->u.Out.cFunctions = 0;
pReq->Hdr.rc = VERR_VERSION_MISMATCH;
return 0;
}
/*
* Fill in return data and be gone.
* N.B. The first one to change SUPDRV_IOC_VERSION shall makes sure that
* u32SessionVersion <= u32ReqVersion!
*/
/** @todo Somehow validate the client and negotiate a secure cookie... */
pReq->u.Out.u32Cookie = pDevExt->u32Cookie;
pReq->u.Out.u32SessionCookie = pSession->u32Cookie;
pReq->u.Out.u32SessionVersion = SUPDRV_IOC_VERSION;
pReq->u.Out.u32DriverVersion = SUPDRV_IOC_VERSION;
pReq->u.Out.pSession = NULL;
pReq->u.Out.cFunctions = 0;
pReq->Hdr.rc = VINF_SUCCESS;
return 0;
}
case SUP_CTL_CODE_NO_SIZE(SUP_IOCTL_VT_CAPS):
{
/* validate */
PSUPVTCAPS pReq = (PSUPVTCAPS)pReqHdr;
REQ_CHECK_SIZES(SUP_IOCTL_VT_CAPS);
/* execute */
pReq->Hdr.rc = SUPR0QueryVTCaps(pSession, &pReq->u.Out.fCaps);
if (RT_FAILURE(pReq->Hdr.rc))
pReq->Hdr.cbOut = sizeof(pReq->Hdr);
return 0;
}
default:
Log(("Unknown IOCTL %#lx\n", (long)uIOCtl));
break;
}
return VERR_GENERAL_FAILURE;
}
/**
* I/O Control worker.
*
* @returns IPRT status code.
* @retval VERR_INVALID_PARAMETER if the request is invalid.
*
* @param uIOCtl Function number.
* @param pDevExt Device extention.
* @param pSession Session data.
* @param pReqHdr The request header.
* @param cbReq The size of the request buffer.
*/
int VBOXCALL supdrvIOCtl(uintptr_t uIOCtl, PSUPDRVDEVEXT pDevExt, PSUPDRVSESSION pSession, PSUPREQHDR pReqHdr, size_t cbReq)
{
int rc;
VBOXDRV_IOCTL_ENTRY(pSession, uIOCtl, pReqHdr);
/*
* Validate the request.
*/
if (RT_UNLIKELY(cbReq < sizeof(*pReqHdr)))
{
OSDBGPRINT(("vboxdrv: Bad ioctl request size; cbReq=%#lx\n", (long)cbReq));
VBOXDRV_IOCTL_RETURN(pSession, uIOCtl, pReqHdr, VERR_INVALID_PARAMETER, VINF_SUCCESS);
return VERR_INVALID_PARAMETER;
}
if (RT_UNLIKELY( (pReqHdr->fFlags & SUPREQHDR_FLAGS_MAGIC_MASK) != SUPREQHDR_FLAGS_MAGIC
|| pReqHdr->cbIn < sizeof(*pReqHdr)
|| pReqHdr->cbIn > cbReq
|| pReqHdr->cbOut < sizeof(*pReqHdr)
|| pReqHdr->cbOut > cbReq))
{
OSDBGPRINT(("vboxdrv: Bad ioctl request header; cbIn=%#lx cbOut=%#lx fFlags=%#lx\n",
(long)pReqHdr->cbIn, (long)pReqHdr->cbOut, (long)pReqHdr->fFlags));
VBOXDRV_IOCTL_RETURN(pSession, uIOCtl, pReqHdr, VERR_INVALID_PARAMETER, VINF_SUCCESS);
return VERR_INVALID_PARAMETER;
}
if (RT_UNLIKELY(!RT_VALID_PTR(pSession)))
{
OSDBGPRINT(("vboxdrv: Invalid pSession value %p (ioctl=%p)\n", pSession, (void *)uIOCtl));
VBOXDRV_IOCTL_RETURN(pSession, uIOCtl, pReqHdr, VERR_INVALID_PARAMETER, VINF_SUCCESS);
return VERR_INVALID_PARAMETER;
}
if (RT_UNLIKELY(uIOCtl == SUP_IOCTL_COOKIE))
{
if (pReqHdr->u32Cookie != SUPCOOKIE_INITIAL_COOKIE)
{
OSDBGPRINT(("SUP_IOCTL_COOKIE: bad cookie %#lx\n", (long)pReqHdr->u32Cookie));
VBOXDRV_IOCTL_RETURN(pSession, uIOCtl, pReqHdr, VERR_INVALID_PARAMETER, VINF_SUCCESS);
return VERR_INVALID_PARAMETER;
}
}
else if (RT_UNLIKELY( pReqHdr->u32Cookie != pDevExt->u32Cookie
|| pReqHdr->u32SessionCookie != pSession->u32Cookie))
{
OSDBGPRINT(("vboxdrv: bad cookie %#lx / %#lx.\n", (long)pReqHdr->u32Cookie, (long)pReqHdr->u32SessionCookie));
VBOXDRV_IOCTL_RETURN(pSession, uIOCtl, pReqHdr, VERR_INVALID_PARAMETER, VINF_SUCCESS);
return VERR_INVALID_PARAMETER;
}
/*
* Hand it to an inner function to avoid lots of unnecessary return tracepoints.
*/
if (pSession->fUnrestricted)
rc = supdrvIOCtlInnerUnrestricted(uIOCtl, pDevExt, pSession, pReqHdr);
else
rc = supdrvIOCtlInnerRestricted(uIOCtl, pDevExt, pSession, pReqHdr);
VBOXDRV_IOCTL_RETURN(pSession, uIOCtl, pReqHdr, pReqHdr->rc, rc);
return rc;
}
/**
* Inter-Driver Communication (IDC) worker.
*
* @returns VBox status code.
* @retval VINF_SUCCESS on success.
* @retval VERR_INVALID_PARAMETER if the request is invalid.
* @retval VERR_NOT_SUPPORTED if the request isn't supported.
*
* @param uReq The request (function) code.
* @param pDevExt Device extention.
* @param pSession Session data.
* @param pReqHdr The request header.
*/
int VBOXCALL supdrvIDC(uintptr_t uReq, PSUPDRVDEVEXT pDevExt, PSUPDRVSESSION pSession, PSUPDRVIDCREQHDR pReqHdr)
{
/*
* The OS specific code has already validated the pSession
* pointer, and the request size being greater or equal to
* size of the header.
*
* So, just check that pSession is a kernel context session.
*/
if (RT_UNLIKELY( pSession
&& pSession->R0Process != NIL_RTR0PROCESS))
return VERR_INVALID_PARAMETER;
/*
* Validation macro.
*/
#define REQ_CHECK_IDC_SIZE(Name, cbExpect) \
do { \
if (RT_UNLIKELY(pReqHdr->cb != (cbExpect))) \
{ \
OSDBGPRINT(( #Name ": Invalid input/output sizes. cb=%ld expected %ld.\n", \
(long)pReqHdr->cb, (long)(cbExpect))); \
return pReqHdr->rc = VERR_INVALID_PARAMETER; \
} \
} while (0)
switch (uReq)
{
case SUPDRV_IDC_REQ_CONNECT:
{
PSUPDRVIDCREQCONNECT pReq = (PSUPDRVIDCREQCONNECT)pReqHdr;
REQ_CHECK_IDC_SIZE(SUPDRV_IDC_REQ_CONNECT, sizeof(*pReq));
/*
* Validate the cookie and other input.
*/
if (pReq->Hdr.pSession != NULL)
{
OSDBGPRINT(("SUPDRV_IDC_REQ_CONNECT: Hdr.pSession=%p expected NULL!\n", pReq->Hdr.pSession));
return pReqHdr->rc = VERR_INVALID_PARAMETER;
}
if (pReq->u.In.u32MagicCookie != SUPDRVIDCREQ_CONNECT_MAGIC_COOKIE)
{
OSDBGPRINT(("SUPDRV_IDC_REQ_CONNECT: u32MagicCookie=%#x expected %#x!\n",
(unsigned)pReq->u.In.u32MagicCookie, (unsigned)SUPDRVIDCREQ_CONNECT_MAGIC_COOKIE));
return pReqHdr->rc = VERR_INVALID_PARAMETER;
}
if ( pReq->u.In.uMinVersion > pReq->u.In.uReqVersion
|| (pReq->u.In.uMinVersion & UINT32_C(0xffff0000)) != (pReq->u.In.uReqVersion & UINT32_C(0xffff0000)))
{
OSDBGPRINT(("SUPDRV_IDC_REQ_CONNECT: uMinVersion=%#x uMaxVersion=%#x doesn't match!\n",
pReq->u.In.uMinVersion, pReq->u.In.uReqVersion));
return pReqHdr->rc = VERR_INVALID_PARAMETER;
}
if (pSession != NULL)
{
OSDBGPRINT(("SUPDRV_IDC_REQ_CONNECT: pSession=%p expected NULL!\n", pSession));
return pReqHdr->rc = VERR_INVALID_PARAMETER;
}
/*
* Match the version.
* The current logic is very simple, match the major interface version.
*/
if ( pReq->u.In.uMinVersion > SUPDRV_IDC_VERSION
|| (pReq->u.In.uMinVersion & 0xffff0000) != (SUPDRV_IDC_VERSION & 0xffff0000))
{
OSDBGPRINT(("SUPDRV_IDC_REQ_CONNECT: Version mismatch. Requested: %#x Min: %#x Current: %#x\n",
pReq->u.In.uReqVersion, pReq->u.In.uMinVersion, (unsigned)SUPDRV_IDC_VERSION));
pReq->u.Out.pSession = NULL;
pReq->u.Out.uSessionVersion = 0xffffffff;
pReq->u.Out.uDriverVersion = SUPDRV_IDC_VERSION;
pReq->u.Out.uDriverRevision = VBOX_SVN_REV;
pReq->Hdr.rc = VERR_VERSION_MISMATCH;
return VINF_SUCCESS;
}
pReq->u.Out.pSession = NULL;
pReq->u.Out.uSessionVersion = SUPDRV_IDC_VERSION;
pReq->u.Out.uDriverVersion = SUPDRV_IDC_VERSION;
pReq->u.Out.uDriverRevision = VBOX_SVN_REV;
pReq->Hdr.rc = supdrvCreateSession(pDevExt, false /* fUser */, true /*fUnrestricted*/, &pSession);
if (RT_FAILURE(pReq->Hdr.rc))
{
OSDBGPRINT(("SUPDRV_IDC_REQ_CONNECT: failed to create session, rc=%d\n", pReq->Hdr.rc));
return VINF_SUCCESS;
}
pReq->u.Out.pSession = pSession;
pReq->Hdr.pSession = pSession;
return VINF_SUCCESS;
}
case SUPDRV_IDC_REQ_DISCONNECT:
{
REQ_CHECK_IDC_SIZE(SUPDRV_IDC_REQ_DISCONNECT, sizeof(*pReqHdr));
supdrvSessionRelease(pSession);
return pReqHdr->rc = VINF_SUCCESS;
}
case SUPDRV_IDC_REQ_GET_SYMBOL:
{
PSUPDRVIDCREQGETSYM pReq = (PSUPDRVIDCREQGETSYM)pReqHdr;
REQ_CHECK_IDC_SIZE(SUPDRV_IDC_REQ_GET_SYMBOL, sizeof(*pReq));
pReq->Hdr.rc = supdrvIDC_LdrGetSymbol(pDevExt, pSession, pReq);
return VINF_SUCCESS;
}
case SUPDRV_IDC_REQ_COMPONENT_REGISTER_FACTORY:
{
PSUPDRVIDCREQCOMPREGFACTORY pReq = (PSUPDRVIDCREQCOMPREGFACTORY)pReqHdr;
REQ_CHECK_IDC_SIZE(SUPDRV_IDC_REQ_COMPONENT_REGISTER_FACTORY, sizeof(*pReq));
pReq->Hdr.rc = SUPR0ComponentRegisterFactory(pSession, pReq->u.In.pFactory);
return VINF_SUCCESS;
}
case SUPDRV_IDC_REQ_COMPONENT_DEREGISTER_FACTORY:
{
PSUPDRVIDCREQCOMPDEREGFACTORY pReq = (PSUPDRVIDCREQCOMPDEREGFACTORY)pReqHdr;
REQ_CHECK_IDC_SIZE(SUPDRV_IDC_REQ_COMPONENT_DEREGISTER_FACTORY, sizeof(*pReq));
pReq->Hdr.rc = SUPR0ComponentDeregisterFactory(pSession, pReq->u.In.pFactory);
return VINF_SUCCESS;
}
default:
Log(("Unknown IDC %#lx\n", (long)uReq));
break;
}
#undef REQ_CHECK_IDC_SIZE
return VERR_NOT_SUPPORTED;
}
/**
* Register a object for reference counting.
* The object is registered with one reference in the specified session.
*
* @returns Unique identifier on success (pointer).
* All future reference must use this identifier.
* @returns NULL on failure.
* @param pSession The caller's session.
* @param enmType The object type.
* @param pfnDestructor The destructore function which will be called when the reference count reaches 0.
* @param pvUser1 The first user argument.
* @param pvUser2 The second user argument.
*/
SUPR0DECL(void *) SUPR0ObjRegister(PSUPDRVSESSION pSession, SUPDRVOBJTYPE enmType, PFNSUPDRVDESTRUCTOR pfnDestructor, void *pvUser1, void *pvUser2)
{
PSUPDRVDEVEXT pDevExt = pSession->pDevExt;
PSUPDRVOBJ pObj;
PSUPDRVUSAGE pUsage;
/*
* Validate the input.
*/
AssertReturn(SUP_IS_SESSION_VALID(pSession), NULL);
AssertReturn(enmType > SUPDRVOBJTYPE_INVALID && enmType < SUPDRVOBJTYPE_END, NULL);
AssertPtrReturn(pfnDestructor, NULL);
/*
* Allocate and initialize the object.
*/
pObj = (PSUPDRVOBJ)RTMemAlloc(sizeof(*pObj));
if (!pObj)
return NULL;
pObj->u32Magic = SUPDRVOBJ_MAGIC;
pObj->enmType = enmType;
pObj->pNext = NULL;
pObj->cUsage = 1;
pObj->pfnDestructor = pfnDestructor;
pObj->pvUser1 = pvUser1;
pObj->pvUser2 = pvUser2;
pObj->CreatorUid = pSession->Uid;
pObj->CreatorGid = pSession->Gid;
pObj->CreatorProcess= pSession->Process;
supdrvOSObjInitCreator(pObj, pSession);
/*
* Allocate the usage record.
* (We keep freed usage records around to simplify SUPR0ObjAddRefEx().)
*/
RTSpinlockAcquire(pDevExt->Spinlock);
pUsage = pDevExt->pUsageFree;
if (pUsage)
pDevExt->pUsageFree = pUsage->pNext;
else
{
RTSpinlockRelease(pDevExt->Spinlock);
pUsage = (PSUPDRVUSAGE)RTMemAlloc(sizeof(*pUsage));
if (!pUsage)
{
RTMemFree(pObj);
return NULL;
}
RTSpinlockAcquire(pDevExt->Spinlock);
}
/*
* Insert the object and create the session usage record.
*/
/* The object. */
pObj->pNext = pDevExt->pObjs;
pDevExt->pObjs = pObj;
/* The session record. */
pUsage->cUsage = 1;
pUsage->pObj = pObj;
pUsage->pNext = pSession->pUsage;
/* Log2(("SUPR0ObjRegister: pUsage=%p:{.pObj=%p, .pNext=%p}\n", pUsage, pUsage->pObj, pUsage->pNext)); */
pSession->pUsage = pUsage;
RTSpinlockRelease(pDevExt->Spinlock);
Log(("SUPR0ObjRegister: returns %p (pvUser1=%p, pvUser=%p)\n", pObj, pvUser1, pvUser2));
return pObj;
}
SUPR0_EXPORT_SYMBOL(SUPR0ObjRegister);
/**
* Increment the reference counter for the object associating the reference
* with the specified session.
*
* @returns IPRT status code.
* @param pvObj The identifier returned by SUPR0ObjRegister().
* @param pSession The session which is referencing the object.
*
* @remarks The caller should not own any spinlocks and must carefully protect
* itself against potential race with the destructor so freed memory
* isn't accessed here.
*/
SUPR0DECL(int) SUPR0ObjAddRef(void *pvObj, PSUPDRVSESSION pSession)
{
return SUPR0ObjAddRefEx(pvObj, pSession, false /* fNoBlocking */);
}
SUPR0_EXPORT_SYMBOL(SUPR0ObjAddRef);
/**
* Increment the reference counter for the object associating the reference
* with the specified session.
*
* @returns IPRT status code.
* @retval VERR_TRY_AGAIN if fNoBlocking was set and a new usage record
* couldn't be allocated. (If you see this you're not doing the right
* thing and it won't ever work reliably.)
*
* @param pvObj The identifier returned by SUPR0ObjRegister().
* @param pSession The session which is referencing the object.
* @param fNoBlocking Set if it's not OK to block. Never try to make the
* first reference to an object in a session with this
* argument set.
*
* @remarks The caller should not own any spinlocks and must carefully protect
* itself against potential race with the destructor so freed memory
* isn't accessed here.
*/
SUPR0DECL(int) SUPR0ObjAddRefEx(void *pvObj, PSUPDRVSESSION pSession, bool fNoBlocking)
{
PSUPDRVDEVEXT pDevExt = pSession->pDevExt;
PSUPDRVOBJ pObj = (PSUPDRVOBJ)pvObj;
int rc = VINF_SUCCESS;
PSUPDRVUSAGE pUsagePre;
PSUPDRVUSAGE pUsage;
/*
* Validate the input.
* Be ready for the destruction race (someone might be stuck in the
* destructor waiting a lock we own).
*/
AssertReturn(SUP_IS_SESSION_VALID(pSession), VERR_INVALID_PARAMETER);
AssertPtrReturn(pObj, VERR_INVALID_POINTER);
AssertMsgReturn(pObj->u32Magic == SUPDRVOBJ_MAGIC || pObj->u32Magic == SUPDRVOBJ_MAGIC_DEAD,
("Invalid pvObj=%p magic=%#x (expected %#x or %#x)\n", pvObj, pObj->u32Magic, SUPDRVOBJ_MAGIC, SUPDRVOBJ_MAGIC_DEAD),
VERR_INVALID_PARAMETER);
RTSpinlockAcquire(pDevExt->Spinlock);
if (RT_UNLIKELY(pObj->u32Magic != SUPDRVOBJ_MAGIC))
{
RTSpinlockRelease(pDevExt->Spinlock);
AssertMsgFailed(("pvObj=%p magic=%#x\n", pvObj, pObj->u32Magic));
return VERR_WRONG_ORDER;
}
/*
* Preallocate the usage record if we can.
*/
pUsagePre = pDevExt->pUsageFree;
if (pUsagePre)
pDevExt->pUsageFree = pUsagePre->pNext;
else if (!fNoBlocking)
{
RTSpinlockRelease(pDevExt->Spinlock);
pUsagePre = (PSUPDRVUSAGE)RTMemAlloc(sizeof(*pUsagePre));
if (!pUsagePre)
return VERR_NO_MEMORY;
RTSpinlockAcquire(pDevExt->Spinlock);
if (RT_UNLIKELY(pObj->u32Magic != SUPDRVOBJ_MAGIC))
{
RTSpinlockRelease(pDevExt->Spinlock);
AssertMsgFailed(("pvObj=%p magic=%#x\n", pvObj, pObj->u32Magic));
return VERR_WRONG_ORDER;
}
}
/*
* Reference the object.
*/
pObj->cUsage++;
/*
* Look for the session record.
*/
for (pUsage = pSession->pUsage; pUsage; pUsage = pUsage->pNext)
{
/*Log(("SUPR0AddRef: pUsage=%p:{.pObj=%p, .pNext=%p}\n", pUsage, pUsage->pObj, pUsage->pNext));*/
if (pUsage->pObj == pObj)
break;
}
if (pUsage)
pUsage->cUsage++;
else if (pUsagePre)
{
/* create a new session record. */
pUsagePre->cUsage = 1;
pUsagePre->pObj = pObj;
pUsagePre->pNext = pSession->pUsage;
pSession->pUsage = pUsagePre;
/*Log(("SUPR0AddRef: pUsagePre=%p:{.pObj=%p, .pNext=%p}\n", pUsagePre, pUsagePre->pObj, pUsagePre->pNext));*/
pUsagePre = NULL;
}
else
{
pObj->cUsage--;
rc = VERR_TRY_AGAIN;
}
/*
* Put any unused usage record into the free list..
*/
if (pUsagePre)
{
pUsagePre->pNext = pDevExt->pUsageFree;
pDevExt->pUsageFree = pUsagePre;
}
RTSpinlockRelease(pDevExt->Spinlock);
return rc;
}
SUPR0_EXPORT_SYMBOL(SUPR0ObjAddRefEx);
/**
* Decrement / destroy a reference counter record for an object.
*
* The object is uniquely identified by pfnDestructor+pvUser1+pvUser2.
*
* @returns IPRT status code.
* @retval VINF_SUCCESS if not destroyed.
* @retval VINF_OBJECT_DESTROYED if it's destroyed by this release call.
* @retval VERR_INVALID_PARAMETER if the object isn't valid. Will assert in
* string builds.
*
* @param pvObj The identifier returned by SUPR0ObjRegister().
* @param pSession The session which is referencing the object.
*/
SUPR0DECL(int) SUPR0ObjRelease(void *pvObj, PSUPDRVSESSION pSession)
{
PSUPDRVDEVEXT pDevExt = pSession->pDevExt;
PSUPDRVOBJ pObj = (PSUPDRVOBJ)pvObj;
int rc = VERR_INVALID_PARAMETER;
PSUPDRVUSAGE pUsage;
PSUPDRVUSAGE pUsagePrev;
/*
* Validate the input.
*/
AssertReturn(SUP_IS_SESSION_VALID(pSession), VERR_INVALID_PARAMETER);
AssertMsgReturn(RT_VALID_PTR(pObj) && pObj->u32Magic == SUPDRVOBJ_MAGIC,
("Invalid pvObj=%p magic=%#x (expected %#x)\n", pvObj, pObj ? pObj->u32Magic : 0, SUPDRVOBJ_MAGIC),
VERR_INVALID_PARAMETER);
/*
* Acquire the spinlock and look for the usage record.
*/
RTSpinlockAcquire(pDevExt->Spinlock);
for (pUsagePrev = NULL, pUsage = pSession->pUsage;
pUsage;
pUsagePrev = pUsage, pUsage = pUsage->pNext)
{
/*Log2(("SUPR0ObjRelease: pUsage=%p:{.pObj=%p, .pNext=%p}\n", pUsage, pUsage->pObj, pUsage->pNext));*/
if (pUsage->pObj == pObj)
{
rc = VINF_SUCCESS;
AssertMsg(pUsage->cUsage >= 1 && pObj->cUsage >= pUsage->cUsage, ("glob %d; sess %d\n", pObj->cUsage, pUsage->cUsage));
if (pUsage->cUsage > 1)
{
pObj->cUsage--;
pUsage->cUsage--;
}
else
{
/*
* Free the session record.
*/
if (pUsagePrev)
pUsagePrev->pNext = pUsage->pNext;
else
pSession->pUsage = pUsage->pNext;
pUsage->pNext = pDevExt->pUsageFree;
pDevExt->pUsageFree = pUsage;
/* What about the object? */
if (pObj->cUsage > 1)
pObj->cUsage--;
else
{
/*
* Object is to be destroyed, unlink it.
*/
pObj->u32Magic = SUPDRVOBJ_MAGIC_DEAD;
rc = VINF_OBJECT_DESTROYED;
if (pDevExt->pObjs == pObj)
pDevExt->pObjs = pObj->pNext;
else
{
PSUPDRVOBJ pObjPrev;
for (pObjPrev = pDevExt->pObjs; pObjPrev; pObjPrev = pObjPrev->pNext)
if (pObjPrev->pNext == pObj)
{
pObjPrev->pNext = pObj->pNext;
break;
}
Assert(pObjPrev);
}
}
}
break;
}
}
RTSpinlockRelease(pDevExt->Spinlock);
/*
* Call the destructor and free the object if required.
*/
if (rc == VINF_OBJECT_DESTROYED)
{
Log(("SUPR0ObjRelease: destroying %p/%d (%p/%p) cpid=%RTproc pid=%RTproc dtor=%p\n",
pObj, pObj->enmType, pObj->pvUser1, pObj->pvUser2, pObj->CreatorProcess, RTProcSelf(), pObj->pfnDestructor));
if (pObj->pfnDestructor)
pObj->pfnDestructor(pObj, pObj->pvUser1, pObj->pvUser2);
RTMemFree(pObj);
}
AssertMsg(pUsage, ("pvObj=%p\n", pvObj));
return rc;
}
SUPR0_EXPORT_SYMBOL(SUPR0ObjRelease);
/**
* Verifies that the current process can access the specified object.
*
* @returns The following IPRT status code:
* @retval VINF_SUCCESS if access was granted.
* @retval VERR_PERMISSION_DENIED if denied access.
* @retval VERR_INVALID_PARAMETER if invalid parameter.
*
* @param pvObj The identifier returned by SUPR0ObjRegister().
* @param pSession The session which wishes to access the object.
* @param pszObjName Object string name. This is optional and depends on the object type.
*
* @remark The caller is responsible for making sure the object isn't removed while
* we're inside this function. If uncertain about this, just call AddRef before calling us.
*/
SUPR0DECL(int) SUPR0ObjVerifyAccess(void *pvObj, PSUPDRVSESSION pSession, const char *pszObjName)
{
PSUPDRVOBJ pObj = (PSUPDRVOBJ)pvObj;
int rc;
/*
* Validate the input.
*/
AssertReturn(SUP_IS_SESSION_VALID(pSession), VERR_INVALID_PARAMETER);
AssertMsgReturn(RT_VALID_PTR(pObj) && pObj->u32Magic == SUPDRVOBJ_MAGIC,
("Invalid pvObj=%p magic=%#x (exepcted %#x)\n", pvObj, pObj ? pObj->u32Magic : 0, SUPDRVOBJ_MAGIC),
VERR_INVALID_PARAMETER);
/*
* Check access. (returns true if a decision has been made.)
*/
rc = VERR_INTERNAL_ERROR;
if (supdrvOSObjCanAccess(pObj, pSession, pszObjName, &rc))
return rc;
/*
* Default policy is to allow the user to access his own
* stuff but nothing else.
*/
if (pObj->CreatorUid == pSession->Uid)
return VINF_SUCCESS;
return VERR_PERMISSION_DENIED;
}
SUPR0_EXPORT_SYMBOL(SUPR0ObjVerifyAccess);
/**
* API for the VMMR0 module to get the SUPDRVSESSION::pSessionVM member.
*
* @returns The associated VM pointer.
* @param pSession The session of the current thread.
*/
SUPR0DECL(PVM) SUPR0GetSessionVM(PSUPDRVSESSION pSession)
{
AssertReturn(SUP_IS_SESSION_VALID(pSession), NULL);
return pSession->pSessionVM;
}
SUPR0_EXPORT_SYMBOL(SUPR0GetSessionVM);
/**
* API for the VMMR0 module to get the SUPDRVSESSION::pSessionGVM member.
*
* @returns The associated GVM pointer.
* @param pSession The session of the current thread.
*/
SUPR0DECL(PGVM) SUPR0GetSessionGVM(PSUPDRVSESSION pSession)
{
AssertReturn(SUP_IS_SESSION_VALID(pSession), NULL);
return pSession->pSessionGVM;
}
SUPR0_EXPORT_SYMBOL(SUPR0GetSessionGVM);
/**
* API for the VMMR0 module to work the SUPDRVSESSION::pSessionVM member.
*
* This will fail if there is already a VM associated with the session and pVM
* isn't NULL.
*
* @retval VINF_SUCCESS
* @retval VERR_ALREADY_EXISTS if there already is a VM associated with the
* session.
* @retval VERR_INVALID_PARAMETER if only one of the parameters are NULL or if
* the session is invalid.
*
* @param pSession The session of the current thread.
* @param pGVM The GVM to associate with the session. Pass NULL to
* dissassociate.
* @param pVM The VM to associate with the session. Pass NULL to
* dissassociate.
*/
SUPR0DECL(int) SUPR0SetSessionVM(PSUPDRVSESSION pSession, PGVM pGVM, PVM pVM)
{
AssertReturn(SUP_IS_SESSION_VALID(pSession), VERR_INVALID_PARAMETER);
AssertReturn((pGVM != NULL) == (pVM != NULL), VERR_INVALID_PARAMETER);
RTSpinlockAcquire(pSession->pDevExt->Spinlock);
if (pGVM)
{
if (!pSession->pSessionGVM)
{
pSession->pSessionGVM = pGVM;
pSession->pSessionVM = pVM;
pSession->pFastIoCtrlVM = NULL;
}
else
{
RTSpinlockRelease(pSession->pDevExt->Spinlock);
SUPR0Printf("SUPR0SetSessionVM: Unable to associated GVM/VM %p/%p with session %p as it has %p/%p already!\n",
pGVM, pVM, pSession, pSession->pSessionGVM, pSession->pSessionVM);
return VERR_ALREADY_EXISTS;
}
}
else
{
pSession->pSessionGVM = NULL;
pSession->pSessionVM = NULL;
pSession->pFastIoCtrlVM = NULL;
}
RTSpinlockRelease(pSession->pDevExt->Spinlock);
return VINF_SUCCESS;
}
SUPR0_EXPORT_SYMBOL(SUPR0SetSessionVM);
/**
* For getting SUPDRVSESSION::Uid.
*
* @returns The session UID. NIL_RTUID if invalid pointer or not successfully
* set by the host code.
* @param pSession The session of the current thread.
*/
SUPR0DECL(RTUID) SUPR0GetSessionUid(PSUPDRVSESSION pSession)
{
AssertReturn(SUP_IS_SESSION_VALID(pSession), NIL_RTUID);
return pSession->Uid;
}
SUPR0_EXPORT_SYMBOL(SUPR0GetSessionUid);
/** @copydoc RTLogDefaultInstanceEx
* @remarks To allow overriding RTLogDefaultInstanceEx locally. */
SUPR0DECL(struct RTLOGGER *) SUPR0DefaultLogInstanceEx(uint32_t fFlagsAndGroup)
{
return RTLogDefaultInstanceEx(fFlagsAndGroup);
}
SUPR0_EXPORT_SYMBOL(SUPR0DefaultLogInstanceEx);
/** @copydoc RTLogGetDefaultInstanceEx
* @remarks To allow overriding RTLogGetDefaultInstanceEx locally. */
SUPR0DECL(struct RTLOGGER *) SUPR0GetDefaultLogInstanceEx(uint32_t fFlagsAndGroup)
{
return RTLogGetDefaultInstanceEx(fFlagsAndGroup);
}
SUPR0_EXPORT_SYMBOL(SUPR0GetDefaultLogInstanceEx);
/** @copydoc RTLogRelGetDefaultInstanceEx
* @remarks To allow overriding RTLogRelGetDefaultInstanceEx locally. */
SUPR0DECL(struct RTLOGGER *) SUPR0GetDefaultLogRelInstanceEx(uint32_t fFlagsAndGroup)
{
return RTLogRelGetDefaultInstanceEx(fFlagsAndGroup);
}
SUPR0_EXPORT_SYMBOL(SUPR0GetDefaultLogRelInstanceEx);
/**
* Lock pages.
*
* @returns IPRT status code.
* @param pSession Session to which the locked memory should be associated.
* @param pvR3 Start of the memory range to lock.
* This must be page aligned.
* @param cPages Number of pages to lock.
* @param paPages Where to put the physical addresses of locked memory.
*/
SUPR0DECL(int) SUPR0LockMem(PSUPDRVSESSION pSession, RTR3PTR pvR3, uint32_t cPages, PRTHCPHYS paPages)
{
int rc;
SUPDRVMEMREF Mem = { NIL_RTR0MEMOBJ, NIL_RTR0MEMOBJ, MEMREF_TYPE_UNUSED };
const size_t cb = (size_t)cPages << PAGE_SHIFT;
LogFlow(("SUPR0LockMem: pSession=%p pvR3=%p cPages=%d paPages=%p\n", pSession, (void *)pvR3, cPages, paPages));
/*
* Verify input.
*/
AssertReturn(SUP_IS_SESSION_VALID(pSession), VERR_INVALID_PARAMETER);
AssertPtrReturn(paPages, VERR_INVALID_PARAMETER);
if ( RT_ALIGN_R3PT(pvR3, PAGE_SIZE, RTR3PTR) != pvR3
|| !pvR3)
{
Log(("pvR3 (%p) must be page aligned and not NULL!\n", (void *)pvR3));
return VERR_INVALID_PARAMETER;
}
/*
* Let IPRT do the job.
*/
Mem.eType = MEMREF_TYPE_LOCKED;
rc = RTR0MemObjLockUser(&Mem.MemObj, pvR3, cb, RTMEM_PROT_READ | RTMEM_PROT_WRITE, NIL_RTR0PROCESS);
if (RT_SUCCESS(rc))
{
uint32_t iPage = cPages;
AssertMsg(RTR0MemObjAddressR3(Mem.MemObj) == pvR3, ("%p == %p\n", RTR0MemObjAddressR3(Mem.MemObj), pvR3));
AssertMsg(RTR0MemObjSize(Mem.MemObj) == cb, ("%x == %x\n", RTR0MemObjSize(Mem.MemObj), cb));
while (iPage-- > 0)
{
paPages[iPage] = RTR0MemObjGetPagePhysAddr(Mem.MemObj, iPage);
if (RT_UNLIKELY(paPages[iPage] == NIL_RTCCPHYS))
{
AssertMsgFailed(("iPage=%d\n", iPage));
rc = VERR_INTERNAL_ERROR;
break;
}
}
if (RT_SUCCESS(rc))
rc = supdrvMemAdd(&Mem, pSession);
if (RT_FAILURE(rc))
{
int rc2 = RTR0MemObjFree(Mem.MemObj, false);
AssertRC(rc2);
}
}
return rc;
}
SUPR0_EXPORT_SYMBOL(SUPR0LockMem);
/**
* Unlocks the memory pointed to by pv.
*
* @returns IPRT status code.
* @param pSession Session to which the memory was locked.
* @param pvR3 Memory to unlock.
*/
SUPR0DECL(int) SUPR0UnlockMem(PSUPDRVSESSION pSession, RTR3PTR pvR3)
{
LogFlow(("SUPR0UnlockMem: pSession=%p pvR3=%p\n", pSession, (void *)pvR3));
AssertReturn(SUP_IS_SESSION_VALID(pSession), VERR_INVALID_PARAMETER);
return supdrvMemRelease(pSession, (RTHCUINTPTR)pvR3, MEMREF_TYPE_LOCKED);
}
SUPR0_EXPORT_SYMBOL(SUPR0UnlockMem);
/**
* Allocates a chunk of page aligned memory with contiguous and fixed physical
* backing.
*
* @returns IPRT status code.
* @param pSession Session data.
* @param cPages Number of pages to allocate.
* @param ppvR0 Where to put the address of Ring-0 mapping the allocated memory.
* @param ppvR3 Where to put the address of Ring-3 mapping the allocated memory.
* @param pHCPhys Where to put the physical address of allocated memory.
*/
SUPR0DECL(int) SUPR0ContAlloc(PSUPDRVSESSION pSession, uint32_t cPages, PRTR0PTR ppvR0, PRTR3PTR ppvR3, PRTHCPHYS pHCPhys)
{
int rc;
SUPDRVMEMREF Mem = { NIL_RTR0MEMOBJ, NIL_RTR0MEMOBJ, MEMREF_TYPE_UNUSED };
LogFlow(("SUPR0ContAlloc: pSession=%p cPages=%d ppvR0=%p ppvR3=%p pHCPhys=%p\n", pSession, cPages, ppvR0, ppvR3, pHCPhys));
/*
* Validate input.
*/
AssertReturn(SUP_IS_SESSION_VALID(pSession), VERR_INVALID_PARAMETER);
if (!ppvR3 || !ppvR0 || !pHCPhys)
{
Log(("Null pointer. All of these should be set: pSession=%p ppvR0=%p ppvR3=%p pHCPhys=%p\n",
pSession, ppvR0, ppvR3, pHCPhys));
return VERR_INVALID_PARAMETER;
}
if (cPages < 1 || cPages >= 256)
{
Log(("Illegal request cPages=%d, must be greater than 0 and smaller than 256.\n", cPages));
return VERR_PAGE_COUNT_OUT_OF_RANGE;
}
/*
* Let IPRT do the job.
*/
rc = RTR0MemObjAllocCont(&Mem.MemObj, cPages << PAGE_SHIFT, true /* executable R0 mapping */);
if (RT_SUCCESS(rc))
{
int rc2;
rc = RTR0MemObjMapUser(&Mem.MapObjR3, Mem.MemObj, (RTR3PTR)-1, 0,
RTMEM_PROT_EXEC | RTMEM_PROT_WRITE | RTMEM_PROT_READ, NIL_RTR0PROCESS);
if (RT_SUCCESS(rc))
{
Mem.eType = MEMREF_TYPE_CONT;
rc = supdrvMemAdd(&Mem, pSession);
if (!rc)
{
*ppvR0 = RTR0MemObjAddress(Mem.MemObj);
*ppvR3 = RTR0MemObjAddressR3(Mem.MapObjR3);
*pHCPhys = RTR0MemObjGetPagePhysAddr(Mem.MemObj, 0);
return 0;
}
rc2 = RTR0MemObjFree(Mem.MapObjR3, false);
AssertRC(rc2);
}
rc2 = RTR0MemObjFree(Mem.MemObj, false);
AssertRC(rc2);
}
return rc;
}
SUPR0_EXPORT_SYMBOL(SUPR0ContAlloc);
/**
* Frees memory allocated using SUPR0ContAlloc().
*
* @returns IPRT status code.
* @param pSession The session to which the memory was allocated.
* @param uPtr Pointer to the memory (ring-3 or ring-0).
*/
SUPR0DECL(int) SUPR0ContFree(PSUPDRVSESSION pSession, RTHCUINTPTR uPtr)
{
LogFlow(("SUPR0ContFree: pSession=%p uPtr=%p\n", pSession, (void *)uPtr));
AssertReturn(SUP_IS_SESSION_VALID(pSession), VERR_INVALID_PARAMETER);
return supdrvMemRelease(pSession, uPtr, MEMREF_TYPE_CONT);
}
SUPR0_EXPORT_SYMBOL(SUPR0ContFree);
/**
* Allocates a chunk of page aligned memory with fixed physical backing below 4GB.
*
* The memory isn't zeroed.
*
* @returns IPRT status code.
* @param pSession Session data.
* @param cPages Number of pages to allocate.
* @param ppvR0 Where to put the address of Ring-0 mapping of the allocated memory.
* @param ppvR3 Where to put the address of Ring-3 mapping of the allocated memory.
* @param paPages Where to put the physical addresses of allocated memory.
*/
SUPR0DECL(int) SUPR0LowAlloc(PSUPDRVSESSION pSession, uint32_t cPages, PRTR0PTR ppvR0, PRTR3PTR ppvR3, PRTHCPHYS paPages)
{
unsigned iPage;
int rc;
SUPDRVMEMREF Mem = { NIL_RTR0MEMOBJ, NIL_RTR0MEMOBJ, MEMREF_TYPE_UNUSED };
LogFlow(("SUPR0LowAlloc: pSession=%p cPages=%d ppvR3=%p ppvR0=%p paPages=%p\n", pSession, cPages, ppvR3, ppvR0, paPages));
/*
* Validate input.
*/
AssertReturn(SUP_IS_SESSION_VALID(pSession), VERR_INVALID_PARAMETER);
if (!ppvR3 || !ppvR0 || !paPages)
{
Log(("Null pointer. All of these should be set: pSession=%p ppvR3=%p ppvR0=%p paPages=%p\n",
pSession, ppvR3, ppvR0, paPages));
return VERR_INVALID_PARAMETER;
}
if (cPages < 1 || cPages >= 256)
{
Log(("Illegal request cPages=%d, must be greater than 0 and smaller than 256.\n", cPages));
return VERR_PAGE_COUNT_OUT_OF_RANGE;
}
/*
* Let IPRT do the work.
*/
rc = RTR0MemObjAllocLow(&Mem.MemObj, cPages << PAGE_SHIFT, true /* executable ring-0 mapping */);
if (RT_SUCCESS(rc))
{
int rc2;
rc = RTR0MemObjMapUser(&Mem.MapObjR3, Mem.MemObj, (RTR3PTR)-1, 0,
RTMEM_PROT_EXEC | RTMEM_PROT_WRITE | RTMEM_PROT_READ, NIL_RTR0PROCESS);
if (RT_SUCCESS(rc))
{
Mem.eType = MEMREF_TYPE_LOW;
rc = supdrvMemAdd(&Mem, pSession);
if (!rc)
{
for (iPage = 0; iPage < cPages; iPage++)
{
paPages[iPage] = RTR0MemObjGetPagePhysAddr(Mem.MemObj, iPage);
AssertMsg(!(paPages[iPage] & (PAGE_SIZE - 1)), ("iPage=%d Phys=%RHp\n", paPages[iPage]));
}
*ppvR0 = RTR0MemObjAddress(Mem.MemObj);
*ppvR3 = RTR0MemObjAddressR3(Mem.MapObjR3);
return 0;
}
rc2 = RTR0MemObjFree(Mem.MapObjR3, false);
AssertRC(rc2);
}
rc2 = RTR0MemObjFree(Mem.MemObj, false);
AssertRC(rc2);
}
return rc;
}
SUPR0_EXPORT_SYMBOL(SUPR0LowAlloc);
/**
* Frees memory allocated using SUPR0LowAlloc().
*
* @returns IPRT status code.
* @param pSession The session to which the memory was allocated.
* @param uPtr Pointer to the memory (ring-3 or ring-0).
*/
SUPR0DECL(int) SUPR0LowFree(PSUPDRVSESSION pSession, RTHCUINTPTR uPtr)
{
LogFlow(("SUPR0LowFree: pSession=%p uPtr=%p\n", pSession, (void *)uPtr));
AssertReturn(SUP_IS_SESSION_VALID(pSession), VERR_INVALID_PARAMETER);
return supdrvMemRelease(pSession, uPtr, MEMREF_TYPE_LOW);
}
SUPR0_EXPORT_SYMBOL(SUPR0LowFree);
/**
* Allocates a chunk of memory with both R0 and R3 mappings.
* The memory is fixed and it's possible to query the physical addresses using SUPR0MemGetPhys().
*
* @returns IPRT status code.
* @param pSession The session to associated the allocation with.
* @param cb Number of bytes to allocate.
* @param ppvR0 Where to store the address of the Ring-0 mapping.
* @param ppvR3 Where to store the address of the Ring-3 mapping.
*/
SUPR0DECL(int) SUPR0MemAlloc(PSUPDRVSESSION pSession, uint32_t cb, PRTR0PTR ppvR0, PRTR3PTR ppvR3)
{
int rc;
SUPDRVMEMREF Mem = { NIL_RTR0MEMOBJ, NIL_RTR0MEMOBJ, MEMREF_TYPE_UNUSED };
LogFlow(("SUPR0MemAlloc: pSession=%p cb=%d ppvR0=%p ppvR3=%p\n", pSession, cb, ppvR0, ppvR3));
/*
* Validate input.
*/
AssertReturn(SUP_IS_SESSION_VALID(pSession), VERR_INVALID_PARAMETER);
AssertPtrReturn(ppvR0, VERR_INVALID_POINTER);
AssertPtrReturn(ppvR3, VERR_INVALID_POINTER);
if (cb < 1 || cb >= _4M)
{
Log(("Illegal request cb=%u; must be greater than 0 and smaller than 4MB.\n", cb));
return VERR_INVALID_PARAMETER;
}
/*
* Let IPRT do the work.
*/
rc = RTR0MemObjAllocPage(&Mem.MemObj, cb, true /* executable ring-0 mapping */);
if (RT_SUCCESS(rc))
{
int rc2;
rc = RTR0MemObjMapUser(&Mem.MapObjR3, Mem.MemObj, (RTR3PTR)-1, 0,
RTMEM_PROT_EXEC | RTMEM_PROT_WRITE | RTMEM_PROT_READ, NIL_RTR0PROCESS);
if (RT_SUCCESS(rc))
{
Mem.eType = MEMREF_TYPE_MEM;
rc = supdrvMemAdd(&Mem, pSession);
if (!rc)
{
*ppvR0 = RTR0MemObjAddress(Mem.MemObj);
*ppvR3 = RTR0MemObjAddressR3(Mem.MapObjR3);
return VINF_SUCCESS;
}
rc2 = RTR0MemObjFree(Mem.MapObjR3, false);
AssertRC(rc2);
}
rc2 = RTR0MemObjFree(Mem.MemObj, false);
AssertRC(rc2);
}
return rc;
}
SUPR0_EXPORT_SYMBOL(SUPR0MemAlloc);
/**
* Get the physical addresses of memory allocated using SUPR0MemAlloc().
*
* @returns IPRT status code.
* @param pSession The session to which the memory was allocated.
* @param uPtr The Ring-0 or Ring-3 address returned by SUPR0MemAlloc().
* @param paPages Where to store the physical addresses.
*/
SUPR0DECL(int) SUPR0MemGetPhys(PSUPDRVSESSION pSession, RTHCUINTPTR uPtr, PSUPPAGE paPages) /** @todo switch this bugger to RTHCPHYS */
{
PSUPDRVBUNDLE pBundle;
LogFlow(("SUPR0MemGetPhys: pSession=%p uPtr=%p paPages=%p\n", pSession, (void *)uPtr, paPages));
/*
* Validate input.
*/
AssertReturn(SUP_IS_SESSION_VALID(pSession), VERR_INVALID_PARAMETER);
AssertPtrReturn(paPages, VERR_INVALID_POINTER);
AssertReturn(uPtr, VERR_INVALID_PARAMETER);
/*
* Search for the address.
*/
RTSpinlockAcquire(pSession->Spinlock);
for (pBundle = &pSession->Bundle; pBundle; pBundle = pBundle->pNext)
{
if (pBundle->cUsed > 0)
{
unsigned i;
for (i = 0; i < RT_ELEMENTS(pBundle->aMem); i++)
{
if ( pBundle->aMem[i].eType == MEMREF_TYPE_MEM
&& pBundle->aMem[i].MemObj != NIL_RTR0MEMOBJ
&& ( (RTHCUINTPTR)RTR0MemObjAddress(pBundle->aMem[i].MemObj) == uPtr
|| ( pBundle->aMem[i].MapObjR3 != NIL_RTR0MEMOBJ
&& RTR0MemObjAddressR3(pBundle->aMem[i].MapObjR3) == uPtr)
)
)
{
const size_t cPages = RTR0MemObjSize(pBundle->aMem[i].MemObj) >> PAGE_SHIFT;
size_t iPage;
for (iPage = 0; iPage < cPages; iPage++)
{
paPages[iPage].Phys = RTR0MemObjGetPagePhysAddr(pBundle->aMem[i].MemObj, iPage);
paPages[iPage].uReserved = 0;
}
RTSpinlockRelease(pSession->Spinlock);
return VINF_SUCCESS;
}
}
}
}
RTSpinlockRelease(pSession->Spinlock);
Log(("Failed to find %p!!!\n", (void *)uPtr));
return VERR_INVALID_PARAMETER;
}
SUPR0_EXPORT_SYMBOL(SUPR0MemGetPhys);
/**
* Free memory allocated by SUPR0MemAlloc().
*
* @returns IPRT status code.
* @param pSession The session owning the allocation.
* @param uPtr The Ring-0 or Ring-3 address returned by SUPR0MemAlloc().
*/
SUPR0DECL(int) SUPR0MemFree(PSUPDRVSESSION pSession, RTHCUINTPTR uPtr)
{
LogFlow(("SUPR0MemFree: pSession=%p uPtr=%p\n", pSession, (void *)uPtr));
AssertReturn(SUP_IS_SESSION_VALID(pSession), VERR_INVALID_PARAMETER);
return supdrvMemRelease(pSession, uPtr, MEMREF_TYPE_MEM);
}
SUPR0_EXPORT_SYMBOL(SUPR0MemFree);
/**
* Allocates a chunk of memory with a kernel or/and a user mode mapping.
*
* The memory is fixed and it's possible to query the physical addresses using
* SUPR0MemGetPhys().
*
* @returns IPRT status code.
* @param pSession The session to associated the allocation with.
* @param cPages The number of pages to allocate.
* @param fFlags Flags, reserved for the future. Must be zero.
* @param ppvR3 Where to store the address of the Ring-3 mapping.
* NULL if no ring-3 mapping.
* @param ppvR0 Where to store the address of the Ring-0 mapping.
* NULL if no ring-0 mapping.
* @param paPages Where to store the addresses of the pages. Optional.
*/
SUPR0DECL(int) SUPR0PageAllocEx(PSUPDRVSESSION pSession, uint32_t cPages, uint32_t fFlags, PRTR3PTR ppvR3, PRTR0PTR ppvR0, PRTHCPHYS paPages)
{
int rc;
SUPDRVMEMREF Mem = { NIL_RTR0MEMOBJ, NIL_RTR0MEMOBJ, MEMREF_TYPE_UNUSED };
LogFlow(("SUPR0PageAlloc: pSession=%p cb=%d ppvR3=%p\n", pSession, cPages, ppvR3));
/*
* Validate input. The allowed allocation size must be at least equal to the maximum guest VRAM size.
*/
AssertReturn(SUP_IS_SESSION_VALID(pSession), VERR_INVALID_PARAMETER);
AssertPtrNullReturn(ppvR3, VERR_INVALID_POINTER);
AssertPtrNullReturn(ppvR0, VERR_INVALID_POINTER);
AssertReturn(ppvR3 || ppvR0, VERR_INVALID_PARAMETER);
AssertReturn(!fFlags, VERR_INVALID_PARAMETER);
if (cPages < 1 || cPages > VBOX_MAX_ALLOC_PAGE_COUNT)
{
Log(("SUPR0PageAlloc: Illegal request cb=%u; must be greater than 0 and smaller than %uMB (VBOX_MAX_ALLOC_PAGE_COUNT pages).\n", cPages, VBOX_MAX_ALLOC_PAGE_COUNT * (_1M / _4K)));
return VERR_PAGE_COUNT_OUT_OF_RANGE;
}
/*
* Let IPRT do the work.
*/
if (ppvR0)
rc = RTR0MemObjAllocPage(&Mem.MemObj, (size_t)cPages * PAGE_SIZE, false /*fExecutable*/);
else
rc = RTR0MemObjAllocPhysNC(&Mem.MemObj, (size_t)cPages * PAGE_SIZE, NIL_RTHCPHYS);
if (RT_SUCCESS(rc))
{
int rc2;
if (ppvR3)
{
/* Make sure memory mapped into ring-3 is zero initialized if we can: */
if ( ppvR0
&& !RTR0MemObjWasZeroInitialized(Mem.MemObj))
{
void *pv = RTR0MemObjAddress(Mem.MemObj);
Assert(pv || !ppvR0);
if (pv)
RT_BZERO(pv, (size_t)cPages * PAGE_SIZE);
}
rc = RTR0MemObjMapUser(&Mem.MapObjR3, Mem.MemObj, (RTR3PTR)-1, 0, RTMEM_PROT_WRITE | RTMEM_PROT_READ, NIL_RTR0PROCESS);
}
else
Mem.MapObjR3 = NIL_RTR0MEMOBJ;
if (RT_SUCCESS(rc))
{
Mem.eType = MEMREF_TYPE_PAGE;
rc = supdrvMemAdd(&Mem, pSession);
if (!rc)
{
if (ppvR3)
*ppvR3 = RTR0MemObjAddressR3(Mem.MapObjR3);
if (ppvR0)
*ppvR0 = RTR0MemObjAddress(Mem.MemObj);
if (paPages)
{
uint32_t iPage = cPages;
while (iPage-- > 0)
{
paPages[iPage] = RTR0MemObjGetPagePhysAddr(Mem.MapObjR3, iPage);
Assert(paPages[iPage] != NIL_RTHCPHYS);
}
}
return VINF_SUCCESS;
}
rc2 = RTR0MemObjFree(Mem.MapObjR3, false);
AssertRC(rc2);
}
rc2 = RTR0MemObjFree(Mem.MemObj, false);
AssertRC(rc2);
}
return rc;
}
SUPR0_EXPORT_SYMBOL(SUPR0PageAllocEx);
/**
* Maps a chunk of memory previously allocated by SUPR0PageAllocEx into kernel
* space.
*
* @returns IPRT status code.
* @param pSession The session to associated the allocation with.
* @param pvR3 The ring-3 address returned by SUPR0PageAllocEx.
* @param offSub Where to start mapping. Must be page aligned.
* @param cbSub How much to map. Must be page aligned.
* @param fFlags Flags, MBZ.
* @param ppvR0 Where to return the address of the ring-0 mapping on
* success.
*/
SUPR0DECL(int) SUPR0PageMapKernel(PSUPDRVSESSION pSession, RTR3PTR pvR3, uint32_t offSub, uint32_t cbSub,
uint32_t fFlags, PRTR0PTR ppvR0)
{
int rc;
PSUPDRVBUNDLE pBundle;
RTR0MEMOBJ hMemObj = NIL_RTR0MEMOBJ;
LogFlow(("SUPR0PageMapKernel: pSession=%p pvR3=%p offSub=%#x cbSub=%#x\n", pSession, pvR3, offSub, cbSub));
/*
* Validate input. The allowed allocation size must be at least equal to the maximum guest VRAM size.
*/
AssertReturn(SUP_IS_SESSION_VALID(pSession), VERR_INVALID_PARAMETER);
AssertPtrNullReturn(ppvR0, VERR_INVALID_POINTER);
AssertReturn(!fFlags, VERR_INVALID_PARAMETER);
AssertReturn(!(offSub & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
AssertReturn(!(cbSub & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
AssertReturn(cbSub, VERR_INVALID_PARAMETER);
/*
* Find the memory object.
*/
RTSpinlockAcquire(pSession->Spinlock);
for (pBundle = &pSession->Bundle; pBundle; pBundle = pBundle->pNext)
{
if (pBundle->cUsed > 0)
{
unsigned i;
for (i = 0; i < RT_ELEMENTS(pBundle->aMem); i++)
{
if ( ( pBundle->aMem[i].eType == MEMREF_TYPE_PAGE
&& pBundle->aMem[i].MemObj != NIL_RTR0MEMOBJ
&& pBundle->aMem[i].MapObjR3 != NIL_RTR0MEMOBJ
&& RTR0MemObjAddressR3(pBundle->aMem[i].MapObjR3) == pvR3)
|| ( pBundle->aMem[i].eType == MEMREF_TYPE_LOCKED
&& pBundle->aMem[i].MemObj != NIL_RTR0MEMOBJ
&& pBundle->aMem[i].MapObjR3 == NIL_RTR0MEMOBJ
&& RTR0MemObjAddressR3(pBundle->aMem[i].MemObj) == pvR3))
{
hMemObj = pBundle->aMem[i].MemObj;
break;
}
}
}
}
RTSpinlockRelease(pSession->Spinlock);
rc = VERR_INVALID_PARAMETER;
if (hMemObj != NIL_RTR0MEMOBJ)
{
/*
* Do some further input validations before calling IPRT.
* (Cleanup is done indirectly by telling RTR0MemObjFree to include mappings.)
*/
size_t cbMemObj = RTR0MemObjSize(hMemObj);
if ( offSub < cbMemObj
&& cbSub <= cbMemObj
&& offSub + cbSub <= cbMemObj)
{
RTR0MEMOBJ hMapObj;
rc = RTR0MemObjMapKernelEx(&hMapObj, hMemObj, (void *)-1, 0,
RTMEM_PROT_READ | RTMEM_PROT_WRITE, offSub, cbSub);
if (RT_SUCCESS(rc))
*ppvR0 = RTR0MemObjAddress(hMapObj);
}
else
SUPR0Printf("SUPR0PageMapKernel: cbMemObj=%#x offSub=%#x cbSub=%#x\n", cbMemObj, offSub, cbSub);
}
return rc;
}
SUPR0_EXPORT_SYMBOL(SUPR0PageMapKernel);
/**
* Changes the page level protection of one or more pages previously allocated
* by SUPR0PageAllocEx.
*
* @returns IPRT status code.
* @param pSession The session to associated the allocation with.
* @param pvR3 The ring-3 address returned by SUPR0PageAllocEx.
* NIL_RTR3PTR if the ring-3 mapping should be unaffected.
* @param pvR0 The ring-0 address returned by SUPR0PageAllocEx.
* NIL_RTR0PTR if the ring-0 mapping should be unaffected.
* @param offSub Where to start changing. Must be page aligned.
* @param cbSub How much to change. Must be page aligned.
* @param fProt The new page level protection, see RTMEM_PROT_*.
*/
SUPR0DECL(int) SUPR0PageProtect(PSUPDRVSESSION pSession, RTR3PTR pvR3, RTR0PTR pvR0, uint32_t offSub, uint32_t cbSub, uint32_t fProt)
{
int rc;
PSUPDRVBUNDLE pBundle;
RTR0MEMOBJ hMemObjR0 = NIL_RTR0MEMOBJ;
RTR0MEMOBJ hMemObjR3 = NIL_RTR0MEMOBJ;
LogFlow(("SUPR0PageProtect: pSession=%p pvR3=%p pvR0=%p offSub=%#x cbSub=%#x fProt-%#x\n", pSession, pvR3, pvR0, offSub, cbSub, fProt));
/*
* Validate input. The allowed allocation size must be at least equal to the maximum guest VRAM size.
*/
AssertReturn(SUP_IS_SESSION_VALID(pSession), VERR_INVALID_PARAMETER);
AssertReturn(!(fProt & ~(RTMEM_PROT_READ | RTMEM_PROT_WRITE | RTMEM_PROT_EXEC | RTMEM_PROT_NONE)), VERR_INVALID_PARAMETER);
AssertReturn(!(offSub & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
AssertReturn(!(cbSub & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
AssertReturn(cbSub, VERR_INVALID_PARAMETER);
/*
* Find the memory object.
*/
RTSpinlockAcquire(pSession->Spinlock);
for (pBundle = &pSession->Bundle; pBundle; pBundle = pBundle->pNext)
{
if (pBundle->cUsed > 0)
{
unsigned i;
for (i = 0; i < RT_ELEMENTS(pBundle->aMem); i++)
{
if ( pBundle->aMem[i].eType == MEMREF_TYPE_PAGE
&& pBundle->aMem[i].MemObj != NIL_RTR0MEMOBJ
&& ( pBundle->aMem[i].MapObjR3 != NIL_RTR0MEMOBJ
|| pvR3 == NIL_RTR3PTR)
&& ( pvR0 == NIL_RTR0PTR
|| RTR0MemObjAddress(pBundle->aMem[i].MemObj) == pvR0)
&& ( pvR3 == NIL_RTR3PTR
|| RTR0MemObjAddressR3(pBundle->aMem[i].MapObjR3) == pvR3))
{
if (pvR0 != NIL_RTR0PTR)
hMemObjR0 = pBundle->aMem[i].MemObj;
if (pvR3 != NIL_RTR3PTR)
hMemObjR3 = pBundle->aMem[i].MapObjR3;
break;
}
}
}
}
RTSpinlockRelease(pSession->Spinlock);
rc = VERR_INVALID_PARAMETER;
if ( hMemObjR0 != NIL_RTR0MEMOBJ
|| hMemObjR3 != NIL_RTR0MEMOBJ)
{
/*
* Do some further input validations before calling IPRT.
*/
size_t cbMemObj = hMemObjR0 != NIL_RTR0PTR ? RTR0MemObjSize(hMemObjR0) : RTR0MemObjSize(hMemObjR3);
if ( offSub < cbMemObj
&& cbSub <= cbMemObj
&& offSub + cbSub <= cbMemObj)
{
rc = VINF_SUCCESS;
if (hMemObjR3 != NIL_RTR0PTR)
rc = RTR0MemObjProtect(hMemObjR3, offSub, cbSub, fProt);
if (hMemObjR0 != NIL_RTR0PTR && RT_SUCCESS(rc))
rc = RTR0MemObjProtect(hMemObjR0, offSub, cbSub, fProt);
}
else
SUPR0Printf("SUPR0PageMapKernel: cbMemObj=%#x offSub=%#x cbSub=%#x\n", cbMemObj, offSub, cbSub);
}
return rc;
}
SUPR0_EXPORT_SYMBOL(SUPR0PageProtect);
/**
* Free memory allocated by SUPR0PageAlloc() and SUPR0PageAllocEx().
*
* @returns IPRT status code.
* @param pSession The session owning the allocation.
* @param pvR3 The Ring-3 address returned by SUPR0PageAlloc() or
* SUPR0PageAllocEx().
*/
SUPR0DECL(int) SUPR0PageFree(PSUPDRVSESSION pSession, RTR3PTR pvR3)
{
LogFlow(("SUPR0PageFree: pSession=%p pvR3=%p\n", pSession, (void *)pvR3));
AssertReturn(SUP_IS_SESSION_VALID(pSession), VERR_INVALID_PARAMETER);
return supdrvMemRelease(pSession, (RTHCUINTPTR)pvR3, MEMREF_TYPE_PAGE);
}
SUPR0_EXPORT_SYMBOL(SUPR0PageFree);
/**
* Reports a bad context, currenctly that means EFLAGS.AC is 0 instead of 1.
*
* @param pDevExt The device extension.
* @param pszFile The source file where the caller detected the bad
* context.
* @param uLine The line number in @a pszFile.
* @param pszExtra Optional additional message to give further hints.
*/
void VBOXCALL supdrvBadContext(PSUPDRVDEVEXT pDevExt, const char *pszFile, uint32_t uLine, const char *pszExtra)
{
uint32_t cCalls;
/*
* Shorten the filename before displaying the message.
*/
for (;;)
{
const char *pszTmp = strchr(pszFile, '/');
if (!pszTmp)
pszTmp = strchr(pszFile, '\\');
if (!pszTmp)
break;
pszFile = pszTmp + 1;
}
if (RT_VALID_PTR(pszExtra) && *pszExtra)
SUPR0Printf("vboxdrv: Bad CPU context error at line %u in %s: %s\n", uLine, pszFile, pszExtra);
else
SUPR0Printf("vboxdrv: Bad CPU context error at line %u in %s!\n", uLine, pszFile);
/*
* Record the incident so that we stand a chance of blocking I/O controls
* before panicing the system.
*/
cCalls = ASMAtomicIncU32(&pDevExt->cBadContextCalls);
if (cCalls > UINT32_MAX - _1K)
ASMAtomicWriteU32(&pDevExt->cBadContextCalls, UINT32_MAX - _1K);
}
/**
* Reports a bad context, currenctly that means EFLAGS.AC is 0 instead of 1.
*
* @param pSession The session of the caller.
* @param pszFile The source file where the caller detected the bad
* context.
* @param uLine The line number in @a pszFile.
* @param pszExtra Optional additional message to give further hints.
*/
SUPR0DECL(void) SUPR0BadContext(PSUPDRVSESSION pSession, const char *pszFile, uint32_t uLine, const char *pszExtra)
{
PSUPDRVDEVEXT pDevExt;
AssertReturnVoid(SUP_IS_SESSION_VALID(pSession));
pDevExt = pSession->pDevExt;
supdrvBadContext(pDevExt, pszFile, uLine, pszExtra);
}
SUPR0_EXPORT_SYMBOL(SUPR0BadContext);
/**
* Gets the paging mode of the current CPU.
*
* @returns Paging mode, SUPPAGEINGMODE_INVALID on error.
*/
SUPR0DECL(SUPPAGINGMODE) SUPR0GetPagingMode(void)
{
SUPPAGINGMODE enmMode;
RTR0UINTREG cr0 = ASMGetCR0();
if ((cr0 & (X86_CR0_PG | X86_CR0_PE)) != (X86_CR0_PG | X86_CR0_PE))
enmMode = SUPPAGINGMODE_INVALID;
else
{
RTR0UINTREG cr4 = ASMGetCR4();
uint32_t fNXEPlusLMA = 0;
if (cr4 & X86_CR4_PAE)
{
uint32_t fExtFeatures = ASMCpuId_EDX(0x80000001);
if (fExtFeatures & (X86_CPUID_EXT_FEATURE_EDX_NX | X86_CPUID_EXT_FEATURE_EDX_LONG_MODE))
{
uint64_t efer = ASMRdMsr(MSR_K6_EFER);
if ((fExtFeatures & X86_CPUID_EXT_FEATURE_EDX_NX) && (efer & MSR_K6_EFER_NXE))
fNXEPlusLMA |= RT_BIT(0);
if ((fExtFeatures & X86_CPUID_EXT_FEATURE_EDX_LONG_MODE) && (efer & MSR_K6_EFER_LMA))
fNXEPlusLMA |= RT_BIT(1);
}
}
switch ((cr4 & (X86_CR4_PAE | X86_CR4_PGE)) | fNXEPlusLMA)
{
case 0:
enmMode = SUPPAGINGMODE_32_BIT;
break;
case X86_CR4_PGE:
enmMode = SUPPAGINGMODE_32_BIT_GLOBAL;
break;
case X86_CR4_PAE:
enmMode = SUPPAGINGMODE_PAE;
break;
case X86_CR4_PAE | RT_BIT(0):
enmMode = SUPPAGINGMODE_PAE_NX;
break;
case X86_CR4_PAE | X86_CR4_PGE:
enmMode = SUPPAGINGMODE_PAE_GLOBAL;
break;
case X86_CR4_PAE | X86_CR4_PGE | RT_BIT(0):
enmMode = SUPPAGINGMODE_PAE_GLOBAL;
break;
case RT_BIT(1) | X86_CR4_PAE:
enmMode = SUPPAGINGMODE_AMD64;
break;
case RT_BIT(1) | X86_CR4_PAE | RT_BIT(0):
enmMode = SUPPAGINGMODE_AMD64_NX;
break;
case RT_BIT(1) | X86_CR4_PAE | X86_CR4_PGE:
enmMode = SUPPAGINGMODE_AMD64_GLOBAL;
break;
case RT_BIT(1) | X86_CR4_PAE | X86_CR4_PGE | RT_BIT(0):
enmMode = SUPPAGINGMODE_AMD64_GLOBAL_NX;
break;
default:
AssertMsgFailed(("Cannot happen! cr4=%#x fNXEPlusLMA=%d\n", cr4, fNXEPlusLMA));
enmMode = SUPPAGINGMODE_INVALID;
break;
}
}
return enmMode;
}
SUPR0_EXPORT_SYMBOL(SUPR0GetPagingMode);
/**
* Change CR4 and take care of the kernel CR4 shadow if applicable.
*
* CR4 shadow handling is required for Linux >= 4.0. Calling this function
* instead of ASMSetCR4() is only necessary for semi-permanent CR4 changes
* for code with interrupts enabled.
*
* @returns the old CR4 value.
*
* @param fOrMask bits to be set in CR4.
* @param fAndMask bits to be cleard in CR4.
*
* @remarks Must be called with preemption/interrupts disabled.
*/
SUPR0DECL(RTCCUINTREG) SUPR0ChangeCR4(RTCCUINTREG fOrMask, RTCCUINTREG fAndMask)
{
#ifdef RT_OS_LINUX
return supdrvOSChangeCR4(fOrMask, fAndMask);
#else
RTCCUINTREG uOld = ASMGetCR4();
RTCCUINTREG uNew = (uOld & fAndMask) | fOrMask;
if (uNew != uOld)
ASMSetCR4(uNew);
return uOld;
#endif
}
SUPR0_EXPORT_SYMBOL(SUPR0ChangeCR4);
/**
* Enables or disabled hardware virtualization extensions using native OS APIs.
*
* @returns VBox status code.
* @retval VINF_SUCCESS on success.
* @retval VERR_NOT_SUPPORTED if not supported by the native OS.
*
* @param fEnable Whether to enable or disable.
*/
SUPR0DECL(int) SUPR0EnableVTx(bool fEnable)
{
#ifdef RT_OS_DARWIN
return supdrvOSEnableVTx(fEnable);
#else
RT_NOREF1(fEnable);
return VERR_NOT_SUPPORTED;
#endif
}
SUPR0_EXPORT_SYMBOL(SUPR0EnableVTx);
/**
* Suspends hardware virtualization extensions using the native OS API.
*
* This is called prior to entering raw-mode context.
*
* @returns @c true if suspended, @c false if not.
*/
SUPR0DECL(bool) SUPR0SuspendVTxOnCpu(void)
{
#ifdef RT_OS_DARWIN
return supdrvOSSuspendVTxOnCpu();
#else
return false;
#endif
}
SUPR0_EXPORT_SYMBOL(SUPR0SuspendVTxOnCpu);
/**
* Resumes hardware virtualization extensions using the native OS API.
*
* This is called after to entering raw-mode context.
*
* @param fSuspended The return value of SUPR0SuspendVTxOnCpu.
*/
SUPR0DECL(void) SUPR0ResumeVTxOnCpu(bool fSuspended)
{
#ifdef RT_OS_DARWIN
supdrvOSResumeVTxOnCpu(fSuspended);
#else
RT_NOREF1(fSuspended);
Assert(!fSuspended);
#endif
}
SUPR0_EXPORT_SYMBOL(SUPR0ResumeVTxOnCpu);
SUPR0DECL(int) SUPR0GetCurrentGdtRw(RTHCUINTPTR *pGdtRw)
{
#ifdef RT_OS_LINUX
return supdrvOSGetCurrentGdtRw(pGdtRw);
#else
NOREF(pGdtRw);
return VERR_NOT_IMPLEMENTED;
#endif
}
SUPR0_EXPORT_SYMBOL(SUPR0GetCurrentGdtRw);
/**
* Gets AMD-V and VT-x support for the calling CPU.
*
* @returns VBox status code.
* @param pfCaps Where to store whether VT-x (SUPVTCAPS_VT_X) or AMD-V
* (SUPVTCAPS_AMD_V) is supported.
*/
SUPR0DECL(int) SUPR0GetVTSupport(uint32_t *pfCaps)
{
Assert(pfCaps);
*pfCaps = 0;
/* Check if the CPU even supports CPUID (extremely ancient CPUs). */
if (ASMHasCpuId())
{
/* Check the range of standard CPUID leafs. */
uint32_t uMaxLeaf, uVendorEbx, uVendorEcx, uVendorEdx;
ASMCpuId(0, &uMaxLeaf, &uVendorEbx, &uVendorEcx, &uVendorEdx);
if (RTX86IsValidStdRange(uMaxLeaf))
{
/* Query the standard CPUID leaf. */
uint32_t fFeatEcx, fFeatEdx, uDummy;
ASMCpuId(1, &uDummy, &uDummy, &fFeatEcx, &fFeatEdx);
/* Check if the vendor is Intel (or compatible). */
if ( RTX86IsIntelCpu(uVendorEbx, uVendorEcx, uVendorEdx)
|| RTX86IsViaCentaurCpu(uVendorEbx, uVendorEcx, uVendorEdx)
|| RTX86IsShanghaiCpu(uVendorEbx, uVendorEcx, uVendorEdx))
{
/* Check VT-x support. In addition, VirtualBox requires MSR and FXSAVE/FXRSTOR to function. */
if ( (fFeatEcx & X86_CPUID_FEATURE_ECX_VMX)
&& (fFeatEdx & X86_CPUID_FEATURE_EDX_MSR)
&& (fFeatEdx & X86_CPUID_FEATURE_EDX_FXSR))
{
*pfCaps = SUPVTCAPS_VT_X;
return VINF_SUCCESS;
}
return VERR_VMX_NO_VMX;
}
/* Check if the vendor is AMD (or compatible). */
if ( RTX86IsAmdCpu(uVendorEbx, uVendorEcx, uVendorEdx)
|| RTX86IsHygonCpu(uVendorEbx, uVendorEcx, uVendorEdx))
{
uint32_t fExtFeatEcx, uExtMaxId;
ASMCpuId(0x80000000, &uExtMaxId, &uDummy, &uDummy, &uDummy);
ASMCpuId(0x80000001, &uDummy, &uDummy, &fExtFeatEcx, &uDummy);
/* Check AMD-V support. In addition, VirtualBox requires MSR and FXSAVE/FXRSTOR to function. */
if ( RTX86IsValidExtRange(uExtMaxId)
&& uExtMaxId >= 0x8000000a
&& (fExtFeatEcx & X86_CPUID_AMD_FEATURE_ECX_SVM)
&& (fFeatEdx & X86_CPUID_FEATURE_EDX_MSR)
&& (fFeatEdx & X86_CPUID_FEATURE_EDX_FXSR))
{
*pfCaps = SUPVTCAPS_AMD_V;
return VINF_SUCCESS;
}
return VERR_SVM_NO_SVM;
}
}
}
return VERR_UNSUPPORTED_CPU;
}
SUPR0_EXPORT_SYMBOL(SUPR0GetVTSupport);
/**
* Checks if Intel VT-x feature is usable on this CPU.
*
* @returns VBox status code.
* @param pfIsSmxModeAmbiguous Where to return whether the SMX mode causes
* ambiguity that makes us unsure whether we
* really can use VT-x or not.
*
* @remarks Must be called with preemption disabled.
* The caller is also expected to check that the CPU is an Intel (or
* VIA/Shanghai) CPU -and- that it supports VT-x. Otherwise, this
* function might throw a \#GP fault as it tries to read/write MSRs
* that may not be present!
*/
SUPR0DECL(int) SUPR0GetVmxUsability(bool *pfIsSmxModeAmbiguous)
{
uint64_t fFeatMsr;
bool fMaybeSmxMode;
bool fMsrLocked;
bool fSmxVmxAllowed;
bool fVmxAllowed;
bool fIsSmxModeAmbiguous;
int rc;
Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
fFeatMsr = ASMRdMsr(MSR_IA32_FEATURE_CONTROL);
fMaybeSmxMode = RT_BOOL(ASMGetCR4() & X86_CR4_SMXE);
fMsrLocked = RT_BOOL(fFeatMsr & MSR_IA32_FEATURE_CONTROL_LOCK);
fSmxVmxAllowed = RT_BOOL(fFeatMsr & MSR_IA32_FEATURE_CONTROL_SMX_VMXON);
fVmxAllowed = RT_BOOL(fFeatMsr & MSR_IA32_FEATURE_CONTROL_VMXON);
fIsSmxModeAmbiguous = false;
rc = VERR_INTERNAL_ERROR_5;
/* Check if the LOCK bit is set but excludes the required VMXON bit. */
if (fMsrLocked)
{
if (fVmxAllowed && fSmxVmxAllowed)
rc = VINF_SUCCESS;
else if (!fVmxAllowed && !fSmxVmxAllowed)
rc = VERR_VMX_MSR_ALL_VMX_DISABLED;
else if (!fMaybeSmxMode)
{
if (fVmxAllowed)
rc = VINF_SUCCESS;
else
rc = VERR_VMX_MSR_VMX_DISABLED;
}
else
{
/*
* CR4.SMXE is set but this doesn't mean the CPU is necessarily in SMX mode. We shall assume
* that it is -not- and that it is a stupid BIOS/OS setting CR4.SMXE for no good reason.
* See @bugref{6873}.
*/
Assert(fMaybeSmxMode == true);
fIsSmxModeAmbiguous = true;
rc = VINF_SUCCESS;
}
}
else
{
/*
* MSR is not yet locked; we can change it ourselves here. Once the lock bit is set,
* this MSR can no longer be modified.
*
* Set both the VMX and SMX_VMX bits (if supported) as we can't determine SMX mode
* accurately. See @bugref{6873}.
*
* We need to check for SMX hardware support here, before writing the MSR as
* otherwise we will #GP fault on CPUs that do not support it. Callers do not check
* for it.
*/
uint32_t fFeaturesECX, uDummy;
#ifdef VBOX_STRICT
/* Callers should have verified these at some point. */
uint32_t uMaxId, uVendorEBX, uVendorECX, uVendorEDX;
ASMCpuId(0, &uMaxId, &uVendorEBX, &uVendorECX, &uVendorEDX);
Assert(RTX86IsValidStdRange(uMaxId));
Assert( RTX86IsIntelCpu( uVendorEBX, uVendorECX, uVendorEDX)
|| RTX86IsViaCentaurCpu(uVendorEBX, uVendorECX, uVendorEDX)
|| RTX86IsShanghaiCpu( uVendorEBX, uVendorECX, uVendorEDX));
#endif
ASMCpuId(1, &uDummy, &uDummy, &fFeaturesECX, &uDummy);
bool fSmxVmxHwSupport = false;
if ( (fFeaturesECX & X86_CPUID_FEATURE_ECX_VMX)
&& (fFeaturesECX & X86_CPUID_FEATURE_ECX_SMX))
fSmxVmxHwSupport = true;
fFeatMsr |= MSR_IA32_FEATURE_CONTROL_LOCK
| MSR_IA32_FEATURE_CONTROL_VMXON;
if (fSmxVmxHwSupport)
fFeatMsr |= MSR_IA32_FEATURE_CONTROL_SMX_VMXON;
/*
* Commit.
*/
ASMWrMsr(MSR_IA32_FEATURE_CONTROL, fFeatMsr);
/*
* Verify.
*/
fFeatMsr = ASMRdMsr(MSR_IA32_FEATURE_CONTROL);
fMsrLocked = RT_BOOL(fFeatMsr & MSR_IA32_FEATURE_CONTROL_LOCK);
if (fMsrLocked)
{
fSmxVmxAllowed = RT_BOOL(fFeatMsr & MSR_IA32_FEATURE_CONTROL_SMX_VMXON);
fVmxAllowed = RT_BOOL(fFeatMsr & MSR_IA32_FEATURE_CONTROL_VMXON);
if ( fVmxAllowed
&& ( !fSmxVmxHwSupport
|| fSmxVmxAllowed))
rc = VINF_SUCCESS;
else
rc = !fSmxVmxHwSupport ? VERR_VMX_MSR_VMX_ENABLE_FAILED : VERR_VMX_MSR_SMX_VMX_ENABLE_FAILED;
}
else
rc = VERR_VMX_MSR_LOCKING_FAILED;
}
if (pfIsSmxModeAmbiguous)
*pfIsSmxModeAmbiguous = fIsSmxModeAmbiguous;
return rc;
}
SUPR0_EXPORT_SYMBOL(SUPR0GetVmxUsability);
/**
* Checks if AMD-V SVM feature is usable on this CPU.
*
* @returns VBox status code.
* @param fInitSvm If usable, try to initialize SVM on this CPU.
*
* @remarks Must be called with preemption disabled.
*/
SUPR0DECL(int) SUPR0GetSvmUsability(bool fInitSvm)
{
int rc;
uint64_t fVmCr;
uint64_t fEfer;
Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
fVmCr = ASMRdMsr(MSR_K8_VM_CR);
if (!(fVmCr & MSR_K8_VM_CR_SVM_DISABLE))
{
rc = VINF_SUCCESS;
if (fInitSvm)
{
/* Turn on SVM in the EFER MSR. */
fEfer = ASMRdMsr(MSR_K6_EFER);
if (fEfer & MSR_K6_EFER_SVME)
rc = VERR_SVM_IN_USE;
else
{
ASMWrMsr(MSR_K6_EFER, fEfer | MSR_K6_EFER_SVME);
/* Paranoia. */
fEfer = ASMRdMsr(MSR_K6_EFER);
if (fEfer & MSR_K6_EFER_SVME)
{
/* Restore previous value. */
ASMWrMsr(MSR_K6_EFER, fEfer & ~MSR_K6_EFER_SVME);
}
else
rc = VERR_SVM_ILLEGAL_EFER_MSR;
}
}
}
else
rc = VERR_SVM_DISABLED;
return rc;
}
SUPR0_EXPORT_SYMBOL(SUPR0GetSvmUsability);
/**
* Queries the AMD-V and VT-x capabilities of the calling CPU.
*
* @returns VBox status code.
* @retval VERR_VMX_NO_VMX
* @retval VERR_VMX_MSR_ALL_VMX_DISABLED
* @retval VERR_VMX_MSR_VMX_DISABLED
* @retval VERR_VMX_MSR_LOCKING_FAILED
* @retval VERR_VMX_MSR_VMX_ENABLE_FAILED
* @retval VERR_VMX_MSR_SMX_VMX_ENABLE_FAILED
* @retval VERR_SVM_NO_SVM
* @retval VERR_SVM_DISABLED
* @retval VERR_UNSUPPORTED_CPU if not identifiable as an AMD, Intel or VIA
* (centaur)/Shanghai CPU.
*
* @param pfCaps Where to store the capabilities.
*/
int VBOXCALL supdrvQueryVTCapsInternal(uint32_t *pfCaps)
{
int rc = VERR_UNSUPPORTED_CPU;
bool fIsSmxModeAmbiguous = false;
RTTHREADPREEMPTSTATE PreemptState = RTTHREADPREEMPTSTATE_INITIALIZER;
/*
* Input validation.
*/
AssertPtrReturn(pfCaps, VERR_INVALID_POINTER);
*pfCaps = 0;
/* We may modify MSRs and re-read them, disable preemption so we make sure we don't migrate CPUs. */
RTThreadPreemptDisable(&PreemptState);
/* Check if VT-x/AMD-V is supported. */
rc = SUPR0GetVTSupport(pfCaps);
if (RT_SUCCESS(rc))
{
/* Check if VT-x is supported. */
if (*pfCaps & SUPVTCAPS_VT_X)
{
/* Check if VT-x is usable. */
rc = SUPR0GetVmxUsability(&fIsSmxModeAmbiguous);
if (RT_SUCCESS(rc))
{
/* Query some basic VT-x capabilities (mainly required by our GUI). */
VMXCTLSMSR vtCaps;
vtCaps.u = ASMRdMsr(MSR_IA32_VMX_PROCBASED_CTLS);
if (vtCaps.n.allowed1 & VMX_PROC_CTLS_USE_SECONDARY_CTLS)
{
vtCaps.u = ASMRdMsr(MSR_IA32_VMX_PROCBASED_CTLS2);
if (vtCaps.n.allowed1 & VMX_PROC_CTLS2_EPT)
*pfCaps |= SUPVTCAPS_NESTED_PAGING;
if (vtCaps.n.allowed1 & VMX_PROC_CTLS2_UNRESTRICTED_GUEST)
*pfCaps |= SUPVTCAPS_VTX_UNRESTRICTED_GUEST;
if (vtCaps.n.allowed1 & VMX_PROC_CTLS2_VMCS_SHADOWING)
*pfCaps |= SUPVTCAPS_VTX_VMCS_SHADOWING;
}
}
}
/* Check if AMD-V is supported. */
else if (*pfCaps & SUPVTCAPS_AMD_V)
{
/* Check is SVM is usable. */
rc = SUPR0GetSvmUsability(false /* fInitSvm */);
if (RT_SUCCESS(rc))
{
/* Query some basic AMD-V capabilities (mainly required by our GUI). */
uint32_t uDummy, fSvmFeatures;
ASMCpuId(0x8000000a, &uDummy, &uDummy, &uDummy, &fSvmFeatures);
if (fSvmFeatures & X86_CPUID_SVM_FEATURE_EDX_NESTED_PAGING)
*pfCaps |= SUPVTCAPS_NESTED_PAGING;
if (fSvmFeatures & X86_CPUID_SVM_FEATURE_EDX_VIRT_VMSAVE_VMLOAD)
*pfCaps |= SUPVTCAPS_AMDV_VIRT_VMSAVE_VMLOAD;
}
}
}
/* Restore preemption. */
RTThreadPreemptRestore(&PreemptState);
/* After restoring preemption, if we may be in SMX mode, print a warning as it's difficult to debug such problems. */
if (fIsSmxModeAmbiguous)
SUPR0Printf(("WARNING! CR4 hints SMX mode but your CPU is too secretive. Proceeding anyway... We wish you good luck!\n"));
return rc;
}
/**
* Queries the AMD-V and VT-x capabilities of the calling CPU.
*
* @returns VBox status code.
* @retval VERR_VMX_NO_VMX
* @retval VERR_VMX_MSR_ALL_VMX_DISABLED
* @retval VERR_VMX_MSR_VMX_DISABLED
* @retval VERR_VMX_MSR_LOCKING_FAILED
* @retval VERR_VMX_MSR_VMX_ENABLE_FAILED
* @retval VERR_VMX_MSR_SMX_VMX_ENABLE_FAILED
* @retval VERR_SVM_NO_SVM
* @retval VERR_SVM_DISABLED
* @retval VERR_UNSUPPORTED_CPU if not identifiable as an AMD, Intel or VIA
* (centaur)/Shanghai CPU.
*
* @param pSession The session handle.
* @param pfCaps Where to store the capabilities.
*/
SUPR0DECL(int) SUPR0QueryVTCaps(PSUPDRVSESSION pSession, uint32_t *pfCaps)
{
/*
* Input validation.
*/
AssertReturn(SUP_IS_SESSION_VALID(pSession), VERR_INVALID_PARAMETER);
AssertPtrReturn(pfCaps, VERR_INVALID_POINTER);
/*
* Call common worker.
*/
return supdrvQueryVTCapsInternal(pfCaps);
}
SUPR0_EXPORT_SYMBOL(SUPR0QueryVTCaps);
/**
* Queries the CPU microcode revision.
*
* @returns VBox status code.
* @retval VERR_UNSUPPORTED_CPU if not identifiable as a processor with
* readable microcode rev.
*
* @param puRevision Where to store the microcode revision.
*/
static int VBOXCALL supdrvQueryUcodeRev(uint32_t *puRevision)
{
int rc = VERR_UNSUPPORTED_CPU;
RTTHREADPREEMPTSTATE PreemptState = RTTHREADPREEMPTSTATE_INITIALIZER;
/*
* Input validation.
*/
AssertPtrReturn(puRevision, VERR_INVALID_POINTER);
*puRevision = 0;
/* Disable preemption so we make sure we don't migrate CPUs, just in case. */
/* NB: We assume that there aren't mismatched microcode revs in the system. */
RTThreadPreemptDisable(&PreemptState);
if (ASMHasCpuId())
{
uint32_t uDummy, uTFMSEAX;
uint32_t uMaxId, uVendorEBX, uVendorECX, uVendorEDX;
ASMCpuId(0, &uMaxId, &uVendorEBX, &uVendorECX, &uVendorEDX);
ASMCpuId(1, &uTFMSEAX, &uDummy, &uDummy, &uDummy);
if (RTX86IsValidStdRange(uMaxId))
{
uint64_t uRevMsr;
if (RTX86IsIntelCpu(uVendorEBX, uVendorECX, uVendorEDX))
{
/* Architectural MSR available on Pentium Pro and later. */
if (RTX86GetCpuFamily(uTFMSEAX) >= 6)
{
/* Revision is in the high dword. */
uRevMsr = ASMRdMsr(MSR_IA32_BIOS_SIGN_ID);
*puRevision = RT_HIDWORD(uRevMsr);
rc = VINF_SUCCESS;
}
}
else if ( RTX86IsAmdCpu(uVendorEBX, uVendorECX, uVendorEDX)
|| RTX86IsHygonCpu(uVendorEBX, uVendorECX, uVendorEDX))
{
/* Not well documented, but at least all AMD64 CPUs support this. */
if (RTX86GetCpuFamily(uTFMSEAX) >= 15)
{
/* Revision is in the low dword. */
uRevMsr = ASMRdMsr(MSR_IA32_BIOS_SIGN_ID); /* Same MSR as Intel. */
*puRevision = RT_LODWORD(uRevMsr);
rc = VINF_SUCCESS;
}
}
}
}
RTThreadPreemptRestore(&PreemptState);
return rc;
}
/**
* Queries the CPU microcode revision.
*
* @returns VBox status code.
* @retval VERR_UNSUPPORTED_CPU if not identifiable as a processor with
* readable microcode rev.
*
* @param pSession The session handle.
* @param puRevision Where to store the microcode revision.
*/
SUPR0DECL(int) SUPR0QueryUcodeRev(PSUPDRVSESSION pSession, uint32_t *puRevision)
{
/*
* Input validation.
*/
AssertReturn(SUP_IS_SESSION_VALID(pSession), VERR_INVALID_PARAMETER);
AssertPtrReturn(puRevision, VERR_INVALID_POINTER);
/*
* Call common worker.
*/
return supdrvQueryUcodeRev(puRevision);
}
SUPR0_EXPORT_SYMBOL(SUPR0QueryUcodeRev);
/**
* Gets hardware-virtualization MSRs of the calling CPU.
*
* @returns VBox status code.
* @param pMsrs Where to store the hardware-virtualization MSRs.
* @param fCaps Hardware virtualization capabilities (SUPVTCAPS_XXX). Pass 0
* to explicitly check for the presence of VT-x/AMD-V before
* querying MSRs.
* @param fForce Force querying of MSRs from the hardware.
*/
SUPR0DECL(int) SUPR0GetHwvirtMsrs(PSUPHWVIRTMSRS pMsrs, uint32_t fCaps, bool fForce)
{
NOREF(fForce);
int rc;
RTTHREADPREEMPTSTATE PreemptState = RTTHREADPREEMPTSTATE_INITIALIZER;
/*
* Input validation.
*/
AssertPtrReturn(pMsrs, VERR_INVALID_POINTER);
/*
* Disable preemption so we make sure we don't migrate CPUs and because
* we access global data.
*/
RTThreadPreemptDisable(&PreemptState);
/*
* Query the MSRs from the hardware.
*/
SUPHWVIRTMSRS Msrs;
RT_ZERO(Msrs);
/* If the caller claims VT-x/AMD-V is supported, don't need to recheck it. */
if (!(fCaps & (SUPVTCAPS_VT_X | SUPVTCAPS_AMD_V)))
rc = SUPR0GetVTSupport(&fCaps);
else
rc = VINF_SUCCESS;
if (RT_SUCCESS(rc))
{
if (fCaps & SUPVTCAPS_VT_X)
{
Msrs.u.vmx.u64FeatCtrl = ASMRdMsr(MSR_IA32_FEATURE_CONTROL);
Msrs.u.vmx.u64Basic = ASMRdMsr(MSR_IA32_VMX_BASIC);
Msrs.u.vmx.PinCtls.u = ASMRdMsr(MSR_IA32_VMX_PINBASED_CTLS);
Msrs.u.vmx.ProcCtls.u = ASMRdMsr(MSR_IA32_VMX_PROCBASED_CTLS);
Msrs.u.vmx.ExitCtls.u = ASMRdMsr(MSR_IA32_VMX_EXIT_CTLS);
Msrs.u.vmx.EntryCtls.u = ASMRdMsr(MSR_IA32_VMX_ENTRY_CTLS);
Msrs.u.vmx.u64Misc = ASMRdMsr(MSR_IA32_VMX_MISC);
Msrs.u.vmx.u64Cr0Fixed0 = ASMRdMsr(MSR_IA32_VMX_CR0_FIXED0);
Msrs.u.vmx.u64Cr0Fixed1 = ASMRdMsr(MSR_IA32_VMX_CR0_FIXED1);
Msrs.u.vmx.u64Cr4Fixed0 = ASMRdMsr(MSR_IA32_VMX_CR4_FIXED0);
Msrs.u.vmx.u64Cr4Fixed1 = ASMRdMsr(MSR_IA32_VMX_CR4_FIXED1);
Msrs.u.vmx.u64VmcsEnum = ASMRdMsr(MSR_IA32_VMX_VMCS_ENUM);
if (RT_BF_GET(Msrs.u.vmx.u64Basic, VMX_BF_BASIC_TRUE_CTLS))
{
Msrs.u.vmx.TruePinCtls.u = ASMRdMsr(MSR_IA32_VMX_TRUE_PINBASED_CTLS);
Msrs.u.vmx.TrueProcCtls.u = ASMRdMsr(MSR_IA32_VMX_TRUE_PROCBASED_CTLS);
Msrs.u.vmx.TrueEntryCtls.u = ASMRdMsr(MSR_IA32_VMX_TRUE_ENTRY_CTLS);
Msrs.u.vmx.TrueExitCtls.u = ASMRdMsr(MSR_IA32_VMX_TRUE_EXIT_CTLS);
}
if (Msrs.u.vmx.ProcCtls.n.allowed1 & VMX_PROC_CTLS_USE_SECONDARY_CTLS)
{
Msrs.u.vmx.ProcCtls2.u = ASMRdMsr(MSR_IA32_VMX_PROCBASED_CTLS2);
if (Msrs.u.vmx.ProcCtls2.n.allowed1 & (VMX_PROC_CTLS2_EPT | VMX_PROC_CTLS2_VPID))
Msrs.u.vmx.u64EptVpidCaps = ASMRdMsr(MSR_IA32_VMX_EPT_VPID_CAP);
if (Msrs.u.vmx.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_VMFUNC)
Msrs.u.vmx.u64VmFunc = ASMRdMsr(MSR_IA32_VMX_VMFUNC);
}
if (Msrs.u.vmx.ProcCtls.n.allowed1 & VMX_PROC_CTLS_USE_TERTIARY_CTLS)
Msrs.u.vmx.u64ProcCtls3 = ASMRdMsr(MSR_IA32_VMX_PROCBASED_CTLS3);
if (Msrs.u.vmx.ExitCtls.n.allowed1 & VMX_EXIT_CTLS_USE_SECONDARY_CTLS)
Msrs.u.vmx.u64ExitCtls2 = ASMRdMsr(MSR_IA32_VMX_EXIT_CTLS2);
}
else if (fCaps & SUPVTCAPS_AMD_V)
{
Msrs.u.svm.u64MsrHwcr = ASMRdMsr(MSR_K8_HWCR);
Msrs.u.svm.u64MsrSmmAddr = ASMRdMsr(MSR_K7_SMM_ADDR);
Msrs.u.svm.u64MsrSmmMask = ASMRdMsr(MSR_K7_SMM_MASK);
}
else
{
RTThreadPreemptRestore(&PreemptState);
AssertMsgFailedReturn(("SUPR0GetVTSupport returns success but neither VT-x nor AMD-V reported!\n"),
VERR_INTERNAL_ERROR_2);
}
/*
* Copy the MSRs out.
*/
memcpy(pMsrs, &Msrs, sizeof(*pMsrs));
}
RTThreadPreemptRestore(&PreemptState);
return rc;
}
SUPR0_EXPORT_SYMBOL(SUPR0GetHwvirtMsrs);
/**
* Register a component factory with the support driver.
*
* This is currently restricted to kernel sessions only.
*
* @returns VBox status code.
* @retval VINF_SUCCESS on success.
* @retval VERR_NO_MEMORY if we're out of memory.
* @retval VERR_ALREADY_EXISTS if the factory has already been registered.
* @retval VERR_ACCESS_DENIED if it isn't a kernel session.
* @retval VERR_INVALID_PARAMETER on invalid parameter.
* @retval VERR_INVALID_POINTER on invalid pointer parameter.
*
* @param pSession The SUPDRV session (must be a ring-0 session).
* @param pFactory Pointer to the component factory registration structure.
*
* @remarks This interface is also available via SUPR0IdcComponentRegisterFactory.
*/
SUPR0DECL(int) SUPR0ComponentRegisterFactory(PSUPDRVSESSION pSession, PCSUPDRVFACTORY pFactory)
{
PSUPDRVFACTORYREG pNewReg;
const char *psz;
int rc;
/*
* Validate parameters.
*/
AssertReturn(SUP_IS_SESSION_VALID(pSession), VERR_INVALID_PARAMETER);
AssertReturn(pSession->R0Process == NIL_RTR0PROCESS, VERR_ACCESS_DENIED);
AssertPtrReturn(pFactory, VERR_INVALID_POINTER);
AssertPtrReturn(pFactory->pfnQueryFactoryInterface, VERR_INVALID_POINTER);
psz = RTStrEnd(pFactory->szName, sizeof(pFactory->szName));
AssertReturn(psz, VERR_INVALID_PARAMETER);
/*
* Allocate and initialize a new registration structure.
*/
pNewReg = (PSUPDRVFACTORYREG)RTMemAlloc(sizeof(SUPDRVFACTORYREG));
if (pNewReg)
{
pNewReg->pNext = NULL;
pNewReg->pFactory = pFactory;
pNewReg->pSession = pSession;
pNewReg->cchName = psz - &pFactory->szName[0];
/*
* Add it to the tail of the list after checking for prior registration.
*/
rc = RTSemFastMutexRequest(pSession->pDevExt->mtxComponentFactory);
if (RT_SUCCESS(rc))
{
PSUPDRVFACTORYREG pPrev = NULL;
PSUPDRVFACTORYREG pCur = pSession->pDevExt->pComponentFactoryHead;
while (pCur && pCur->pFactory != pFactory)
{
pPrev = pCur;
pCur = pCur->pNext;
}
if (!pCur)
{
if (pPrev)
pPrev->pNext = pNewReg;
else
pSession->pDevExt->pComponentFactoryHead = pNewReg;
rc = VINF_SUCCESS;
}
else
rc = VERR_ALREADY_EXISTS;
RTSemFastMutexRelease(pSession->pDevExt->mtxComponentFactory);
}
if (RT_FAILURE(rc))
RTMemFree(pNewReg);
}
else
rc = VERR_NO_MEMORY;
return rc;
}
SUPR0_EXPORT_SYMBOL(SUPR0ComponentRegisterFactory);
/**
* Deregister a component factory.
*
* @returns VBox status code.
* @retval VINF_SUCCESS on success.
* @retval VERR_NOT_FOUND if the factory wasn't registered.
* @retval VERR_ACCESS_DENIED if it isn't a kernel session.
* @retval VERR_INVALID_PARAMETER on invalid parameter.
* @retval VERR_INVALID_POINTER on invalid pointer parameter.
*
* @param pSession The SUPDRV session (must be a ring-0 session).
* @param pFactory Pointer to the component factory registration structure
* previously passed SUPR0ComponentRegisterFactory().
*
* @remarks This interface is also available via SUPR0IdcComponentDeregisterFactory.
*/
SUPR0DECL(int) SUPR0ComponentDeregisterFactory(PSUPDRVSESSION pSession, PCSUPDRVFACTORY pFactory)
{
int rc;
/*
* Validate parameters.
*/
AssertReturn(SUP_IS_SESSION_VALID(pSession), VERR_INVALID_PARAMETER);
AssertReturn(pSession->R0Process == NIL_RTR0PROCESS, VERR_ACCESS_DENIED);
AssertPtrReturn(pFactory, VERR_INVALID_POINTER);
/*
* Take the lock and look for the registration record.
*/
rc = RTSemFastMutexRequest(pSession->pDevExt->mtxComponentFactory);
if (RT_SUCCESS(rc))
{
PSUPDRVFACTORYREG pPrev = NULL;
PSUPDRVFACTORYREG pCur = pSession->pDevExt->pComponentFactoryHead;
while (pCur && pCur->pFactory != pFactory)
{
pPrev = pCur;
pCur = pCur->pNext;
}
if (pCur)
{
if (!pPrev)
pSession->pDevExt->pComponentFactoryHead = pCur->pNext;
else
pPrev->pNext = pCur->pNext;
pCur->pNext = NULL;
pCur->pFactory = NULL;
pCur->pSession = NULL;
rc = VINF_SUCCESS;
}
else
rc = VERR_NOT_FOUND;
RTSemFastMutexRelease(pSession->pDevExt->mtxComponentFactory);
RTMemFree(pCur);
}
return rc;
}
SUPR0_EXPORT_SYMBOL(SUPR0ComponentDeregisterFactory);
/**
* Queries a component factory.
*
* @returns VBox status code.
* @retval VERR_INVALID_PARAMETER on invalid parameter.
* @retval VERR_INVALID_POINTER on invalid pointer parameter.
* @retval VERR_SUPDRV_COMPONENT_NOT_FOUND if the component factory wasn't found.
* @retval VERR_SUPDRV_INTERFACE_NOT_SUPPORTED if the interface wasn't supported.
*
* @param pSession The SUPDRV session.
* @param pszName The name of the component factory.
* @param pszInterfaceUuid The UUID of the factory interface (stringified).
* @param ppvFactoryIf Where to store the factory interface.
*/
SUPR0DECL(int) SUPR0ComponentQueryFactory(PSUPDRVSESSION pSession, const char *pszName, const char *pszInterfaceUuid, void **ppvFactoryIf)
{
const char *pszEnd;
size_t cchName;
int rc;
/*
* Validate parameters.
*/
AssertReturn(SUP_IS_SESSION_VALID(pSession), VERR_INVALID_PARAMETER);
AssertPtrReturn(pszName, VERR_INVALID_POINTER);
pszEnd = RTStrEnd(pszName, RT_SIZEOFMEMB(SUPDRVFACTORY, szName));
AssertReturn(pszEnd, VERR_INVALID_PARAMETER);
cchName = pszEnd - pszName;
AssertPtrReturn(pszInterfaceUuid, VERR_INVALID_POINTER);
pszEnd = RTStrEnd(pszInterfaceUuid, RTUUID_STR_LENGTH);
AssertReturn(pszEnd, VERR_INVALID_PARAMETER);
AssertPtrReturn(ppvFactoryIf, VERR_INVALID_POINTER);
*ppvFactoryIf = NULL;
/*
* Take the lock and try all factories by this name.
*/
rc = RTSemFastMutexRequest(pSession->pDevExt->mtxComponentFactory);
if (RT_SUCCESS(rc))
{
PSUPDRVFACTORYREG pCur = pSession->pDevExt->pComponentFactoryHead;
rc = VERR_SUPDRV_COMPONENT_NOT_FOUND;
while (pCur)
{
if ( pCur->cchName == cchName
&& !memcmp(pCur->pFactory->szName, pszName, cchName))
{
void *pvFactory = pCur->pFactory->pfnQueryFactoryInterface(pCur->pFactory, pSession, pszInterfaceUuid);
if (pvFactory)
{
*ppvFactoryIf = pvFactory;
rc = VINF_SUCCESS;
break;
}
rc = VERR_SUPDRV_INTERFACE_NOT_SUPPORTED;
}
/* next */
pCur = pCur->pNext;
}
RTSemFastMutexRelease(pSession->pDevExt->mtxComponentFactory);
}
return rc;
}
SUPR0_EXPORT_SYMBOL(SUPR0ComponentQueryFactory);
/**
* Adds a memory object to the session.
*
* @returns IPRT status code.
* @param pMem Memory tracking structure containing the
* information to track.
* @param pSession The session.
*/
static int supdrvMemAdd(PSUPDRVMEMREF pMem, PSUPDRVSESSION pSession)
{
PSUPDRVBUNDLE pBundle;
/*
* Find free entry and record the allocation.
*/
RTSpinlockAcquire(pSession->Spinlock);
for (pBundle = &pSession->Bundle; pBundle; pBundle = pBundle->pNext)
{
if (pBundle->cUsed < RT_ELEMENTS(pBundle->aMem))
{
unsigned i;
for (i = 0; i < RT_ELEMENTS(pBundle->aMem); i++)
{
if (pBundle->aMem[i].MemObj == NIL_RTR0MEMOBJ)
{
pBundle->cUsed++;
pBundle->aMem[i] = *pMem;
RTSpinlockRelease(pSession->Spinlock);
return VINF_SUCCESS;
}
}
AssertFailed(); /* !!this can't be happening!!! */
}
}
RTSpinlockRelease(pSession->Spinlock);
/*
* Need to allocate a new bundle.
* Insert into the last entry in the bundle.
*/
pBundle = (PSUPDRVBUNDLE)RTMemAllocZ(sizeof(*pBundle));
if (!pBundle)
return VERR_NO_MEMORY;
/* take last entry. */
pBundle->cUsed++;
pBundle->aMem[RT_ELEMENTS(pBundle->aMem) - 1] = *pMem;
/* insert into list. */
RTSpinlockAcquire(pSession->Spinlock);
pBundle->pNext = pSession->Bundle.pNext;
pSession->Bundle.pNext = pBundle;
RTSpinlockRelease(pSession->Spinlock);
return VINF_SUCCESS;
}
/**
* Releases a memory object referenced by pointer and type.
*
* @returns IPRT status code.
* @param pSession Session data.
* @param uPtr Pointer to memory. This is matched against both the R0 and R3 addresses.
* @param eType Memory type.
*/
static int supdrvMemRelease(PSUPDRVSESSION pSession, RTHCUINTPTR uPtr, SUPDRVMEMREFTYPE eType)
{
PSUPDRVBUNDLE pBundle;
/*
* Validate input.
*/
if (!uPtr)
{
Log(("Illegal address %p\n", (void *)uPtr));
return VERR_INVALID_PARAMETER;
}
/*
* Search for the address.
*/
RTSpinlockAcquire(pSession->Spinlock);
for (pBundle = &pSession->Bundle; pBundle; pBundle = pBundle->pNext)
{
if (pBundle->cUsed > 0)
{
unsigned i;
for (i = 0; i < RT_ELEMENTS(pBundle->aMem); i++)
{
if ( pBundle->aMem[i].eType == eType
&& pBundle->aMem[i].MemObj != NIL_RTR0MEMOBJ
&& ( (RTHCUINTPTR)RTR0MemObjAddress(pBundle->aMem[i].MemObj) == uPtr
|| ( pBundle->aMem[i].MapObjR3 != NIL_RTR0MEMOBJ
&& RTR0MemObjAddressR3(pBundle->aMem[i].MapObjR3) == uPtr))
)
{
/* Make a copy of it and release it outside the spinlock. */
SUPDRVMEMREF Mem = pBundle->aMem[i];
pBundle->aMem[i].eType = MEMREF_TYPE_UNUSED;
pBundle->aMem[i].MemObj = NIL_RTR0MEMOBJ;
pBundle->aMem[i].MapObjR3 = NIL_RTR0MEMOBJ;
RTSpinlockRelease(pSession->Spinlock);
if (Mem.MapObjR3 != NIL_RTR0MEMOBJ)
{
int rc = RTR0MemObjFree(Mem.MapObjR3, false);
AssertRC(rc); /** @todo figure out how to handle this. */
}
if (Mem.MemObj != NIL_RTR0MEMOBJ)
{
int rc = RTR0MemObjFree(Mem.MemObj, true /* fFreeMappings */);
AssertRC(rc); /** @todo figure out how to handle this. */
}
return VINF_SUCCESS;
}
}
}
}
RTSpinlockRelease(pSession->Spinlock);
Log(("Failed to find %p!!! (eType=%d)\n", (void *)uPtr, eType));
return VERR_INVALID_PARAMETER;
}
/**
* Opens an image. If it's the first time it's opened the call must upload
* the bits using the supdrvIOCtl_LdrLoad() / SUPDRV_IOCTL_LDR_LOAD function.
*
* This is the 1st step of the loading.
*
* @returns IPRT status code.
* @param pDevExt Device globals.
* @param pSession Session data.
* @param pReq The open request.
*/
static int supdrvIOCtl_LdrOpen(PSUPDRVDEVEXT pDevExt, PSUPDRVSESSION pSession, PSUPLDROPEN pReq)
{
int rc;
PSUPDRVLDRIMAGE pImage;
void *pv;
size_t cchName = strlen(pReq->u.In.szName); /* (caller checked < 32). */
SUPDRV_CHECK_SMAP_SETUP();
SUPDRV_CHECK_SMAP_CHECK(pDevExt, RT_NOTHING);
LogFlow(("supdrvIOCtl_LdrOpen: szName=%s cbImageWithEverything=%d\n", pReq->u.In.szName, pReq->u.In.cbImageWithEverything));
/*
* Check if we got an instance of the image already.
*/
supdrvLdrLock(pDevExt);
SUPDRV_CHECK_SMAP_CHECK(pDevExt, RT_NOTHING);
for (pImage = pDevExt->pLdrImages; pImage; pImage = pImage->pNext)
{
if ( pImage->szName[cchName] == '\0'
&& !memcmp(pImage->szName, pReq->u.In.szName, cchName))
{
/** @todo Add an _1M (or something) per session reference. */
if (RT_LIKELY(pImage->cImgUsage < UINT32_MAX / 2U))
{
/** @todo check cbImageBits and cbImageWithEverything here, if they differs
* that indicates that the images are different. */
pReq->u.Out.pvImageBase = pImage->pvImage;
pReq->u.Out.fNeedsLoading = pImage->uState == SUP_IOCTL_LDR_OPEN;
pReq->u.Out.fNativeLoader = pImage->fNative;
supdrvLdrAddUsage(pDevExt, pSession, pImage, true /*fRing3Usage*/);
supdrvLdrUnlock(pDevExt);
SUPDRV_CHECK_SMAP_CHECK(pDevExt, RT_NOTHING);
return VINF_SUCCESS;
}
supdrvLdrUnlock(pDevExt);
Log(("supdrvIOCtl_LdrOpen: Too many existing references to '%s'!\n", pReq->u.In.szName));
return VERR_TOO_MANY_REFERENCES;
}
}
/* (not found - add it!) */
/* If the loader interface is locked down, make userland fail early */
if (pDevExt->fLdrLockedDown)
{
supdrvLdrUnlock(pDevExt);
Log(("supdrvIOCtl_LdrOpen: Not adding '%s' to image list, loader interface is locked down!\n", pReq->u.In.szName));
return VERR_PERMISSION_DENIED;
}
/* Stop if caller doesn't wish to prepare loading things. */
if (!pReq->u.In.cbImageBits)
{
supdrvLdrUnlock(pDevExt);
Log(("supdrvIOCtl_LdrOpen: Returning VERR_MODULE_NOT_FOUND for '%s'!\n", pReq->u.In.szName));
return VERR_MODULE_NOT_FOUND;
}
/*
* Allocate memory.
*/
Assert(cchName < sizeof(pImage->szName));
pv = RTMemAllocZ(sizeof(SUPDRVLDRIMAGE));
if (!pv)
{
supdrvLdrUnlock(pDevExt);
Log(("supdrvIOCtl_LdrOpen: RTMemAllocZ() failed\n"));
return VERR_NO_MEMORY;
}
SUPDRV_CHECK_SMAP_CHECK(pDevExt, RT_NOTHING);
/*
* Setup and link in the LDR stuff.
*/
pImage = (PSUPDRVLDRIMAGE)pv;
pImage->pvImage = NULL;
pImage->hMemObjImage = NIL_RTR0MEMOBJ;
pImage->cbImageWithEverything = pReq->u.In.cbImageWithEverything;
pImage->cbImageBits = pReq->u.In.cbImageBits;
pImage->cSymbols = 0;
pImage->paSymbols = NULL;
pImage->pachStrTab = NULL;
pImage->cbStrTab = 0;
pImage->cSegments = 0;
pImage->paSegments = NULL;
pImage->pfnModuleInit = NULL;
pImage->pfnModuleTerm = NULL;
pImage->pfnServiceReqHandler = NULL;
pImage->uState = SUP_IOCTL_LDR_OPEN;
pImage->cImgUsage = 0; /* Increased by supdrvLdrAddUsage later */
pImage->pDevExt = pDevExt;
pImage->pImageImport = NULL;
pImage->uMagic = SUPDRVLDRIMAGE_MAGIC;
pImage->pWrappedModInfo = NULL;
memcpy(pImage->szName, pReq->u.In.szName, cchName + 1);
/*
* Try load it using the native loader, if that isn't supported, fall back
* on the older method.
*/
pImage->fNative = true;
rc = supdrvOSLdrOpen(pDevExt, pImage, pReq->u.In.szFilename);
if (rc == VERR_NOT_SUPPORTED)
{
rc = RTR0MemObjAllocPage(&pImage->hMemObjImage, pImage->cbImageBits, true /*fExecutable*/);
if (RT_SUCCESS(rc))
{
pImage->pvImage = RTR0MemObjAddress(pImage->hMemObjImage);
pImage->fNative = false;
}
SUPDRV_CHECK_SMAP_CHECK(pDevExt, RT_NOTHING);
}
if (RT_SUCCESS(rc))
rc = supdrvLdrAddUsage(pDevExt, pSession, pImage, true /*fRing3Usage*/);
if (RT_FAILURE(rc))
{
supdrvLdrUnlock(pDevExt);
pImage->uMagic = SUPDRVLDRIMAGE_MAGIC_DEAD;
RTMemFree(pImage);
Log(("supdrvIOCtl_LdrOpen(%s): failed - %Rrc\n", pReq->u.In.szName, rc));
return rc;
}
Assert(RT_VALID_PTR(pImage->pvImage) || RT_FAILURE(rc));
/*
* Link it.
*/
pImage->pNext = pDevExt->pLdrImages;
pDevExt->pLdrImages = pImage;
pReq->u.Out.pvImageBase = pImage->pvImage;
pReq->u.Out.fNeedsLoading = true;
pReq->u.Out.fNativeLoader = pImage->fNative;
supdrvOSLdrNotifyOpened(pDevExt, pImage, pReq->u.In.szFilename);
supdrvLdrUnlock(pDevExt);
SUPDRV_CHECK_SMAP_CHECK(pDevExt, RT_NOTHING);
return VINF_SUCCESS;
}
/**
* Formats a load error message.
*
* @returns @a rc
* @param rc Return code.
* @param pReq The request.
* @param pszFormat The error message format string.
* @param ... Argument to the format string.
*/
int VBOXCALL supdrvLdrLoadError(int rc, PSUPLDRLOAD pReq, const char *pszFormat, ...)
{
va_list va;
va_start(va, pszFormat);
pReq->u.Out.uErrorMagic = SUPLDRLOAD_ERROR_MAGIC;
RTStrPrintfV(pReq->u.Out.szError, sizeof(pReq->u.Out.szError), pszFormat, va);
va_end(va);
Log(("SUP_IOCTL_LDR_LOAD: %s [rc=%Rrc]\n", pReq->u.Out.szError, rc));
return rc;
}
/**
* Worker that validates a pointer to an image entrypoint.
*
* Calls supdrvLdrLoadError on error.
*
* @returns IPRT status code.
* @param pDevExt The device globals.
* @param pImage The loader image.
* @param pv The pointer into the image.
* @param fMayBeNull Whether it may be NULL.
* @param pszSymbol The entrypoint name or log name. If the symbol is
* capitalized it signifies a specific symbol, otherwise it
* for logging.
* @param pbImageBits The image bits prepared by ring-3.
* @param pReq The request for passing to supdrvLdrLoadError.
*
* @note Will leave the loader lock on failure!
*/
static int supdrvLdrValidatePointer(PSUPDRVDEVEXT pDevExt, PSUPDRVLDRIMAGE pImage, void *pv, bool fMayBeNull,
const uint8_t *pbImageBits, const char *pszSymbol, PSUPLDRLOAD pReq)
{
if (!fMayBeNull || pv)
{
uint32_t iSeg;
/* Must be within the image bits: */
uintptr_t const uRva = (uintptr_t)pv - (uintptr_t)pImage->pvImage;
if (uRva >= pImage->cbImageBits)
{
supdrvLdrUnlock(pDevExt);
return supdrvLdrLoadError(VERR_INVALID_PARAMETER, pReq,
"Invalid entry point address %p given for %s: RVA %#zx, image size %#zx",
pv, pszSymbol, uRva, pImage->cbImageBits);
}
/* Must be in an executable segment: */
for (iSeg = 0; iSeg < pImage->cSegments; iSeg++)
if (uRva - pImage->paSegments[iSeg].off < (uintptr_t)pImage->paSegments[iSeg].cb)
{
if (pImage->paSegments[iSeg].fProt & SUPLDR_PROT_EXEC)
break;
supdrvLdrUnlock(pDevExt);
return supdrvLdrLoadError(VERR_INVALID_PARAMETER, pReq,
"Bad entry point %p given for %s: not executable (seg #%u: %#RX32 LB %#RX32 prot %#x)",
pv, pszSymbol, iSeg, pImage->paSegments[iSeg].off, pImage->paSegments[iSeg].cb,
pImage->paSegments[iSeg].fProt);
}
if (iSeg >= pImage->cSegments)
{
supdrvLdrUnlock(pDevExt);
return supdrvLdrLoadError(VERR_INVALID_PARAMETER, pReq,
"Bad entry point %p given for %s: no matching segment found (RVA %#zx)!",
pv, pszSymbol, uRva);
}
if (pImage->fNative)
{
/** @todo pass pReq along to the native code. */
int rc = supdrvOSLdrValidatePointer(pDevExt, pImage, pv, pbImageBits, pszSymbol);
if (RT_FAILURE(rc))
{
supdrvLdrUnlock(pDevExt);
return supdrvLdrLoadError(VERR_INVALID_PARAMETER, pReq,
"Bad entry point address %p for %s: rc=%Rrc\n", pv, pszSymbol, rc);
}
}
}
return VINF_SUCCESS;
}
/**
* Loads the image bits.
*
* This is the 2nd step of the loading.
*
* @returns IPRT status code.
* @param pDevExt Device globals.
* @param pSession Session data.
* @param pReq The request.
*/
static int supdrvIOCtl_LdrLoad(PSUPDRVDEVEXT pDevExt, PSUPDRVSESSION pSession, PSUPLDRLOAD pReq)
{
PSUPDRVLDRUSAGE pUsage;
PSUPDRVLDRIMAGE pImage;
PSUPDRVLDRIMAGE pImageImport;
int rc;
SUPDRV_CHECK_SMAP_SETUP();
LogFlow(("supdrvIOCtl_LdrLoad: pvImageBase=%p cbImageWithEverything=%d\n", pReq->u.In.pvImageBase, pReq->u.In.cbImageWithEverything));
SUPDRV_CHECK_SMAP_CHECK(pDevExt, RT_NOTHING);
/*
* Find the ldr image.
*/
supdrvLdrLock(pDevExt);
SUPDRV_CHECK_SMAP_CHECK(pDevExt, RT_NOTHING);
pUsage = pSession->pLdrUsage;
while (pUsage && pUsage->pImage->pvImage != pReq->u.In.pvImageBase)
pUsage = pUsage->pNext;
if (!pUsage)
{
supdrvLdrUnlock(pDevExt);
return supdrvLdrLoadError(VERR_INVALID_HANDLE, pReq, "Image not found");
}
pImage = pUsage->pImage;
/*
* Validate input.
*/
if ( pImage->cbImageWithEverything != pReq->u.In.cbImageWithEverything
|| pImage->cbImageBits != pReq->u.In.cbImageBits)
{
supdrvLdrUnlock(pDevExt);
return supdrvLdrLoadError(VERR_INVALID_HANDLE, pReq, "Image size mismatch found: %u(prep) != %u(load) or %u != %u",
pImage->cbImageWithEverything, pReq->u.In.cbImageWithEverything, pImage->cbImageBits, pReq->u.In.cbImageBits);
}
if (pImage->uState != SUP_IOCTL_LDR_OPEN)
{
unsigned uState = pImage->uState;
supdrvLdrUnlock(pDevExt);
if (uState != SUP_IOCTL_LDR_LOAD)
AssertMsgFailed(("SUP_IOCTL_LDR_LOAD: invalid image state %d (%#x)!\n", uState, uState));
pReq->u.Out.uErrorMagic = 0;
return VERR_ALREADY_LOADED;
}
/* If the loader interface is locked down, don't load new images */
if (pDevExt->fLdrLockedDown)
{
supdrvLdrUnlock(pDevExt);
return supdrvLdrLoadError(VERR_PERMISSION_DENIED, pReq, "Loader is locked down");
}
/*
* If the new image is a dependant of VMMR0.r0, resolve it via the
* caller's usage list and make sure it's in ready state.
*/
pImageImport = NULL;
if (pReq->u.In.fFlags & SUPLDRLOAD_F_DEP_VMMR0)
{
PSUPDRVLDRUSAGE pUsageDependency = pSession->pLdrUsage;
while (pUsageDependency && pUsageDependency->pImage->pvImage != pDevExt->pvVMMR0)
pUsageDependency = pUsageDependency->pNext;
if (!pUsageDependency || !pDevExt->pvVMMR0)
{
supdrvLdrUnlock(pDevExt);
return supdrvLdrLoadError(VERR_MODULE_NOT_FOUND, pReq, "VMMR0.r0 not loaded by session");
}
pImageImport = pUsageDependency->pImage;
if (pImageImport->uState != SUP_IOCTL_LDR_LOAD)
{
supdrvLdrUnlock(pDevExt);
return supdrvLdrLoadError(VERR_MODULE_NOT_FOUND, pReq, "VMMR0.r0 is not ready (state %#x)", pImageImport->uState);
}
}
/*
* Copy the segments before we start using supdrvLdrValidatePointer for entrypoint validation.
*/
pImage->cSegments = pReq->u.In.cSegments;
{
size_t cbSegments = pImage->cSegments * sizeof(SUPLDRSEG);
uint8_t const * const pbSrcImage = pReq->u.In.abImage;
pImage->paSegments = (PSUPLDRSEG)RTMemDup(&pbSrcImage[pReq->u.In.offSegments], cbSegments);
if (pImage->paSegments) /* Align the last segment size to avoid upsetting RTR0MemObjProtect. */ /** @todo relax RTR0MemObjProtect */
pImage->paSegments[pImage->cSegments - 1].cb = RT_ALIGN_32(pImage->paSegments[pImage->cSegments - 1].cb, PAGE_SIZE);
else
{
supdrvLdrUnlock(pDevExt);
return supdrvLdrLoadError(VERR_NO_MEMORY, pReq, "Out of memory for segment table: %#x", cbSegments);
}
SUPDRV_CHECK_SMAP_CHECK(pDevExt, RT_NOTHING);
}
/*
* Validate entrypoints.
*/
switch (pReq->u.In.eEPType)
{
case SUPLDRLOADEP_NOTHING:
break;
case SUPLDRLOADEP_VMMR0:
rc = supdrvLdrValidatePointer(pDevExt, pImage, pReq->u.In.EP.VMMR0.pvVMMR0EntryFast, false, pReq->u.In.abImage, "VMMR0EntryFast", pReq);
if (RT_FAILURE(rc))
return rc;
rc = supdrvLdrValidatePointer(pDevExt, pImage, pReq->u.In.EP.VMMR0.pvVMMR0EntryEx, false, pReq->u.In.abImage, "VMMR0EntryEx", pReq);
if (RT_FAILURE(rc))
return rc;
/* Fail here if there is already a VMMR0 module. */
if (pDevExt->pvVMMR0 != NULL)
{
supdrvLdrUnlock(pDevExt);
return supdrvLdrLoadError(VERR_INVALID_PARAMETER, pReq, "There is already a VMMR0 module loaded (%p)", pDevExt->pvVMMR0);
}
break;
case SUPLDRLOADEP_SERVICE:
rc = supdrvLdrValidatePointer(pDevExt, pImage, pReq->u.In.EP.Service.pfnServiceReq, false, pReq->u.In.abImage, "pfnServiceReq", pReq);
if (RT_FAILURE(rc))
return rc;
if ( pReq->u.In.EP.Service.apvReserved[0] != NIL_RTR0PTR
|| pReq->u.In.EP.Service.apvReserved[1] != NIL_RTR0PTR
|| pReq->u.In.EP.Service.apvReserved[2] != NIL_RTR0PTR)
{
supdrvLdrUnlock(pDevExt);
return supdrvLdrLoadError(VERR_INVALID_PARAMETER, pReq, "apvReserved={%p,%p,%p} MBZ!",
pReq->u.In.EP.Service.apvReserved[0], pReq->u.In.EP.Service.apvReserved[1],
pReq->u.In.EP.Service.apvReserved[2]);
}
break;
default:
supdrvLdrUnlock(pDevExt);
return supdrvLdrLoadError(VERR_INVALID_PARAMETER, pReq, "Invalid eEPType=%d", pReq->u.In.eEPType);
}
rc = supdrvLdrValidatePointer(pDevExt, pImage, pReq->u.In.pfnModuleInit, true, pReq->u.In.abImage, "ModuleInit", pReq);
if (RT_FAILURE(rc))
return rc;
rc = supdrvLdrValidatePointer(pDevExt, pImage, pReq->u.In.pfnModuleTerm, true, pReq->u.In.abImage, "ModuleTerm", pReq);
if (RT_FAILURE(rc))
return rc;
SUPDRV_CHECK_SMAP_CHECK(pDevExt, RT_NOTHING);
/*
* Allocate and copy the tables if non-native.
* (No need to do try/except as this is a buffered request.)
*/
if (!pImage->fNative)
{
uint8_t const * const pbSrcImage = pReq->u.In.abImage;
pImage->cbStrTab = pReq->u.In.cbStrTab;
if (pImage->cbStrTab)
{
pImage->pachStrTab = (char *)RTMemDup(&pbSrcImage[pReq->u.In.offStrTab], pImage->cbStrTab);
if (!pImage->pachStrTab)
rc = supdrvLdrLoadError(VERR_NO_MEMORY, pReq, "Out of memory for string table: %#x", pImage->cbStrTab);
SUPDRV_CHECK_SMAP_CHECK(pDevExt, RT_NOTHING);
}
pImage->cSymbols = pReq->u.In.cSymbols;
if (RT_SUCCESS(rc) && pImage->cSymbols)
{
size_t cbSymbols = pImage->cSymbols * sizeof(SUPLDRSYM);
pImage->paSymbols = (PSUPLDRSYM)RTMemDup(&pbSrcImage[pReq->u.In.offSymbols], cbSymbols);
if (!pImage->paSymbols)
rc = supdrvLdrLoadError(VERR_NO_MEMORY, pReq, "Out of memory for symbol table: %#x", cbSymbols);
SUPDRV_CHECK_SMAP_CHECK(pDevExt, RT_NOTHING);
}
}
/*
* Copy the bits and apply permissions / complete native loading.
*/
if (RT_SUCCESS(rc))
{
pImage->uState = SUP_IOCTL_LDR_LOAD;
pImage->pfnModuleInit = (PFNR0MODULEINIT)(uintptr_t)pReq->u.In.pfnModuleInit;
pImage->pfnModuleTerm = (PFNR0MODULETERM)(uintptr_t)pReq->u.In.pfnModuleTerm;
if (pImage->fNative)
rc = supdrvOSLdrLoad(pDevExt, pImage, pReq->u.In.abImage, pReq);
else
{
uint32_t i;
memcpy(pImage->pvImage, &pReq->u.In.abImage[0], pImage->cbImageBits);
for (i = 0; i < pImage->cSegments; i++)
{
rc = RTR0MemObjProtect(pImage->hMemObjImage, pImage->paSegments[i].off, pImage->paSegments[i].cb,
pImage->paSegments[i].fProt);
if (RT_SUCCESS(rc))
continue;
if (rc == VERR_NOT_SUPPORTED)
rc = VINF_SUCCESS;
else
rc = supdrvLdrLoadError(rc, pReq, "RTR0MemObjProtect failed on seg#%u %#RX32 LB %#RX32 fProt=%#x",
i, pImage->paSegments[i].off, pImage->paSegments[i].cb, pImage->paSegments[i].fProt);
break;
}
Log(("vboxdrv: Loaded '%s' at %p\n", pImage->szName, pImage->pvImage));
}
SUPDRV_CHECK_SMAP_CHECK(pDevExt, RT_NOTHING);
}
/*
* On success call the module initialization.
*/
LogFlow(("supdrvIOCtl_LdrLoad: pfnModuleInit=%p\n", pImage->pfnModuleInit));
if (RT_SUCCESS(rc) && pImage->pfnModuleInit)
{
Log(("supdrvIOCtl_LdrLoad: calling pfnModuleInit=%p\n", pImage->pfnModuleInit));
pDevExt->pLdrInitImage = pImage;
pDevExt->hLdrInitThread = RTThreadNativeSelf();
SUPDRV_CHECK_SMAP_CHECK(pDevExt, RT_NOTHING);
rc = pImage->pfnModuleInit(pImage);
SUPDRV_CHECK_SMAP_CHECK(pDevExt, RT_NOTHING);
pDevExt->pLdrInitImage = NULL;
pDevExt->hLdrInitThread = NIL_RTNATIVETHREAD;
if (RT_FAILURE(rc))
supdrvLdrLoadError(rc, pReq, "ModuleInit failed: %Rrc", rc);
}
if (RT_SUCCESS(rc))
{
/*
* Publish any standard entry points.
*/
switch (pReq->u.In.eEPType)
{
case SUPLDRLOADEP_VMMR0:
Assert(!pDevExt->pvVMMR0);
Assert(!pDevExt->pfnVMMR0EntryFast);
Assert(!pDevExt->pfnVMMR0EntryEx);
ASMAtomicWritePtrVoid(&pDevExt->pvVMMR0, pImage->pvImage);
ASMAtomicWritePtrVoid((void * volatile *)(uintptr_t)&pDevExt->pfnVMMR0EntryFast,
(void *)(uintptr_t) pReq->u.In.EP.VMMR0.pvVMMR0EntryFast);
ASMAtomicWritePtrVoid((void * volatile *)(uintptr_t)&pDevExt->pfnVMMR0EntryEx,
(void *)(uintptr_t) pReq->u.In.EP.VMMR0.pvVMMR0EntryEx);
break;
case SUPLDRLOADEP_SERVICE:
pImage->pfnServiceReqHandler = (PFNSUPR0SERVICEREQHANDLER)(uintptr_t)pReq->u.In.EP.Service.pfnServiceReq;
break;
default:
break;
}
/*
* Increase the usage counter of any imported image.
*/
if (pImageImport)
{
pImageImport->cImgUsage++;
if (pImageImport->cImgUsage == 2 && pImageImport->pWrappedModInfo)
supdrvOSLdrRetainWrapperModule(pDevExt, pImageImport);
pImage->pImageImport = pImageImport;
}
/*
* Done!
*/
SUPR0Printf("vboxdrv: %RKv %s\n", pImage->pvImage, pImage->szName);
pReq->u.Out.uErrorMagic = 0;
pReq->u.Out.szError[0] = '\0';
}
else
{
/* Inform the tracing component in case ModuleInit registered TPs. */
supdrvTracerModuleUnloading(pDevExt, pImage);
pImage->uState = SUP_IOCTL_LDR_OPEN;
pImage->pfnModuleInit = NULL;
pImage->pfnModuleTerm = NULL;
pImage->pfnServiceReqHandler= NULL;
pImage->cbStrTab = 0;
RTMemFree(pImage->pachStrTab);
pImage->pachStrTab = NULL;
RTMemFree(pImage->paSymbols);
pImage->paSymbols = NULL;
pImage->cSymbols = 0;
}
supdrvLdrUnlock(pDevExt);
SUPDRV_CHECK_SMAP_CHECK(pDevExt, RT_NOTHING);
return rc;
}
/**
* Registers a .r0 module wrapped in a native one and manually loaded.
*
* @returns VINF_SUCCESS or error code (no info statuses).
* @param pDevExt Device globals.
* @param pWrappedModInfo The wrapped module info.
* @param pvNative OS specific information.
* @param phMod Where to store the module handle.
*/
int VBOXCALL supdrvLdrRegisterWrappedModule(PSUPDRVDEVEXT pDevExt, PCSUPLDRWRAPPEDMODULE pWrappedModInfo,
void *pvNative, void **phMod)
{
size_t cchName;
PSUPDRVLDRIMAGE pImage;
PCSUPLDRWRAPMODSYMBOL paSymbols;
uint16_t idx;
const char *pszPrevSymbol;
int rc;
SUPDRV_CHECK_SMAP_SETUP();
SUPDRV_CHECK_SMAP_CHECK(pDevExt, RT_NOTHING);
/*
* Validate input.
*/
AssertPtrReturn(phMod, VERR_INVALID_POINTER);
*phMod = NULL;
AssertPtrReturn(pDevExt, VERR_INTERNAL_ERROR_2);
AssertPtrReturn(pWrappedModInfo, VERR_INVALID_POINTER);
AssertMsgReturn(pWrappedModInfo->uMagic == SUPLDRWRAPPEDMODULE_MAGIC,
("uMagic=%#x, expected %#x\n", pWrappedModInfo->uMagic, SUPLDRWRAPPEDMODULE_MAGIC),
VERR_INVALID_MAGIC);
AssertMsgReturn(pWrappedModInfo->uVersion == SUPLDRWRAPPEDMODULE_VERSION,
("Unsupported uVersion=%#x, current version %#x\n", pWrappedModInfo->uVersion, SUPLDRWRAPPEDMODULE_VERSION),
VERR_VERSION_MISMATCH);
AssertMsgReturn(pWrappedModInfo->uEndMagic == SUPLDRWRAPPEDMODULE_MAGIC,
("uEndMagic=%#x, expected %#x\n", pWrappedModInfo->uEndMagic, SUPLDRWRAPPEDMODULE_MAGIC),
VERR_INVALID_MAGIC);
AssertMsgReturn(pWrappedModInfo->fFlags <= SUPLDRWRAPPEDMODULE_F_VMMR0, ("Unknown flags in: %#x\n", pWrappedModInfo->fFlags),
VERR_INVALID_FLAGS);
/* szName: */
AssertReturn(RTStrEnd(pWrappedModInfo->szName, sizeof(pWrappedModInfo->szName)) != NULL, VERR_INVALID_NAME);
AssertReturn(supdrvIsLdrModuleNameValid(pWrappedModInfo->szName), VERR_INVALID_NAME);
AssertCompile(sizeof(pImage->szName) == sizeof(pWrappedModInfo->szName));
cchName = strlen(pWrappedModInfo->szName);
/* Image range: */
AssertPtrReturn(pWrappedModInfo->pvImageStart, VERR_INVALID_POINTER);
AssertPtrReturn(pWrappedModInfo->pvImageEnd, VERR_INVALID_POINTER);
AssertReturn((uintptr_t)pWrappedModInfo->pvImageEnd > (uintptr_t)pWrappedModInfo->pvImageStart, VERR_INVALID_PARAMETER);
/* Symbol table: */
AssertMsgReturn(pWrappedModInfo->cSymbols <= _8K, ("Too many symbols: %u, max 8192\n", pWrappedModInfo->cSymbols),
VERR_TOO_MANY_SYMLINKS);
pszPrevSymbol = "\x7f";
paSymbols = pWrappedModInfo->paSymbols;
idx = pWrappedModInfo->cSymbols;
while (idx-- > 0)
{
const char *pszSymbol = paSymbols[idx].pszSymbol;
AssertMsgReturn(RT_VALID_PTR(pszSymbol) && RT_VALID_PTR(paSymbols[idx].pfnValue),
("paSymbols[%u]: %p/%p\n", idx, pszSymbol, paSymbols[idx].pfnValue),
VERR_INVALID_POINTER);
AssertReturn(*pszSymbol != '\0', VERR_EMPTY_STRING);
AssertMsgReturn(strcmp(pszSymbol, pszPrevSymbol) < 0,
("symbol table out of order at index %u: '%s' vs '%s'\n", idx, pszSymbol, pszPrevSymbol),
VERR_WRONG_ORDER);
pszPrevSymbol = pszSymbol;
}
/* Standard entry points: */
AssertPtrNullReturn(pWrappedModInfo->pfnModuleInit, VERR_INVALID_POINTER);
AssertPtrNullReturn(pWrappedModInfo->pfnModuleTerm, VERR_INVALID_POINTER);
AssertReturn((uintptr_t)pWrappedModInfo->pfnModuleInit != (uintptr_t)pWrappedModInfo->pfnModuleTerm || pWrappedModInfo->pfnModuleInit == NULL,
VERR_INVALID_PARAMETER);
if (pWrappedModInfo->fFlags & SUPLDRWRAPPEDMODULE_F_VMMR0)
{
AssertReturn(pWrappedModInfo->pfnServiceReqHandler == NULL, VERR_INVALID_PARAMETER);
AssertPtrReturn(pWrappedModInfo->pfnVMMR0EntryFast, VERR_INVALID_POINTER);
AssertPtrReturn(pWrappedModInfo->pfnVMMR0EntryEx, VERR_INVALID_POINTER);
AssertReturn(pWrappedModInfo->pfnVMMR0EntryFast != pWrappedModInfo->pfnVMMR0EntryEx, VERR_INVALID_PARAMETER);
}
else
{
AssertPtrNullReturn(pWrappedModInfo->pfnServiceReqHandler, VERR_INVALID_POINTER);
AssertReturn(pWrappedModInfo->pfnVMMR0EntryFast == NULL, VERR_INVALID_PARAMETER);
AssertReturn(pWrappedModInfo->pfnVMMR0EntryEx == NULL, VERR_INVALID_PARAMETER);
}
/*
* Check if we got an instance of the image already.
*/
supdrvLdrLock(pDevExt);
SUPDRV_CHECK_SMAP_CHECK(pDevExt, RT_NOTHING);
for (pImage = pDevExt->pLdrImages; pImage; pImage = pImage->pNext)
{
if ( pImage->szName[cchName] == '\0'
&& !memcmp(pImage->szName, pWrappedModInfo->szName, cchName))
{
supdrvLdrUnlock(pDevExt);
Log(("supdrvLdrRegisterWrappedModule: '%s' already loaded!\n", pWrappedModInfo->szName));
return VERR_ALREADY_LOADED;
}
}
/* (not found - add it!) */
/* If the loader interface is locked down, make userland fail early */
if (pDevExt->fLdrLockedDown)
{
supdrvLdrUnlock(pDevExt);
Log(("supdrvLdrRegisterWrappedModule: Not adding '%s' to image list, loader interface is locked down!\n", pWrappedModInfo->szName));
return VERR_PERMISSION_DENIED;
}
/* Only one VMMR0: */
if ( pDevExt->pvVMMR0 != NULL
&& (pWrappedModInfo->fFlags & SUPLDRWRAPPEDMODULE_F_VMMR0))
{
supdrvLdrUnlock(pDevExt);
Log(("supdrvLdrRegisterWrappedModule: Rejecting '%s' as we already got a VMMR0 module!\n", pWrappedModInfo->szName));
return VERR_ALREADY_EXISTS;
}
/*
* Allocate memory.
*/
Assert(cchName < sizeof(pImage->szName));
pImage = (PSUPDRVLDRIMAGE)RTMemAllocZ(sizeof(SUPDRVLDRIMAGE));
if (!pImage)
{
supdrvLdrUnlock(pDevExt);
Log(("supdrvLdrRegisterWrappedModule: RTMemAllocZ() failed\n"));
return VERR_NO_MEMORY;
}
SUPDRV_CHECK_SMAP_CHECK(pDevExt, RT_NOTHING);
/*
* Setup and link in the LDR stuff.
*/
pImage->pvImage = (void *)pWrappedModInfo->pvImageStart;
pImage->hMemObjImage = NIL_RTR0MEMOBJ;
pImage->cbImageWithEverything
= pImage->cbImageBits = (uintptr_t)pWrappedModInfo->pvImageEnd - (uintptr_t)pWrappedModInfo->pvImageStart;
pImage->cSymbols = 0;
pImage->paSymbols = NULL;
pImage->pachStrTab = NULL;
pImage->cbStrTab = 0;
pImage->cSegments = 0;
pImage->paSegments = NULL;
pImage->pfnModuleInit = pWrappedModInfo->pfnModuleInit;
pImage->pfnModuleTerm = pWrappedModInfo->pfnModuleTerm;
pImage->pfnServiceReqHandler = NULL; /* Only setting this after module init */
pImage->uState = SUP_IOCTL_LDR_LOAD;
pImage->cImgUsage = 1; /* Held by the wrapper module till unload. */
pImage->pDevExt = pDevExt;
pImage->pImageImport = NULL;
pImage->uMagic = SUPDRVLDRIMAGE_MAGIC;
pImage->pWrappedModInfo = pWrappedModInfo;
pImage->pvWrappedNative = pvNative;
pImage->fNative = true;
memcpy(pImage->szName, pWrappedModInfo->szName, cchName + 1);
/*
* Link it.
*/
pImage->pNext = pDevExt->pLdrImages;
pDevExt->pLdrImages = pImage;
/*
* Call module init function if found.
*/
rc = VINF_SUCCESS;
if (pImage->pfnModuleInit)
{
Log(("supdrvIOCtl_LdrLoad: calling pfnModuleInit=%p\n", pImage->pfnModuleInit));
pDevExt->pLdrInitImage = pImage;
pDevExt->hLdrInitThread = RTThreadNativeSelf();
SUPDRV_CHECK_SMAP_CHECK(pDevExt, RT_NOTHING);
rc = pImage->pfnModuleInit(pImage);
SUPDRV_CHECK_SMAP_CHECK(pDevExt, RT_NOTHING);
pDevExt->pLdrInitImage = NULL;
pDevExt->hLdrInitThread = NIL_RTNATIVETHREAD;
}
if (RT_SUCCESS(rc))
{
/*
* Update entry points.
*/
if (pWrappedModInfo->fFlags & SUPLDRWRAPPEDMODULE_F_VMMR0)
{
Assert(!pDevExt->pvVMMR0);
Assert(!pDevExt->pfnVMMR0EntryFast);
Assert(!pDevExt->pfnVMMR0EntryEx);
ASMAtomicWritePtrVoid(&pDevExt->pvVMMR0, pImage->pvImage);
ASMAtomicWritePtrVoid((void * volatile *)(uintptr_t)&pDevExt->pfnVMMR0EntryFast,
(void *)(uintptr_t) pWrappedModInfo->pfnVMMR0EntryFast);
ASMAtomicWritePtrVoid((void * volatile *)(uintptr_t)&pDevExt->pfnVMMR0EntryEx,
(void *)(uintptr_t) pWrappedModInfo->pfnVMMR0EntryEx);
}
else
pImage->pfnServiceReqHandler = pWrappedModInfo->pfnServiceReqHandler;
#ifdef IN_RING3
# error "WTF?"
#endif
*phMod = pImage;
}
else
{
/*
* Module init failed - bail, no module term callout.
*/
SUPR0Printf("ModuleInit failed for '%s': %Rrc\n", pImage->szName, rc);
pImage->pfnModuleTerm = NULL;
pImage->uState = SUP_IOCTL_LDR_OPEN;
supdrvLdrFree(pDevExt, pImage);
}
supdrvLdrUnlock(pDevExt);
SUPDRV_CHECK_SMAP_CHECK(pDevExt, RT_NOTHING);
return VINF_SUCCESS;
}
/**
* Decrements SUPDRVLDRIMAGE::cImgUsage when two or greater.
*
* @param pDevExt Device globals.
* @param pImage The image.
* @param cReference Number of references being removed.
*/
DECLINLINE(void) supdrvLdrSubtractUsage(PSUPDRVDEVEXT pDevExt, PSUPDRVLDRIMAGE pImage, uint32_t cReference)
{
Assert(cReference > 0);
Assert(pImage->cImgUsage > cReference);
pImage->cImgUsage -= cReference;
if (pImage->cImgUsage == 1 && pImage->pWrappedModInfo)
supdrvOSLdrReleaseWrapperModule(pDevExt, pImage);
}
/**
* Frees a previously loaded (prep'ed) image.
*
* @returns IPRT status code.
* @param pDevExt Device globals.
* @param pSession Session data.
* @param pReq The request.
*/
static int supdrvIOCtl_LdrFree(PSUPDRVDEVEXT pDevExt, PSUPDRVSESSION pSession, PSUPLDRFREE pReq)
{
int rc;
PSUPDRVLDRUSAGE pUsagePrev;
PSUPDRVLDRUSAGE pUsage;
PSUPDRVLDRIMAGE pImage;
LogFlow(("supdrvIOCtl_LdrFree: pvImageBase=%p\n", pReq->u.In.pvImageBase));
/*
* Find the ldr image.
*/
supdrvLdrLock(pDevExt);
pUsagePrev = NULL;
pUsage = pSession->pLdrUsage;
while (pUsage && pUsage->pImage->pvImage != pReq->u.In.pvImageBase)
{
pUsagePrev = pUsage;
pUsage = pUsage->pNext;
}
if (!pUsage)
{
supdrvLdrUnlock(pDevExt);
Log(("SUP_IOCTL_LDR_FREE: couldn't find image!\n"));
return VERR_INVALID_HANDLE;
}
if (pUsage->cRing3Usage == 0)
{
supdrvLdrUnlock(pDevExt);
Log(("SUP_IOCTL_LDR_FREE: No ring-3 reference to the image!\n"));
return VERR_CALLER_NO_REFERENCE;
}
/*
* Check if we can remove anything.
*/
rc = VINF_SUCCESS;
pImage = pUsage->pImage;
Log(("SUP_IOCTL_LDR_FREE: pImage=%p %s cImgUsage=%d r3=%d r0=%u\n",
pImage, pImage->szName, pImage->cImgUsage, pUsage->cRing3Usage, pUsage->cRing0Usage));
if (pImage->cImgUsage <= 1 || pUsage->cRing3Usage + pUsage->cRing0Usage <= 1)
{
/*
* Check if there are any objects with destructors in the image, if
* so leave it for the session cleanup routine so we get a chance to
* clean things up in the right order and not leave them all dangling.
*/
RTSpinlockAcquire(pDevExt->Spinlock);
if (pImage->cImgUsage <= 1)
{
PSUPDRVOBJ pObj;
for (pObj = pDevExt->pObjs; pObj; pObj = pObj->pNext)
if (RT_UNLIKELY((uintptr_t)pObj->pfnDestructor - (uintptr_t)pImage->pvImage < pImage->cbImageBits))
{
rc = VERR_DANGLING_OBJECTS;
break;
}
}
else
{
PSUPDRVUSAGE pGenUsage;
for (pGenUsage = pSession->pUsage; pGenUsage; pGenUsage = pGenUsage->pNext)
if (RT_UNLIKELY((uintptr_t)pGenUsage->pObj->pfnDestructor - (uintptr_t)pImage->pvImage < pImage->cbImageBits))
{
rc = VERR_DANGLING_OBJECTS;
break;
}
}
RTSpinlockRelease(pDevExt->Spinlock);
if (rc == VINF_SUCCESS)
{
/* unlink it */
if (pUsagePrev)
pUsagePrev->pNext = pUsage->pNext;
else
pSession->pLdrUsage = pUsage->pNext;
/* free it */
pUsage->pImage = NULL;
pUsage->pNext = NULL;
RTMemFree(pUsage);
/*
* Dereference the image.
*/
if (pImage->cImgUsage <= 1)
supdrvLdrFree(pDevExt, pImage);
else
supdrvLdrSubtractUsage(pDevExt, pImage, 1);
}
else
Log(("supdrvIOCtl_LdrFree: Dangling objects in %p/%s!\n", pImage->pvImage, pImage->szName));
}
else
{
/*
* Dereference both image and usage.
*/
pUsage->cRing3Usage--;
supdrvLdrSubtractUsage(pDevExt, pImage, 1);
}
supdrvLdrUnlock(pDevExt);
return rc;
}
/**
* Deregisters a wrapped .r0 module.
*
* @param pDevExt Device globals.
* @param pWrappedModInfo The wrapped module info.
* @param phMod Where to store the module is stored (NIL'ed on
* success).
*/
int VBOXCALL supdrvLdrDeregisterWrappedModule(PSUPDRVDEVEXT pDevExt, PCSUPLDRWRAPPEDMODULE pWrappedModInfo, void **phMod)
{
PSUPDRVLDRIMAGE pImage;
uint32_t cSleeps;
/*
* Validate input.
*/
AssertPtrReturn(pWrappedModInfo, VERR_INVALID_POINTER);
AssertMsgReturn(pWrappedModInfo->uMagic == SUPLDRWRAPPEDMODULE_MAGIC,
("uMagic=%#x, expected %#x\n", pWrappedModInfo->uMagic, SUPLDRWRAPPEDMODULE_MAGIC),
VERR_INVALID_MAGIC);
AssertMsgReturn(pWrappedModInfo->uEndMagic == SUPLDRWRAPPEDMODULE_MAGIC,
("uEndMagic=%#x, expected %#x\n", pWrappedModInfo->uEndMagic, SUPLDRWRAPPEDMODULE_MAGIC),
VERR_INVALID_MAGIC);
AssertPtrReturn(phMod, VERR_INVALID_POINTER);
pImage = *(PSUPDRVLDRIMAGE *)phMod;
if (!pImage)
return VINF_SUCCESS;
AssertPtrReturn(pImage, VERR_INVALID_POINTER);
AssertMsgReturn(pImage->uMagic == SUPDRVLDRIMAGE_MAGIC, ("pImage=%p uMagic=%#x\n", pImage, pImage->uMagic),
VERR_INVALID_MAGIC);
AssertMsgReturn(pImage->pvImage == pWrappedModInfo->pvImageStart,
("pWrappedModInfo(%p)->pvImageStart=%p vs. pImage(=%p)->pvImage=%p\n",
pWrappedModInfo, pWrappedModInfo->pvImageStart, pImage, pImage->pvImage),
VERR_MISMATCH);
AssertPtrReturn(pDevExt, VERR_INVALID_POINTER);
/*
* Try free it, but first we have to wait for its usage count to reach 1 (our).
*/
supdrvLdrLock(pDevExt);
for (cSleeps = 0; ; cSleeps++)
{
PSUPDRVLDRIMAGE pCur;
/* Check that the image is in the list. */
for (pCur = pDevExt->pLdrImages; pCur; pCur = pCur->pNext)
if (pCur == pImage)
break;
AssertBreak(pCur == pImage);
/* Anyone still using it? */
if (pImage->cImgUsage <= 1)
break;
/* Someone is using it, wait and check again. */
if (!(cSleeps % 60))
SUPR0Printf("supdrvLdrUnregisterWrappedModule: Still %u users of wrapped image '%s' ...\n",
pImage->cImgUsage, pImage->szName);
supdrvLdrUnlock(pDevExt);
RTThreadSleep(1000);
supdrvLdrLock(pDevExt);
}
/* We're the last 'user', free it. */
supdrvLdrFree(pDevExt, pImage);
supdrvLdrUnlock(pDevExt);
*phMod = NULL;
return VINF_SUCCESS;
}
/**
* Lock down the image loader interface.
*
* @returns IPRT status code.
* @param pDevExt Device globals.
*/
static int supdrvIOCtl_LdrLockDown(PSUPDRVDEVEXT pDevExt)
{
LogFlow(("supdrvIOCtl_LdrLockDown:\n"));
supdrvLdrLock(pDevExt);
if (!pDevExt->fLdrLockedDown)
{
pDevExt->fLdrLockedDown = true;
Log(("supdrvIOCtl_LdrLockDown: Image loader interface locked down\n"));
}
supdrvLdrUnlock(pDevExt);
return VINF_SUCCESS;
}
/**
* Worker for getting the address of a symbol in an image.
*
* @returns IPRT status code.
* @param pDevExt Device globals.
* @param pImage The image to search.
* @param pszSymbol The symbol name.
* @param cchSymbol The length of the symbol name.
* @param ppvValue Where to return the symbol
* @note Caller owns the loader lock.
*/
static int supdrvLdrQuerySymbolWorker(PSUPDRVDEVEXT pDevExt, PSUPDRVLDRIMAGE pImage,
const char *pszSymbol, size_t cchSymbol, void **ppvValue)
{
int rc = VERR_SYMBOL_NOT_FOUND;
if (pImage->fNative && !pImage->pWrappedModInfo)
rc = supdrvOSLdrQuerySymbol(pDevExt, pImage, pszSymbol, cchSymbol, ppvValue);
else if (pImage->fNative && pImage->pWrappedModInfo)
{
PCSUPLDRWRAPMODSYMBOL paSymbols = pImage->pWrappedModInfo->paSymbols;
uint32_t iEnd = pImage->pWrappedModInfo->cSymbols;
uint32_t iStart = 0;
while (iStart < iEnd)
{
uint32_t const i = iStart + (iEnd - iStart) / 2;
int const iDiff = strcmp(paSymbols[i].pszSymbol, pszSymbol);
if (iDiff < 0)
iStart = i + 1;
else if (iDiff > 0)
iEnd = i;
else
{
*ppvValue = (void *)(uintptr_t)paSymbols[i].pfnValue;
rc = VINF_SUCCESS;
break;
}
}
#ifdef VBOX_STRICT
if (rc != VINF_SUCCESS)
for (iStart = 0, iEnd = pImage->pWrappedModInfo->cSymbols; iStart < iEnd; iStart++)
Assert(strcmp(paSymbols[iStart].pszSymbol, pszSymbol));
#endif
}
else
{
const char *pchStrings = pImage->pachStrTab;
PSUPLDRSYM paSyms = pImage->paSymbols;
uint32_t i;
Assert(!pImage->pWrappedModInfo);
for (i = 0; i < pImage->cSymbols; i++)
{
if ( paSyms[i].offName + cchSymbol + 1 <= pImage->cbStrTab
&& !memcmp(pchStrings + paSyms[i].offName, pszSymbol, cchSymbol + 1))
{
/*
* Note! The int32_t is for native loading on solaris where the data
* and text segments are in very different places.
*/
*ppvValue = (uint8_t *)pImage->pvImage + (int32_t)paSyms[i].offSymbol;
rc = VINF_SUCCESS;
break;
}
}
}
return rc;
}
/**
* Queries the address of a symbol in an open image.
*
* @returns IPRT status code.
* @param pDevExt Device globals.
* @param pSession Session data.
* @param pReq The request buffer.
*/
static int supdrvIOCtl_LdrQuerySymbol(PSUPDRVDEVEXT pDevExt, PSUPDRVSESSION pSession, PSUPLDRGETSYMBOL pReq)
{
PSUPDRVLDRIMAGE pImage;
PSUPDRVLDRUSAGE pUsage;
const size_t cchSymbol = strlen(pReq->u.In.szSymbol);
void *pvSymbol = NULL;
int rc;
Log3(("supdrvIOCtl_LdrQuerySymbol: pvImageBase=%p szSymbol=\"%s\"\n", pReq->u.In.pvImageBase, pReq->u.In.szSymbol));
/*
* Find the ldr image.
*/
supdrvLdrLock(pDevExt);
pUsage = pSession->pLdrUsage;
while (pUsage && pUsage->pImage->pvImage != pReq->u.In.pvImageBase)
pUsage = pUsage->pNext;
if (pUsage)
{
pImage = pUsage->pImage;
if (pImage->uState == SUP_IOCTL_LDR_LOAD)
{
/*
* Search the image exports / symbol strings.
*/
rc = supdrvLdrQuerySymbolWorker(pDevExt, pImage, pReq->u.In.szSymbol, cchSymbol, &pvSymbol);
}
else
{
Log(("SUP_IOCTL_LDR_GET_SYMBOL: invalid image state %d (%#x)!\n", pImage->uState, pImage->uState));
rc = VERR_WRONG_ORDER;
}
}
else
{
Log(("SUP_IOCTL_LDR_GET_SYMBOL: couldn't find image!\n"));
rc = VERR_INVALID_HANDLE;
}
supdrvLdrUnlock(pDevExt);
pReq->u.Out.pvSymbol = pvSymbol;
return rc;
}
/**
* Gets the address of a symbol in an open image or the support driver.
*
* @returns VBox status code.
* @param pDevExt Device globals.
* @param pSession Session data.
* @param pReq The request buffer.
*/
static int supdrvIDC_LdrGetSymbol(PSUPDRVDEVEXT pDevExt, PSUPDRVSESSION pSession, PSUPDRVIDCREQGETSYM pReq)
{
const char *pszSymbol = pReq->u.In.pszSymbol;
const char *pszModule = pReq->u.In.pszModule;
size_t cchSymbol;
char const *pszEnd;
uint32_t i;
int rc;
/*
* Input validation.
*/
AssertPtrReturn(pszSymbol, VERR_INVALID_POINTER);
pszEnd = RTStrEnd(pszSymbol, 512);
AssertReturn(pszEnd, VERR_INVALID_PARAMETER);
cchSymbol = pszEnd - pszSymbol;
if (pszModule)
{
AssertPtrReturn(pszModule, VERR_INVALID_POINTER);
pszEnd = RTStrEnd(pszModule, 64);
AssertReturn(pszEnd, VERR_INVALID_PARAMETER);
}
Log3(("supdrvIDC_LdrGetSymbol: pszModule=%p:{%s} pszSymbol=%p:{%s}\n", pszModule, pszModule, pszSymbol, pszSymbol));
if ( !pszModule
|| !strcmp(pszModule, "SupDrv"))
{
/*
* Search the support driver export table.
*/
rc = VERR_SYMBOL_NOT_FOUND;
for (i = 0; i < RT_ELEMENTS(g_aFunctions); i++)
if (!strcmp(g_aFunctions[i].szName, pszSymbol))
{
pReq->u.Out.pfnSymbol = (PFNRT)(uintptr_t)g_aFunctions[i].pfn;
rc = VINF_SUCCESS;
break;
}
}
else
{
/*
* Find the loader image.
*/
PSUPDRVLDRIMAGE pImage;
supdrvLdrLock(pDevExt);
for (pImage = pDevExt->pLdrImages; pImage; pImage = pImage->pNext)
if (!strcmp(pImage->szName, pszModule))
break;
if (pImage && pImage->uState == SUP_IOCTL_LDR_LOAD)
{
/*
* Search the image exports / symbol strings. Do usage counting on the session.
*/
rc = supdrvLdrQuerySymbolWorker(pDevExt, pImage, pszSymbol, cchSymbol, (void **)&pReq->u.Out.pfnSymbol);
if (RT_SUCCESS(rc))
rc = supdrvLdrAddUsage(pDevExt, pSession, pImage, true /*fRing3Usage*/);
}
else
rc = pImage ? VERR_WRONG_ORDER : VERR_MODULE_NOT_FOUND;
supdrvLdrUnlock(pDevExt);
}
return rc;
}
/**
* Looks up a symbol in g_aFunctions
*
* @returns VINF_SUCCESS on success, VERR_SYMBOL_NOT_FOUND on failure.
* @param pszSymbol The symbol to look up.
* @param puValue Where to return the value.
*/
int VBOXCALL supdrvLdrGetExportedSymbol(const char *pszSymbol, uintptr_t *puValue)
{
uint32_t i;
for (i = 0; i < RT_ELEMENTS(g_aFunctions); i++)
if (!strcmp(g_aFunctions[i].szName, pszSymbol))
{
*puValue = (uintptr_t)g_aFunctions[i].pfn;
return VINF_SUCCESS;
}
if (!strcmp(pszSymbol, "g_SUPGlobalInfoPage"))
{
*puValue = (uintptr_t)g_pSUPGlobalInfoPage;
return VINF_SUCCESS;
}
return VERR_SYMBOL_NOT_FOUND;
}
/**
* Adds a usage reference in the specified session of an image.
*
* Called while owning the loader semaphore.
*
* @returns VINF_SUCCESS on success and VERR_NO_MEMORY on failure.
* @param pDevExt Pointer to device extension.
* @param pSession Session in question.
* @param pImage Image which the session is using.
* @param fRing3Usage Set if it's ring-3 usage, clear if ring-0.
*/
static int supdrvLdrAddUsage(PSUPDRVDEVEXT pDevExt, PSUPDRVSESSION pSession, PSUPDRVLDRIMAGE pImage, bool fRing3Usage)
{
PSUPDRVLDRUSAGE pUsage;
LogFlow(("supdrvLdrAddUsage: pImage=%p %d\n", pImage, fRing3Usage));
/*
* Referenced it already?
*/
pUsage = pSession->pLdrUsage;
while (pUsage)
{
if (pUsage->pImage == pImage)
{
if (fRing3Usage)
pUsage->cRing3Usage++;
else
pUsage->cRing0Usage++;
Assert(pImage->cImgUsage > 1 || !pImage->pWrappedModInfo);
pImage->cImgUsage++;
return VINF_SUCCESS;
}
pUsage = pUsage->pNext;
}
/*
* Allocate new usage record.
*/
pUsage = (PSUPDRVLDRUSAGE)RTMemAlloc(sizeof(*pUsage));
AssertReturn(pUsage, VERR_NO_MEMORY);
pUsage->cRing3Usage = fRing3Usage ? 1 : 0;
pUsage->cRing0Usage = fRing3Usage ? 0 : 1;
pUsage->pImage = pImage;
pUsage->pNext = pSession->pLdrUsage;
pSession->pLdrUsage = pUsage;
/*
* Wrapped modules needs to retain a native module reference.
*/
pImage->cImgUsage++;
if (pImage->cImgUsage == 2 && pImage->pWrappedModInfo)
supdrvOSLdrRetainWrapperModule(pDevExt, pImage);
return VINF_SUCCESS;
}
/**
* Frees a load image.
*
* @param pDevExt Pointer to device extension.
* @param pImage Pointer to the image we're gonna free.
* This image must exit!
* @remark The caller MUST own SUPDRVDEVEXT::mtxLdr!
*/
static void supdrvLdrFree(PSUPDRVDEVEXT pDevExt, PSUPDRVLDRIMAGE pImage)
{
unsigned cLoops;
for (cLoops = 0; ; cLoops++)
{
PSUPDRVLDRIMAGE pImagePrev;
PSUPDRVLDRIMAGE pImageImport;
LogFlow(("supdrvLdrFree: pImage=%p %s [loop %u]\n", pImage, pImage->szName, cLoops));
AssertBreak(cLoops < 2);
/*
* Warn if we're releasing images while the image loader interface is
* locked down -- we won't be able to reload them!
*/
if (pDevExt->fLdrLockedDown)
Log(("supdrvLdrFree: Warning: unloading '%s' image, while loader interface is locked down!\n", pImage->szName));
/* find it - arg. should've used doubly linked list. */
Assert(pDevExt->pLdrImages);
pImagePrev = NULL;
if (pDevExt->pLdrImages != pImage)
{
pImagePrev = pDevExt->pLdrImages;
while (pImagePrev->pNext != pImage)
pImagePrev = pImagePrev->pNext;
Assert(pImagePrev->pNext == pImage);
}
/* unlink */
if (pImagePrev)
pImagePrev->pNext = pImage->pNext;
else
pDevExt->pLdrImages = pImage->pNext;
/* check if this is VMMR0.r0 unset its entry point pointers. */
if (pDevExt->pvVMMR0 == pImage->pvImage)
{
pDevExt->pvVMMR0 = NULL;
pDevExt->pfnVMMR0EntryFast = NULL;
pDevExt->pfnVMMR0EntryEx = NULL;
}
/* check for objects with destructors in this image. (Shouldn't happen.) */
if (pDevExt->pObjs)
{
unsigned cObjs = 0;
PSUPDRVOBJ pObj;
RTSpinlockAcquire(pDevExt->Spinlock);
for (pObj = pDevExt->pObjs; pObj; pObj = pObj->pNext)
if (RT_UNLIKELY((uintptr_t)pObj->pfnDestructor - (uintptr_t)pImage->pvImage < pImage->cbImageBits))
{
pObj->pfnDestructor = NULL;
cObjs++;
}
RTSpinlockRelease(pDevExt->Spinlock);
if (cObjs)
OSDBGPRINT(("supdrvLdrFree: Image '%s' has %d dangling objects!\n", pImage->szName, cObjs));
}
/* call termination function if fully loaded. */
if ( pImage->pfnModuleTerm
&& pImage->uState == SUP_IOCTL_LDR_LOAD)
{
LogFlow(("supdrvIOCtl_LdrLoad: calling pfnModuleTerm=%p\n", pImage->pfnModuleTerm));
pDevExt->hLdrTermThread = RTThreadNativeSelf();
pImage->pfnModuleTerm(pImage);
pDevExt->hLdrTermThread = NIL_RTNATIVETHREAD;
}
/* Inform the tracing component. */
supdrvTracerModuleUnloading(pDevExt, pImage);
/* Do native unload if appropriate, then inform the native code about the
unloading (mainly for non-native loading case). */
if (pImage->fNative)
supdrvOSLdrUnload(pDevExt, pImage);
supdrvOSLdrNotifyUnloaded(pDevExt, pImage);
/* free the image */
pImage->uMagic = SUPDRVLDRIMAGE_MAGIC_DEAD;
pImage->cImgUsage = 0;
pImage->pDevExt = NULL;
pImage->pNext = NULL;
pImage->uState = SUP_IOCTL_LDR_FREE;
RTR0MemObjFree(pImage->hMemObjImage, true /*fMappings*/);
pImage->hMemObjImage = NIL_RTR0MEMOBJ;
pImage->pvImage = NULL;
RTMemFree(pImage->pachStrTab);
pImage->pachStrTab = NULL;
RTMemFree(pImage->paSymbols);
pImage->paSymbols = NULL;
RTMemFree(pImage->paSegments);
pImage->paSegments = NULL;
pImageImport = pImage->pImageImport;
pImage->pImageImport = NULL;
RTMemFree(pImage);
/*
* Deal with any import image.
*/
if (!pImageImport)
break;
if (pImageImport->cImgUsage > 1)
{
supdrvLdrSubtractUsage(pDevExt, pImageImport, 1);
break;
}
pImage = pImageImport;
}
}
/**
* Acquires the loader lock.
*
* @returns IPRT status code.
* @param pDevExt The device extension.
* @note Not recursive on all platforms yet.
*/
DECLINLINE(int) supdrvLdrLock(PSUPDRVDEVEXT pDevExt)
{
#ifdef SUPDRV_USE_MUTEX_FOR_LDR
int rc = RTSemMutexRequest(pDevExt->mtxLdr, RT_INDEFINITE_WAIT);
#else
int rc = RTSemFastMutexRequest(pDevExt->mtxLdr);
#endif
AssertRC(rc);
return rc;
}
/**
* Releases the loader lock.
*
* @returns IPRT status code.
* @param pDevExt The device extension.
*/
DECLINLINE(int) supdrvLdrUnlock(PSUPDRVDEVEXT pDevExt)
{
#ifdef SUPDRV_USE_MUTEX_FOR_LDR
return RTSemMutexRelease(pDevExt->mtxLdr);
#else
return RTSemFastMutexRelease(pDevExt->mtxLdr);
#endif
}
/**
* Acquires the global loader lock.
*
* This can be useful when accessing structures being modified by the ModuleInit
* and ModuleTerm. Use SUPR0LdrUnlock() to unlock.
*
* @returns VBox status code.
* @param pSession The session doing the locking.
*
* @note Cannot be used during ModuleInit or ModuleTerm callbacks.
*/
SUPR0DECL(int) SUPR0LdrLock(PSUPDRVSESSION pSession)
{
AssertReturn(SUP_IS_SESSION_VALID(pSession), VERR_INVALID_PARAMETER);
return supdrvLdrLock(pSession->pDevExt);
}
SUPR0_EXPORT_SYMBOL(SUPR0LdrLock);
/**
* Releases the global loader lock.
*
* Must correspond to a SUPR0LdrLock call!
*
* @returns VBox status code.
* @param pSession The session doing the locking.
*
* @note Cannot be used during ModuleInit or ModuleTerm callbacks.
*/
SUPR0DECL(int) SUPR0LdrUnlock(PSUPDRVSESSION pSession)
{
AssertReturn(SUP_IS_SESSION_VALID(pSession), VERR_INVALID_PARAMETER);
return supdrvLdrUnlock(pSession->pDevExt);
}
SUPR0_EXPORT_SYMBOL(SUPR0LdrUnlock);
/**
* For checking lock ownership in Assert() statements during ModuleInit and
* ModuleTerm.
*
* @returns Whether we own the loader lock or not.
* @param hMod The module in question.
* @param fWantToHear For hosts where it is difficult to know who owns the
* lock, this will be returned instead.
*/
SUPR0DECL(bool) SUPR0LdrIsLockOwnerByMod(void *hMod, bool fWantToHear)
{
PSUPDRVDEVEXT pDevExt;
RTNATIVETHREAD hOwner;
PSUPDRVLDRIMAGE pImage = (PSUPDRVLDRIMAGE)hMod;
AssertPtrReturn(pImage, fWantToHear);
AssertReturn(pImage->uMagic == SUPDRVLDRIMAGE_MAGIC, fWantToHear);
pDevExt = pImage->pDevExt;
AssertPtrReturn(pDevExt, fWantToHear);
/*
* Expecting this to be called at init/term time only, so this will be sufficient.
*/
hOwner = pDevExt->hLdrInitThread;
if (hOwner == NIL_RTNATIVETHREAD)
hOwner = pDevExt->hLdrTermThread;
if (hOwner != NIL_RTNATIVETHREAD)
return hOwner == RTThreadNativeSelf();
/*
* Neither of the two semaphore variants currently offers very good
* introspection, so we wing it for now. This API is VBOX_STRICT only.
*/
#ifdef SUPDRV_USE_MUTEX_FOR_LDR
return RTSemMutexIsOwned(pDevExt->mtxLdr) && fWantToHear;
#else
return fWantToHear;
#endif
}
SUPR0_EXPORT_SYMBOL(SUPR0LdrIsLockOwnerByMod);
/**
* Locates and retains the given module for ring-0 usage.
*
* @returns VBox status code.
* @param pSession The session to associate the module reference with.
* @param pszName The module name (no path).
* @param phMod Where to return the module handle. The module is
* referenced and a call to SUPR0LdrModRelease() is
* necessary when done with it.
*/
SUPR0DECL(int) SUPR0LdrModByName(PSUPDRVSESSION pSession, const char *pszName, void **phMod)
{
int rc;
size_t cchName;
PSUPDRVDEVEXT pDevExt;
/*
* Validate input.
*/
AssertPtrReturn(phMod, VERR_INVALID_POINTER);
*phMod = NULL;
AssertReturn(SUP_IS_SESSION_VALID(pSession), VERR_INVALID_PARAMETER);
AssertPtrReturn(pszName, VERR_INVALID_POINTER);
cchName = strlen(pszName);
AssertReturn(cchName > 0, VERR_EMPTY_STRING);
AssertReturn(cchName < RT_SIZEOFMEMB(SUPDRVLDRIMAGE, szName), VERR_MODULE_NOT_FOUND);
/*
* Do the lookup.
*/
pDevExt = pSession->pDevExt;
rc = supdrvLdrLock(pDevExt);
if (RT_SUCCESS(rc))
{
PSUPDRVLDRIMAGE pImage;
for (pImage = pDevExt->pLdrImages; pImage; pImage = pImage->pNext)
{
if ( pImage->szName[cchName] == '\0'
&& !memcmp(pImage->szName, pszName, cchName))
{
/*
* Check the state and make sure we don't overflow the reference counter before return it.
*/
uint32_t uState = pImage->uState;
if (uState == SUP_IOCTL_LDR_LOAD)
{
if (RT_LIKELY(pImage->cImgUsage < UINT32_MAX / 2U))
{
supdrvLdrAddUsage(pDevExt, pSession, pImage, false /*fRing3Usage*/);
*phMod = pImage;
supdrvLdrUnlock(pDevExt);
return VINF_SUCCESS;
}
supdrvLdrUnlock(pDevExt);
Log(("SUPR0LdrModByName: Too many existing references to '%s'!\n", pszName));
return VERR_TOO_MANY_REFERENCES;
}
supdrvLdrUnlock(pDevExt);
Log(("SUPR0LdrModByName: Module '%s' is not in the loaded state (%d)!\n", pszName, uState));
return VERR_INVALID_STATE;
}
}
supdrvLdrUnlock(pDevExt);
Log(("SUPR0LdrModByName: Module '%s' not found!\n", pszName));
rc = VERR_MODULE_NOT_FOUND;
}
return rc;
}
SUPR0_EXPORT_SYMBOL(SUPR0LdrModByName);
/**
* Retains a ring-0 module reference.
*
* Release reference when done by calling SUPR0LdrModRelease().
*
* @returns VBox status code.
* @param pSession The session to reference the module in. A usage
* record is added if needed.
* @param hMod The handle to the module to retain.
*/
SUPR0DECL(int) SUPR0LdrModRetain(PSUPDRVSESSION pSession, void *hMod)
{
PSUPDRVDEVEXT pDevExt;
PSUPDRVLDRIMAGE pImage;
int rc;
/* Validate input a little. */
AssertReturn(SUP_IS_SESSION_VALID(pSession), VERR_INVALID_PARAMETER);
AssertPtrReturn(hMod, VERR_INVALID_HANDLE);
pImage = (PSUPDRVLDRIMAGE)hMod;
AssertReturn(pImage->uMagic == SUPDRVLDRIMAGE_MAGIC, VERR_INVALID_HANDLE);
/* Reference the module: */
pDevExt = pSession->pDevExt;
rc = supdrvLdrLock(pDevExt);
if (RT_SUCCESS(rc))
{
if (pImage->uMagic == SUPDRVLDRIMAGE_MAGIC)
{
if (RT_LIKELY(pImage->cImgUsage < UINT32_MAX / 2U))
rc = supdrvLdrAddUsage(pDevExt, pSession, pImage, false /*fRing3Usage*/);
else
AssertFailedStmt(rc = VERR_TOO_MANY_REFERENCES);
}
else
AssertFailedStmt(rc = VERR_INVALID_HANDLE);
supdrvLdrUnlock(pDevExt);
}
return rc;
}
SUPR0_EXPORT_SYMBOL(SUPR0LdrModRetain);
/**
* Releases a ring-0 module reference retained by SUPR0LdrModByName() or
* SUPR0LdrModRetain().
*
* @returns VBox status code.
* @param pSession The session that the module was retained in.
* @param hMod The module handle. NULL is silently ignored.
*/
SUPR0DECL(int) SUPR0LdrModRelease(PSUPDRVSESSION pSession, void *hMod)
{
PSUPDRVDEVEXT pDevExt;
PSUPDRVLDRIMAGE pImage;
int rc;
/*
* Validate input.
*/
AssertReturn(SUP_IS_SESSION_VALID(pSession), VERR_INVALID_PARAMETER);
if (!hMod)
return VINF_SUCCESS;
AssertPtrReturn(hMod, VERR_INVALID_HANDLE);
pImage = (PSUPDRVLDRIMAGE)hMod;
AssertReturn(pImage->uMagic == SUPDRVLDRIMAGE_MAGIC, VERR_INVALID_HANDLE);
/*
* Take the loader lock and revalidate the module:
*/
pDevExt = pSession->pDevExt;
rc = supdrvLdrLock(pDevExt);
if (RT_SUCCESS(rc))
{
if (pImage->uMagic == SUPDRVLDRIMAGE_MAGIC)
{
/*
* Find the usage record for the module:
*/
PSUPDRVLDRUSAGE pPrevUsage = NULL;
PSUPDRVLDRUSAGE pUsage;
rc = VERR_MODULE_NOT_FOUND;
for (pUsage = pSession->pLdrUsage; pUsage; pUsage = pUsage->pNext)
{
if (pUsage->pImage == pImage)
{
/*
* Drop a ring-0 reference:
*/
Assert(pImage->cImgUsage >= pUsage->cRing0Usage + pUsage->cRing3Usage);
if (pUsage->cRing0Usage > 0)
{
if (pImage->cImgUsage > 1)
{
pUsage->cRing0Usage -= 1;
supdrvLdrSubtractUsage(pDevExt, pImage, 1);
rc = VINF_SUCCESS;
}
else
{
Assert(!pImage->pWrappedModInfo /* (The wrapper kmod has the last reference.) */);
supdrvLdrFree(pDevExt, pImage);
if (pPrevUsage)
pPrevUsage->pNext = pUsage->pNext;
else
pSession->pLdrUsage = pUsage->pNext;
pUsage->pNext = NULL;
pUsage->pImage = NULL;
pUsage->cRing0Usage = 0;
pUsage->cRing3Usage = 0;
RTMemFree(pUsage);
rc = VINF_OBJECT_DESTROYED;
}
}
else
AssertFailedStmt(rc = VERR_CALLER_NO_REFERENCE);
break;
}
pPrevUsage = pUsage;
}
}
else
AssertFailedStmt(rc = VERR_INVALID_HANDLE);
supdrvLdrUnlock(pDevExt);
}
return rc;
}
SUPR0_EXPORT_SYMBOL(SUPR0LdrModRelease);
/**
* Implements the service call request.
*
* @returns VBox status code.
* @param pDevExt The device extension.
* @param pSession The calling session.
* @param pReq The request packet, valid.
*/
static int supdrvIOCtl_CallServiceModule(PSUPDRVDEVEXT pDevExt, PSUPDRVSESSION pSession, PSUPCALLSERVICE pReq)
{
#if !defined(RT_OS_WINDOWS) || defined(RT_ARCH_AMD64) || defined(DEBUG)
int rc;
/*
* Find the module first in the module referenced by the calling session.
*/
rc = supdrvLdrLock(pDevExt);
if (RT_SUCCESS(rc))
{
PFNSUPR0SERVICEREQHANDLER pfnServiceReqHandler = NULL;
PSUPDRVLDRUSAGE pUsage;
for (pUsage = pSession->pLdrUsage; pUsage; pUsage = pUsage->pNext)
if ( pUsage->pImage->pfnServiceReqHandler
&& !strcmp(pUsage->pImage->szName, pReq->u.In.szName))
{
pfnServiceReqHandler = pUsage->pImage->pfnServiceReqHandler;
break;
}
supdrvLdrUnlock(pDevExt);
if (pfnServiceReqHandler)
{
/*
* Call it.
*/
if (pReq->Hdr.cbIn == SUP_IOCTL_CALL_SERVICE_SIZE(0))
rc = pfnServiceReqHandler(pSession, pReq->u.In.uOperation, pReq->u.In.u64Arg, NULL);
else
rc = pfnServiceReqHandler(pSession, pReq->u.In.uOperation, pReq->u.In.u64Arg, (PSUPR0SERVICEREQHDR)&pReq->abReqPkt[0]);
}
else
rc = VERR_SUPDRV_SERVICE_NOT_FOUND;
}
/* log it */
if ( RT_FAILURE(rc)
&& rc != VERR_INTERRUPTED
&& rc != VERR_TIMEOUT)
Log(("SUP_IOCTL_CALL_SERVICE: rc=%Rrc op=%u out=%u arg=%RX64 p/t=%RTproc/%RTthrd\n",
rc, pReq->u.In.uOperation, pReq->Hdr.cbOut, pReq->u.In.u64Arg, RTProcSelf(), RTThreadNativeSelf()));
else
Log4(("SUP_IOCTL_CALL_SERVICE: rc=%Rrc op=%u out=%u arg=%RX64 p/t=%RTproc/%RTthrd\n",
rc, pReq->u.In.uOperation, pReq->Hdr.cbOut, pReq->u.In.u64Arg, RTProcSelf(), RTThreadNativeSelf()));
return rc;
#else /* RT_OS_WINDOWS && !RT_ARCH_AMD64 && !DEBUG */
RT_NOREF3(pDevExt, pSession, pReq);
return VERR_NOT_IMPLEMENTED;
#endif /* RT_OS_WINDOWS && !RT_ARCH_AMD64 && !DEBUG */
}
/**
* Implements the logger settings request.
*
* @returns VBox status code.
* @param pReq The request.
*/
static int supdrvIOCtl_LoggerSettings(PSUPLOGGERSETTINGS pReq)
{
const char *pszGroup = &pReq->u.In.szStrings[pReq->u.In.offGroups];
const char *pszFlags = &pReq->u.In.szStrings[pReq->u.In.offFlags];
const char *pszDest = &pReq->u.In.szStrings[pReq->u.In.offDestination];
PRTLOGGER pLogger = NULL;
int rc;
/*
* Some further validation.
*/
switch (pReq->u.In.fWhat)
{
case SUPLOGGERSETTINGS_WHAT_SETTINGS:
case SUPLOGGERSETTINGS_WHAT_CREATE:
break;
case SUPLOGGERSETTINGS_WHAT_DESTROY:
if (*pszGroup || *pszFlags || *pszDest)
return VERR_INVALID_PARAMETER;
if (pReq->u.In.fWhich == SUPLOGGERSETTINGS_WHICH_RELEASE)
return VERR_ACCESS_DENIED;
break;
default:
return VERR_INTERNAL_ERROR;
}
/*
* Get the logger.
*/
switch (pReq->u.In.fWhich)
{
case SUPLOGGERSETTINGS_WHICH_DEBUG:
pLogger = RTLogGetDefaultInstance();
break;
case SUPLOGGERSETTINGS_WHICH_RELEASE:
pLogger = RTLogRelGetDefaultInstance();
break;
default:
return VERR_INTERNAL_ERROR;
}
/*
* Do the job.
*/
switch (pReq->u.In.fWhat)
{
case SUPLOGGERSETTINGS_WHAT_SETTINGS:
if (pLogger)
{
rc = RTLogFlags(pLogger, pszFlags);
if (RT_SUCCESS(rc))
rc = RTLogGroupSettings(pLogger, pszGroup);
NOREF(pszDest);
}
else
rc = VERR_NOT_FOUND;
break;
case SUPLOGGERSETTINGS_WHAT_CREATE:
{
if (pLogger)
rc = VERR_ALREADY_EXISTS;
else
{
static const char * const s_apszGroups[] = VBOX_LOGGROUP_NAMES;
rc = RTLogCreate(&pLogger,
0 /* fFlags */,
pszGroup,
pReq->u.In.fWhich == SUPLOGGERSETTINGS_WHICH_DEBUG
? "VBOX_LOG"
: "VBOX_RELEASE_LOG",
RT_ELEMENTS(s_apszGroups),
s_apszGroups,
RTLOGDEST_STDOUT | RTLOGDEST_DEBUGGER,
NULL);
if (RT_SUCCESS(rc))
{
rc = RTLogFlags(pLogger, pszFlags);
NOREF(pszDest);
if (RT_SUCCESS(rc))
{
switch (pReq->u.In.fWhich)
{
case SUPLOGGERSETTINGS_WHICH_DEBUG:
pLogger = RTLogSetDefaultInstance(pLogger);
break;
case SUPLOGGERSETTINGS_WHICH_RELEASE:
pLogger = RTLogRelSetDefaultInstance(pLogger);
break;
}
}
RTLogDestroy(pLogger);
}
}
break;
}
case SUPLOGGERSETTINGS_WHAT_DESTROY:
switch (pReq->u.In.fWhich)
{
case SUPLOGGERSETTINGS_WHICH_DEBUG:
pLogger = RTLogSetDefaultInstance(NULL);
break;
case SUPLOGGERSETTINGS_WHICH_RELEASE:
pLogger = RTLogRelSetDefaultInstance(NULL);
break;
}
rc = RTLogDestroy(pLogger);
break;
default:
{
rc = VERR_INTERNAL_ERROR;
break;
}
}
return rc;
}
/**
* Implements the MSR prober operations.
*
* @returns VBox status code.
* @param pDevExt The device extension.
* @param pReq The request.
*/
static int supdrvIOCtl_MsrProber(PSUPDRVDEVEXT pDevExt, PSUPMSRPROBER pReq)
{
#ifdef SUPDRV_WITH_MSR_PROBER
RTCPUID const idCpu = pReq->u.In.idCpu == UINT32_MAX ? NIL_RTCPUID : pReq->u.In.idCpu;
int rc;
switch (pReq->u.In.enmOp)
{
case SUPMSRPROBEROP_READ:
{
uint64_t uValue;
rc = supdrvOSMsrProberRead(pReq->u.In.uMsr, idCpu, &uValue);
if (RT_SUCCESS(rc))
{
pReq->u.Out.uResults.Read.uValue = uValue;
pReq->u.Out.uResults.Read.fGp = false;
}
else if (rc == VERR_ACCESS_DENIED)
{
pReq->u.Out.uResults.Read.uValue = 0;
pReq->u.Out.uResults.Read.fGp = true;
rc = VINF_SUCCESS;
}
break;
}
case SUPMSRPROBEROP_WRITE:
rc = supdrvOSMsrProberWrite(pReq->u.In.uMsr, idCpu, pReq->u.In.uArgs.Write.uToWrite);
if (RT_SUCCESS(rc))
pReq->u.Out.uResults.Write.fGp = false;
else if (rc == VERR_ACCESS_DENIED)
{
pReq->u.Out.uResults.Write.fGp = true;
rc = VINF_SUCCESS;
}
break;
case SUPMSRPROBEROP_MODIFY:
case SUPMSRPROBEROP_MODIFY_FASTER:
rc = supdrvOSMsrProberModify(idCpu, pReq);
break;
default:
return VERR_INVALID_FUNCTION;
}
RT_NOREF1(pDevExt);
return rc;
#else
RT_NOREF2(pDevExt, pReq);
return VERR_NOT_IMPLEMENTED;
#endif
}
/**
* Resume built-in keyboard on MacBook Air and Pro hosts.
* If there is no built-in keyboard device, return success anyway.
*
* @returns 0 on Mac OS X platform, VERR_NOT_IMPLEMENTED on the other ones.
*/
static int supdrvIOCtl_ResumeSuspendedKbds(void)
{
#if defined(RT_OS_DARWIN)
return supdrvDarwinResumeSuspendedKbds();
#else
return VERR_NOT_IMPLEMENTED;
#endif
}