%PDF- %PDF-
| Direktori : /lib/python3/dist-packages/sympy/tensor/array/expressions/tests/ |
| Current File : //lib/python3/dist-packages/sympy/tensor/array/expressions/tests/test_array_expressions.py |
import random
from sympy import symbols, ImmutableDenseNDimArray, tensorproduct, tensorcontraction, permutedims, MatrixSymbol, \
ZeroMatrix, sin, cos, DiagMatrix
from sympy.combinatorics import Permutation
from sympy.tensor.array.expressions.array_expressions import ZeroArray, OneArray, ArraySymbol, ArrayElement, \
PermuteDims, ArrayContraction, ArrayTensorProduct, ArrayDiagonal, \
ArrayAdd, nest_permutation, ArrayElementwiseApplyFunc, _EditArrayContraction, _ArgE
from sympy.testing.pytest import raises
i, j, k, l, m, n = symbols("i j k l m n")
M = ArraySymbol("M", k, k)
N = ArraySymbol("N", k, k)
P = ArraySymbol("P", k, k)
Q = ArraySymbol("Q", k, k)
A = ArraySymbol("A", k, k)
B = ArraySymbol("B", k, k)
C = ArraySymbol("C", k, k)
D = ArraySymbol("D", k, k)
X = ArraySymbol("X", k, k)
Y = ArraySymbol("Y", k, k)
a = ArraySymbol("a", k, 1)
b = ArraySymbol("b", k, 1)
c = ArraySymbol("c", k, 1)
d = ArraySymbol("d", k, 1)
def test_array_symbol_and_element():
A = ArraySymbol("A", 2)
A0 = ArrayElement(A, (0,))
A1 = ArrayElement(A, (1,))
assert A.as_explicit() == ImmutableDenseNDimArray([A0, A1])
A2 = tensorproduct(A, A)
assert A2.shape == (2, 2)
# TODO: not yet supported:
# assert A2.as_explicit() == Array([[A[0]*A[0], A[1]*A[0]], [A[0]*A[1], A[1]*A[1]]])
A3 = tensorcontraction(A2, (0, 1))
assert A3.shape == ()
# TODO: not yet supported:
# assert A3.as_explicit() == Array([])
A = ArraySymbol("A", 2, 3, 4)
Ae = A.as_explicit()
assert Ae == ImmutableDenseNDimArray(
[[[ArrayElement(A, (i, j, k)) for k in range(4)] for j in range(3)] for i in range(2)])
p = permutedims(A, Permutation(0, 2, 1))
assert isinstance(p, PermuteDims)
def test_zero_array():
assert ZeroArray() == 0
assert ZeroArray().is_Integer
za = ZeroArray(3, 2, 4)
assert za.shape == (3, 2, 4)
za_e = za.as_explicit()
assert za_e.shape == (3, 2, 4)
m, n, k = symbols("m n k")
za = ZeroArray(m, n, k, 2)
assert za.shape == (m, n, k, 2)
raises(ValueError, lambda: za.as_explicit())
def test_one_array():
assert OneArray() == 1
assert OneArray().is_Integer
oa = OneArray(3, 2, 4)
assert oa.shape == (3, 2, 4)
oa_e = oa.as_explicit()
assert oa_e.shape == (3, 2, 4)
m, n, k = symbols("m n k")
oa = OneArray(m, n, k, 2)
assert oa.shape == (m, n, k, 2)
raises(ValueError, lambda: oa.as_explicit())
def test_arrayexpr_contraction_construction():
cg = ArrayContraction(A)
assert cg == A
cg = ArrayContraction(ArrayTensorProduct(A, B), (1, 0))
assert cg == ArrayContraction(ArrayTensorProduct(A, B), (0, 1))
cg = ArrayContraction(ArrayTensorProduct(M, N), (0, 1))
indtup = cg._get_contraction_tuples()
assert indtup == [[(0, 0), (0, 1)]]
assert cg._contraction_tuples_to_contraction_indices(cg.expr, indtup) == [(0, 1)]
cg = ArrayContraction(ArrayTensorProduct(M, N), (1, 2))
indtup = cg._get_contraction_tuples()
assert indtup == [[(0, 1), (1, 0)]]
assert cg._contraction_tuples_to_contraction_indices(cg.expr, indtup) == [(1, 2)]
cg = ArrayContraction(ArrayTensorProduct(M, M, N), (1, 4), (2, 5))
indtup = cg._get_contraction_tuples()
assert indtup == [[(0, 0), (1, 1)], [(0, 1), (2, 0)]]
assert cg._contraction_tuples_to_contraction_indices(cg.expr, indtup) == [(0, 3), (1, 4)]
def test_arrayexpr_array_flatten():
# Flatten nested ArrayTensorProduct objects:
expr1 = ArrayTensorProduct(M, N)
expr2 = ArrayTensorProduct(P, Q)
expr = ArrayTensorProduct(expr1, expr2)
assert expr == ArrayTensorProduct(M, N, P, Q)
assert expr.args == (M, N, P, Q)
# Flatten mixed ArrayTensorProduct and ArrayContraction objects:
cg1 = ArrayContraction(expr1, (1, 2))
cg2 = ArrayContraction(expr2, (0, 3))
expr = ArrayTensorProduct(cg1, cg2)
assert expr == ArrayContraction(ArrayTensorProduct(M, N, P, Q), (1, 2), (4, 7))
expr = ArrayTensorProduct(M, cg1)
assert expr == ArrayContraction(ArrayTensorProduct(M, M, N), (3, 4))
# Flatten nested ArrayContraction objects:
cgnested = ArrayContraction(cg1, (0, 1))
assert cgnested == ArrayContraction(ArrayTensorProduct(M, N), (0, 3), (1, 2))
cgnested = ArrayContraction(ArrayTensorProduct(cg1, cg2), (0, 3))
assert cgnested == ArrayContraction(ArrayTensorProduct(M, N, P, Q), (0, 6), (1, 2), (4, 7))
cg3 = ArrayContraction(ArrayTensorProduct(M, N, P, Q), (1, 3), (2, 4))
cgnested = ArrayContraction(cg3, (0, 1))
assert cgnested == ArrayContraction(ArrayTensorProduct(M, N, P, Q), (0, 5), (1, 3), (2, 4))
cgnested = ArrayContraction(cg3, (0, 3), (1, 2))
assert cgnested == ArrayContraction(ArrayTensorProduct(M, N, P, Q), (0, 7), (1, 3), (2, 4), (5, 6))
cg4 = ArrayContraction(ArrayTensorProduct(M, N, P, Q), (1, 5), (3, 7))
cgnested = ArrayContraction(cg4, (0, 1))
assert cgnested == ArrayContraction(ArrayTensorProduct(M, N, P, Q), (0, 2), (1, 5), (3, 7))
cgnested = ArrayContraction(cg4, (0, 1), (2, 3))
assert cgnested == ArrayContraction(ArrayTensorProduct(M, N, P, Q), (0, 2), (1, 5), (3, 7), (4, 6))
cg = ArrayDiagonal(cg4)
assert cg == cg4
assert isinstance(cg, type(cg4))
# Flatten nested ArrayDiagonal objects:
cg1 = ArrayDiagonal(expr1, (1, 2))
cg2 = ArrayDiagonal(expr2, (0, 3))
cg3 = ArrayDiagonal(ArrayTensorProduct(M, N, P, Q), (1, 3), (2, 4))
cg4 = ArrayDiagonal(ArrayTensorProduct(M, N, P, Q), (1, 5), (3, 7))
cgnested = ArrayDiagonal(cg1, (0, 1))
assert cgnested == ArrayDiagonal(ArrayTensorProduct(M, N), (1, 2), (0, 3))
cgnested = ArrayDiagonal(cg3, (1, 2))
assert cgnested == ArrayDiagonal(ArrayTensorProduct(M, N, P, Q), (1, 3), (2, 4), (5, 6))
cgnested = ArrayDiagonal(cg4, (1, 2))
assert cgnested == ArrayDiagonal(ArrayTensorProduct(M, N, P, Q), (1, 5), (3, 7), (2, 4))
cg = ArrayAdd(M, N)
cg2 = ArrayAdd(cg, P)
assert isinstance(cg2, ArrayAdd)
assert cg2.args == (M, N, P)
assert cg2.shape == (k, k)
expr = ArrayTensorProduct(ArrayDiagonal(X, (0, 1)), ArrayDiagonal(A, (0, 1)))
assert expr == ArrayDiagonal(ArrayTensorProduct(X, A), (0, 1), (2, 3))
expr1 = ArrayDiagonal(ArrayTensorProduct(X, A), (1, 2))
expr2 = ArrayTensorProduct(expr1, a)
assert expr2 == PermuteDims(ArrayDiagonal(ArrayTensorProduct(X, A, a), (1, 2)), [0, 1, 3, 4, 2])
expr1 = ArrayContraction(ArrayTensorProduct(X, A), (1, 2))
expr2 = ArrayTensorProduct(expr1, a)
assert isinstance(expr2, ArrayContraction)
assert isinstance(expr2.expr, ArrayTensorProduct)
def test_arrayexpr_array_diagonal():
cg = ArrayDiagonal(M, (1, 0))
assert cg == ArrayDiagonal(M, (0, 1))
cg = ArrayDiagonal(ArrayTensorProduct(M, N, P), (4, 1), (2, 0))
assert cg == ArrayDiagonal(ArrayTensorProduct(M, N, P), (1, 4), (0, 2))
def test_arrayexpr_array_shape():
expr = ArrayTensorProduct(M, N, P, Q)
assert expr.shape == (k, k, k, k, k, k, k, k)
Z = MatrixSymbol("Z", m, n)
expr = ArrayTensorProduct(M, Z)
assert expr.shape == (k, k, m, n)
expr2 = ArrayContraction(expr, (0, 1))
assert expr2.shape == (m, n)
expr2 = ArrayDiagonal(expr, (0, 1))
assert expr2.shape == (m, n, k)
exprp = PermuteDims(expr, [2, 1, 3, 0])
assert exprp.shape == (m, k, n, k)
expr3 = ArrayTensorProduct(N, Z)
expr2 = ArrayAdd(expr, expr3)
assert expr2.shape == (k, k, m, n)
# Contraction along axes with discordant dimensions:
raises(ValueError, lambda: ArrayContraction(expr, (1, 2)))
# Also diagonal needs the same dimensions:
raises(ValueError, lambda: ArrayDiagonal(expr, (1, 2)))
# Diagonal requires at least to axes to compute the diagonal:
raises(ValueError, lambda: ArrayDiagonal(expr, (1,)))
def test_arrayexpr_permutedims_sink():
cg = PermuteDims(ArrayTensorProduct(M, N), [0, 1, 3, 2], nest_permutation=False)
sunk = nest_permutation(cg)
assert sunk == ArrayTensorProduct(M, PermuteDims(N, [1, 0]))
cg = PermuteDims(ArrayTensorProduct(M, N), [1, 0, 3, 2], nest_permutation=False)
sunk = nest_permutation(cg)
assert sunk == ArrayTensorProduct(PermuteDims(M, [1, 0]), PermuteDims(N, [1, 0]))
cg = PermuteDims(ArrayTensorProduct(M, N), [3, 2, 1, 0], nest_permutation=False)
sunk = nest_permutation(cg)
assert sunk == ArrayTensorProduct(PermuteDims(N, [1, 0]), PermuteDims(M, [1, 0]))
cg = PermuteDims(ArrayContraction(ArrayTensorProduct(M, N), (1, 2)), [1, 0], nest_permutation=False)
sunk = nest_permutation(cg)
assert sunk == ArrayContraction(PermuteDims(ArrayTensorProduct(M, N), [[0, 3]]), (1, 2))
cg = PermuteDims(ArrayTensorProduct(M, N), [1, 0, 3, 2], nest_permutation=False)
sunk = nest_permutation(cg)
assert sunk == ArrayTensorProduct(PermuteDims(M, [1, 0]), PermuteDims(N, [1, 0]))
cg = PermuteDims(ArrayContraction(ArrayTensorProduct(M, N, P), (1, 2), (3, 4)), [1, 0], nest_permutation=False)
sunk = nest_permutation(cg)
assert sunk == ArrayContraction(PermuteDims(ArrayTensorProduct(M, N, P), [[0, 5]]), (1, 2), (3, 4))
def test_arrayexpr_push_indices_up_and_down():
indices = list(range(12))
contr_diag_indices = [(0, 6), (2, 8)]
assert ArrayContraction._push_indices_down(contr_diag_indices, indices) == (1, 3, 4, 5, 7, 9, 10, 11, 12, 13, 14, 15)
assert ArrayContraction._push_indices_up(contr_diag_indices, indices) == (None, 0, None, 1, 2, 3, None, 4, None, 5, 6, 7)
assert ArrayDiagonal._push_indices_down(contr_diag_indices, indices, 10) == (1, 3, 4, 5, 7, 9, (0, 6), (2, 8), None, None, None, None)
assert ArrayDiagonal._push_indices_up(contr_diag_indices, indices, 10) == (6, 0, 7, 1, 2, 3, 6, 4, 7, 5, None, None)
contr_diag_indices = [(1, 2), (7, 8)]
assert ArrayContraction._push_indices_down(contr_diag_indices, indices) == (0, 3, 4, 5, 6, 9, 10, 11, 12, 13, 14, 15)
assert ArrayContraction._push_indices_up(contr_diag_indices, indices) == (0, None, None, 1, 2, 3, 4, None, None, 5, 6, 7)
assert ArrayDiagonal._push_indices_down(contr_diag_indices, indices, 10) == (0, 3, 4, 5, 6, 9, (1, 2), (7, 8), None, None, None, None)
assert ArrayDiagonal._push_indices_up(contr_diag_indices, indices, 10) == (0, 6, 6, 1, 2, 3, 4, 7, 7, 5, None, None)
def test_arrayexpr_split_multiple_contractions():
a = MatrixSymbol("a", k, 1)
b = MatrixSymbol("b", k, 1)
A = MatrixSymbol("A", k, k)
B = MatrixSymbol("B", k, k)
C = MatrixSymbol("C", k, k)
X = MatrixSymbol("X", k, k)
cg = ArrayContraction(ArrayTensorProduct(A.T, a, b, b.T, (A*X*b).applyfunc(cos)), (1, 2, 8), (5, 6, 9))
assert cg.split_multiple_contractions().dummy_eq(ArrayContraction(ArrayTensorProduct(DiagMatrix(a), (A*X*b).applyfunc(cos), A.T, b, b.T), (0, 2), (1, 5), (3, 7, 8)))
# assert recognize_matrix_expression(cg)
# Check no overlap of lines:
cg = ArrayContraction(ArrayTensorProduct(A, a, C, a, B), (1, 2, 4), (5, 6, 8), (3, 7))
assert cg.split_multiple_contractions() == cg
cg = ArrayContraction(ArrayTensorProduct(a, b, A), (0, 2, 4), (1, 3))
assert cg.split_multiple_contractions() == cg
def test_arrayexpr_nested_permutations():
cg = PermuteDims(PermuteDims(M, (1, 0)), (1, 0))
assert cg == M
times = 3
plist1 = [list(range(6)) for i in range(times)]
plist2 = [list(range(6)) for i in range(times)]
for i in range(times):
random.shuffle(plist1[i])
random.shuffle(plist2[i])
plist1.append([2, 5, 4, 1, 0, 3])
plist2.append([3, 5, 0, 4, 1, 2])
plist1.append([2, 5, 4, 0, 3, 1])
plist2.append([3, 0, 5, 1, 2, 4])
plist1.append([5, 4, 2, 0, 3, 1])
plist2.append([4, 5, 0, 2, 3, 1])
Me = M.subs(k, 3).as_explicit()
Ne = N.subs(k, 3).as_explicit()
Pe = P.subs(k, 3).as_explicit()
cge = tensorproduct(Me, Ne, Pe)
for permutation_array1, permutation_array2 in zip(plist1, plist2):
p1 = Permutation(permutation_array1)
p2 = Permutation(permutation_array2)
cg = PermuteDims(
PermuteDims(
ArrayTensorProduct(M, N, P),
p1),
p2
)
result = PermuteDims(
ArrayTensorProduct(M, N, P),
p2*p1
)
assert cg == result
# Check that `permutedims` behaves the same way with explicit-component arrays:
result1 = permutedims(permutedims(cge, p1), p2)
result2 = permutedims(cge, p2*p1)
assert result1 == result2
def test_arrayexpr_contraction_permutation_mix():
Me = M.subs(k, 3).as_explicit()
Ne = N.subs(k, 3).as_explicit()
cg1 = ArrayContraction(PermuteDims(ArrayTensorProduct(M, N), Permutation([0, 2, 1, 3])), (2, 3))
cg2 = ArrayContraction(ArrayTensorProduct(M, N), (1, 3))
assert cg1 == cg2
cge1 = tensorcontraction(permutedims(tensorproduct(Me, Ne), Permutation([0, 2, 1, 3])), (2, 3))
cge2 = tensorcontraction(tensorproduct(Me, Ne), (1, 3))
assert cge1 == cge2
cg1 = PermuteDims(ArrayTensorProduct(M, N), Permutation([0, 1, 3, 2]))
cg2 = ArrayTensorProduct(M, PermuteDims(N, Permutation([1, 0])))
assert cg1 == cg2
cg1 = ArrayContraction(
PermuteDims(
ArrayTensorProduct(M, N, P, Q), Permutation([0, 2, 3, 1, 4, 5, 7, 6])),
(1, 2), (3, 5)
)
cg2 = ArrayContraction(
ArrayTensorProduct(M, N, P, PermuteDims(Q, Permutation([1, 0]))),
(1, 5), (2, 3)
)
assert cg1 == cg2
cg1 = ArrayContraction(
PermuteDims(
ArrayTensorProduct(M, N, P, Q), Permutation([1, 0, 4, 6, 2, 7, 5, 3])),
(0, 1), (2, 6), (3, 7)
)
cg2 = PermuteDims(
ArrayContraction(
ArrayTensorProduct(M, P, Q, N),
(0, 1), (2, 3), (4, 7)),
[1, 0]
)
assert cg1 == cg2
cg1 = ArrayContraction(
PermuteDims(
ArrayTensorProduct(M, N, P, Q), Permutation([1, 0, 4, 6, 7, 2, 5, 3])),
(0, 1), (2, 6), (3, 7)
)
cg2 = PermuteDims(
ArrayContraction(
ArrayTensorProduct(PermuteDims(M, [1, 0]), N, P, Q),
(0, 1), (3, 6), (4, 5)
),
Permutation([1, 0])
)
assert cg1 == cg2
def test_arrayexpr_permute_tensor_product():
cg1 = PermuteDims(ArrayTensorProduct(M, N, P, Q), Permutation([2, 3, 1, 0, 5, 4, 6, 7]))
cg2 = ArrayTensorProduct(N, PermuteDims(M, [1, 0]),
PermuteDims(P, [1, 0]), Q)
assert cg1 == cg2
# TODO: reverse operation starting with `PermuteDims` and getting down to `bb`...
cg1 = PermuteDims(ArrayTensorProduct(M, N, P, Q), Permutation([2, 3, 4, 5, 0, 1, 6, 7]))
cg2 = ArrayTensorProduct(N, P, M, Q)
assert cg1 == cg2
cg1 = PermuteDims(ArrayTensorProduct(M, N, P, Q), Permutation([2, 3, 4, 6, 5, 7, 0, 1]))
assert cg1.expr == ArrayTensorProduct(N, P, Q, M)
assert cg1.permutation == Permutation([0, 1, 2, 4, 3, 5, 6, 7])
cg1 = ArrayContraction(
PermuteDims(
ArrayTensorProduct(N, Q, Q, M),
[2, 1, 5, 4, 0, 3, 6, 7]),
[1, 2, 6])
cg2 = PermuteDims(ArrayContraction(ArrayTensorProduct(Q, Q, N, M), (3, 5, 6)), [0, 2, 3, 1, 4])
assert cg1 == cg2
cg1 = ArrayContraction(
ArrayContraction(
ArrayContraction(
ArrayContraction(
PermuteDims(
ArrayTensorProduct(N, Q, Q, M),
[2, 1, 5, 4, 0, 3, 6, 7]),
[1, 2, 6]),
[1, 3, 4]),
[1]),
[0])
cg2 = ArrayContraction(ArrayTensorProduct(M, N, Q, Q), (0, 3, 5), (1, 4, 7), (2,), (6,))
assert cg1 == cg2
def test_arrayexpr_normalize_diagonal_permutedims():
tp = ArrayTensorProduct(M, Q, N, P)
expr = ArrayDiagonal(
PermuteDims(tp, [0, 1, 2, 4, 7, 6, 3, 5]), (2, 4, 5), (6, 7),
(0, 3))
result = ArrayDiagonal(tp, (2, 6, 7), (3, 5), (0, 4))
assert expr == result
tp = ArrayTensorProduct(M, N, P, Q)
expr = ArrayDiagonal(PermuteDims(tp, [0, 5, 2, 4, 1, 6, 3, 7]), (1, 2, 6), (3, 4))
result = ArrayDiagonal(ArrayTensorProduct(M, P, N, Q), (3, 4, 5), (1, 2))
assert expr == result
def test_arrayexpr_normalize_diagonal_contraction():
tp = ArrayTensorProduct(M, N, P, Q)
expr = ArrayContraction(ArrayDiagonal(tp, (1, 3, 4)), (0, 3))
result = ArrayDiagonal(ArrayContraction(ArrayTensorProduct(M, N, P, Q), (0, 6)), (0, 2, 3))
assert expr == result
expr = ArrayContraction(ArrayDiagonal(tp, (0, 1, 2, 3, 7)), (1, 2, 3))
result = ArrayContraction(ArrayTensorProduct(M, N, P, Q), (0, 1, 2, 3, 5, 6, 7))
assert expr == result
expr = ArrayContraction(ArrayDiagonal(tp, (0, 2, 6, 7)), (1, 2, 3))
result = ArrayDiagonal(ArrayContraction(tp, (3, 4, 5)), (0, 2, 3, 4))
assert expr == result
td = ArrayDiagonal(ArrayTensorProduct(M, N, P, Q), (0, 3))
expr = ArrayContraction(td, (2, 1), (0, 4, 6, 5, 3))
result = ArrayContraction(ArrayTensorProduct(M, N, P, Q), (0, 1, 3, 5, 6, 7), (2, 4))
assert expr == result
def test_arrayexpr_array_wrong_permutation_size():
cg = ArrayTensorProduct(M, N)
raises(ValueError, lambda: PermuteDims(cg, [1, 0]))
raises(ValueError, lambda: PermuteDims(cg, [1, 0, 2, 3, 5, 4]))
def test_arrayexpr_nested_array_elementwise_add():
cg = ArrayContraction(ArrayAdd(
ArrayTensorProduct(M, N),
ArrayTensorProduct(N, M)
), (1, 2))
result = ArrayAdd(
ArrayContraction(ArrayTensorProduct(M, N), (1, 2)),
ArrayContraction(ArrayTensorProduct(N, M), (1, 2))
)
assert cg == result
cg = ArrayDiagonal(ArrayAdd(
ArrayTensorProduct(M, N),
ArrayTensorProduct(N, M)
), (1, 2))
result = ArrayAdd(
ArrayDiagonal(ArrayTensorProduct(M, N), (1, 2)),
ArrayDiagonal(ArrayTensorProduct(N, M), (1, 2))
)
assert cg == result
def test_arrayexpr_array_expr_zero_array():
za1 = ZeroArray(k, l, m, n)
zm1 = ZeroMatrix(m, n)
za2 = ZeroArray(k, m, m, n)
zm2 = ZeroMatrix(m, m)
zm3 = ZeroMatrix(k, k)
assert ArrayTensorProduct(M, N, za1) == ZeroArray(k, k, k, k, k, l, m, n)
assert ArrayTensorProduct(M, N, zm1) == ZeroArray(k, k, k, k, m, n)
assert ArrayContraction(za1, (3,)) == ZeroArray(k, l, m)
assert ArrayContraction(zm1, (1,)) == ZeroArray(m)
assert ArrayContraction(za2, (1, 2)) == ZeroArray(k, n)
assert ArrayContraction(zm2, (0, 1)) == 0
assert ArrayDiagonal(za2, (1, 2)) == ZeroArray(k, n, m)
assert ArrayDiagonal(zm2, (0, 1)) == ZeroArray(m)
assert PermuteDims(za1, [2, 1, 3, 0]) == ZeroArray(m, l, n, k)
assert PermuteDims(zm1, [1, 0]) == ZeroArray(n, m)
assert ArrayAdd(za1) == za1
assert ArrayAdd(zm1) == ZeroArray(m, n)
tp1 = ArrayTensorProduct(MatrixSymbol("A", k, l), MatrixSymbol("B", m, n))
assert ArrayAdd(tp1, za1) == tp1
tp2 = ArrayTensorProduct(MatrixSymbol("C", k, l), MatrixSymbol("D", m, n))
assert ArrayAdd(tp1, za1, tp2) == ArrayAdd(tp1, tp2)
assert ArrayAdd(M, zm3) == M
assert ArrayAdd(M, N, zm3) == ArrayAdd(M, N)
def test_arrayexpr_array_expr_applyfunc():
A = ArraySymbol("A", 3, k, 2)
aaf = ArrayElementwiseApplyFunc(sin, A)
assert aaf.shape == (3, k, 2)
def test_edit_array_contraction():
cg = ArrayContraction(ArrayTensorProduct(A, B, C, D), (1, 2, 5))
ecg = _EditArrayContraction(cg)
assert ecg.to_array_contraction() == cg
ecg.args_with_ind[1], ecg.args_with_ind[2] = ecg.args_with_ind[2], ecg.args_with_ind[1]
assert ecg.to_array_contraction() == ArrayContraction(ArrayTensorProduct(A, C, B, D), (1, 3, 4))
ci = ecg.get_new_contraction_index()
new_arg = _ArgE(X)
new_arg.indices = [ci, ci]
ecg.args_with_ind.insert(2, new_arg)
assert ecg.to_array_contraction() == ArrayContraction(ArrayTensorProduct(A, C, X, B, D), (1, 3, 6), (4, 5))
assert ecg.get_contraction_indices() == [[1, 3, 6], [4, 5]]
assert [[tuple(j) for j in i] for i in ecg.get_contraction_indices_to_ind_rel_pos()] == [[(0, 1), (1, 1), (3, 0)], [(2, 0), (2, 1)]]
assert [list(i) for i in ecg.get_mapping_for_index(0)] == [[0, 1], [1, 1], [3, 0]]
assert [list(i) for i in ecg.get_mapping_for_index(1)] == [[2, 0], [2, 1]]
raises(ValueError, lambda: ecg.get_mapping_for_index(2))
ecg.args_with_ind.pop(1)
assert ecg.to_array_contraction() == ArrayContraction(ArrayTensorProduct(A, X, B, D), (1, 4), (2, 3))
ecg.args_with_ind[0].indices[1] = ecg.args_with_ind[1].indices[0]
ecg.args_with_ind[1].indices[1] = ecg.args_with_ind[2].indices[0]
assert ecg.to_array_contraction() == ArrayContraction(ArrayTensorProduct(A, X, B, D), (1, 2), (3, 4))
ecg.insert_after(ecg.args_with_ind[1], _ArgE(C))
assert ecg.to_array_contraction() == ArrayContraction(ArrayTensorProduct(A, X, C, B, D), (1, 2), (3, 6))