%PDF- %PDF-
| Direktori : /usr/share/virtualbox/src/vboxhost/vboxdrv/r0drv/linux/ |
| Current File : //usr/share/virtualbox/src/vboxhost/vboxdrv/r0drv/linux/mp-r0drv-linux.c |
/* $Id: mp-r0drv-linux.c 155244 2023-01-17 14:15:46Z bird $ */
/** @file
* IPRT - Multiprocessor, Ring-0 Driver, Linux.
*/
/*
* Copyright (C) 2008-2023 Oracle and/or its affiliates.
*
* This file is part of VirtualBox base platform packages, as
* available from https://www.virtualbox.org.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation, in version 3 of the
* License.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see <https://www.gnu.org/licenses>.
*
* The contents of this file may alternatively be used under the terms
* of the Common Development and Distribution License Version 1.0
* (CDDL), a copy of it is provided in the "COPYING.CDDL" file included
* in the VirtualBox distribution, in which case the provisions of the
* CDDL are applicable instead of those of the GPL.
*
* You may elect to license modified versions of this file under the
* terms and conditions of either the GPL or the CDDL or both.
*
* SPDX-License-Identifier: GPL-3.0-only OR CDDL-1.0
*/
/*********************************************************************************************************************************
* Header Files *
*********************************************************************************************************************************/
#include "the-linux-kernel.h"
#include "internal/iprt.h"
#include <iprt/mp.h>
#include <iprt/cpuset.h>
#include <iprt/err.h>
#include <iprt/asm.h>
#include <iprt/thread.h>
#include "r0drv/mp-r0drv.h"
/*********************************************************************************************************************************
* Defined Constants And Macros *
*********************************************************************************************************************************/
#if defined(nr_cpumask_bits) || RTLNX_VER_MIN(2,6,28)
# define VBOX_NR_CPUMASK_BITS (nr_cpumask_bits) /* same as nr_cpu_ids */
#else
# define VBOX_NR_CPUMASK_BITS (NR_CPUS)
#endif
RTDECL(RTCPUID) RTMpCpuId(void)
{
return smp_processor_id();
}
RT_EXPORT_SYMBOL(RTMpCpuId);
RTDECL(int) RTMpCurSetIndex(void)
{
return smp_processor_id();
}
RT_EXPORT_SYMBOL(RTMpCurSetIndex);
RTDECL(int) RTMpCurSetIndexAndId(PRTCPUID pidCpu)
{
return *pidCpu = smp_processor_id();
}
RT_EXPORT_SYMBOL(RTMpCurSetIndexAndId);
RTDECL(int) RTMpCpuIdToSetIndex(RTCPUID idCpu)
{
return idCpu < RTCPUSET_MAX_CPUS && idCpu < VBOX_NR_CPUMASK_BITS ? (int)idCpu : -1;
}
RT_EXPORT_SYMBOL(RTMpCpuIdToSetIndex);
RTDECL(RTCPUID) RTMpCpuIdFromSetIndex(int iCpu)
{
return (unsigned)iCpu < VBOX_NR_CPUMASK_BITS ? (RTCPUID)iCpu : NIL_RTCPUID;
}
RT_EXPORT_SYMBOL(RTMpCpuIdFromSetIndex);
RTDECL(RTCPUID) RTMpGetMaxCpuId(void)
{
return VBOX_NR_CPUMASK_BITS - 1;
}
RT_EXPORT_SYMBOL(RTMpGetMaxCpuId);
RTDECL(bool) RTMpIsCpuPossible(RTCPUID idCpu)
{
#if defined(CONFIG_SMP)
# if RTLNX_VER_MIN(2,6,2) || defined(cpu_possible)
return idCpu < VBOX_NR_CPUMASK_BITS && cpu_possible(idCpu);
# else /* < 2.5.29 */
return idCpu < (RTCPUID)(smp_num_cpus);
# endif
#else
return idCpu == RTMpCpuId();
#endif
}
RT_EXPORT_SYMBOL(RTMpIsCpuPossible);
RTDECL(PRTCPUSET) RTMpGetSet(PRTCPUSET pSet)
{
RTCPUID idCpu;
RTCpuSetEmpty(pSet);
idCpu = RTMpGetMaxCpuId();
do
{
if (RTMpIsCpuPossible(idCpu))
RTCpuSetAdd(pSet, idCpu);
} while (idCpu-- > 0);
return pSet;
}
RT_EXPORT_SYMBOL(RTMpGetSet);
RTDECL(RTCPUID) RTMpGetCount(void)
{
#ifdef CONFIG_SMP
# if RTLNX_VER_MIN(2,6,4) || defined(num_possible_cpus)
return num_possible_cpus();
# elif RTLNX_VER_MAX(2,5,0)
return smp_num_cpus;
# else
RTCPUSET Set;
RTMpGetSet(&Set);
return RTCpuSetCount(&Set);
# endif
#else
return 1;
#endif
}
RT_EXPORT_SYMBOL(RTMpGetCount);
RTDECL(bool) RTMpIsCpuOnline(RTCPUID idCpu)
{
#ifdef CONFIG_SMP
# if RTLNX_VER_MIN(2,6,0) || defined(cpu_online)
return idCpu < VBOX_NR_CPUMASK_BITS && cpu_online(idCpu);
# else /* 2.4: */
return idCpu < VBOX_NR_CPUMASK_BITS && cpu_online_map & RT_BIT_64(idCpu);
# endif
#else
return idCpu == RTMpCpuId();
#endif
}
RT_EXPORT_SYMBOL(RTMpIsCpuOnline);
RTDECL(PRTCPUSET) RTMpGetOnlineSet(PRTCPUSET pSet)
{
#ifdef CONFIG_SMP
RTCPUID idCpu;
RTCpuSetEmpty(pSet);
idCpu = RTMpGetMaxCpuId();
do
{
if (RTMpIsCpuOnline(idCpu))
RTCpuSetAdd(pSet, idCpu);
} while (idCpu-- > 0);
#else
RTCpuSetEmpty(pSet);
RTCpuSetAdd(pSet, RTMpCpuId());
#endif
return pSet;
}
RT_EXPORT_SYMBOL(RTMpGetOnlineSet);
RTDECL(RTCPUID) RTMpGetOnlineCount(void)
{
#ifdef CONFIG_SMP
# if RTLNX_VER_MIN(2,6,0) || defined(num_online_cpus)
return num_online_cpus();
# else
RTCPUSET Set;
RTMpGetOnlineSet(&Set);
return RTCpuSetCount(&Set);
# endif
#else
return 1;
#endif
}
RT_EXPORT_SYMBOL(RTMpGetOnlineCount);
RTDECL(bool) RTMpIsCpuWorkPending(void)
{
/** @todo (not used on non-Windows platforms yet). */
return false;
}
RT_EXPORT_SYMBOL(RTMpIsCpuWorkPending);
/**
* Wrapper between the native linux per-cpu callbacks and PFNRTWORKER.
*
* @param pvInfo Pointer to the RTMPARGS package.
*/
static void rtmpLinuxWrapper(void *pvInfo)
{
PRTMPARGS pArgs = (PRTMPARGS)pvInfo;
ASMAtomicIncU32(&pArgs->cHits);
pArgs->pfnWorker(RTMpCpuId(), pArgs->pvUser1, pArgs->pvUser2);
}
#ifdef CONFIG_SMP
# if RTLNX_VER_MIN(2,6,27)
/**
* Wrapper between the native linux per-cpu callbacks and PFNRTWORKER, does hit
* increment after calling the worker.
*
* @param pvInfo Pointer to the RTMPARGS package.
*/
static void rtmpLinuxWrapperPostInc(void *pvInfo)
{
PRTMPARGS pArgs = (PRTMPARGS)pvInfo;
pArgs->pfnWorker(RTMpCpuId(), pArgs->pvUser1, pArgs->pvUser2);
ASMAtomicIncU32(&pArgs->cHits);
}
# endif
/**
* Wrapper between the native linux all-cpu callbacks and PFNRTWORKER.
*
* @param pvInfo Pointer to the RTMPARGS package.
*/
static void rtmpLinuxAllWrapper(void *pvInfo)
{
PRTMPARGS pArgs = (PRTMPARGS)pvInfo;
PRTCPUSET pWorkerSet = pArgs->pWorkerSet;
RTCPUID idCpu = RTMpCpuId();
Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
if (RTCpuSetIsMember(pWorkerSet, idCpu))
{
pArgs->pfnWorker(idCpu, pArgs->pvUser1, pArgs->pvUser2);
RTCpuSetDel(pWorkerSet, idCpu);
}
}
#endif /* CONFIG_SMP */
RTDECL(int) RTMpOnAll(PFNRTMPWORKER pfnWorker, void *pvUser1, void *pvUser2)
{
IPRT_LINUX_SAVE_EFL_AC();
RTMPARGS Args;
RTCPUSET OnlineSet;
RTCPUID idCpu;
#ifdef CONFIG_SMP
uint32_t cLoops;
#endif
RTTHREADPREEMPTSTATE PreemptState = RTTHREADPREEMPTSTATE_INITIALIZER;
Args.pfnWorker = pfnWorker;
Args.pvUser1 = pvUser1;
Args.pvUser2 = pvUser2;
Args.idCpu = NIL_RTCPUID;
Args.cHits = 0;
RTThreadPreemptDisable(&PreemptState);
RTMpGetOnlineSet(&OnlineSet);
Args.pWorkerSet = &OnlineSet;
idCpu = RTMpCpuId();
#ifdef CONFIG_SMP
if (RTCpuSetCount(&OnlineSet) > 1)
{
/* Fire the function on all other CPUs without waiting for completion. */
# if RTLNX_VER_MIN(5,3,0)
smp_call_function(rtmpLinuxAllWrapper, &Args, 0 /* wait */);
# elif RTLNX_VER_MIN(2,6,27)
int rc = smp_call_function(rtmpLinuxAllWrapper, &Args, 0 /* wait */);
Assert(!rc); NOREF(rc);
# else
int rc = smp_call_function(rtmpLinuxAllWrapper, &Args, 0 /* retry */, 0 /* wait */);
Assert(!rc); NOREF(rc);
# endif
}
#endif
/* Fire the function on this CPU. */
Args.pfnWorker(idCpu, Args.pvUser1, Args.pvUser2);
RTCpuSetDel(Args.pWorkerSet, idCpu);
#ifdef CONFIG_SMP
/* Wait for all of them finish. */
cLoops = 64000;
while (!RTCpuSetIsEmpty(Args.pWorkerSet))
{
/* Periodically check if any CPU in the wait set has gone offline, if so update the wait set. */
if (!cLoops--)
{
RTCPUSET OnlineSetNow;
RTMpGetOnlineSet(&OnlineSetNow);
RTCpuSetAnd(Args.pWorkerSet, &OnlineSetNow);
cLoops = 64000;
}
ASMNopPause();
}
#endif
RTThreadPreemptRestore(&PreemptState);
IPRT_LINUX_RESTORE_EFL_AC();
return VINF_SUCCESS;
}
RT_EXPORT_SYMBOL(RTMpOnAll);
RTDECL(int) RTMpOnOthers(PFNRTMPWORKER pfnWorker, void *pvUser1, void *pvUser2)
{
#ifdef CONFIG_SMP
IPRT_LINUX_SAVE_EFL_AC();
RTMPARGS Args;
RTTHREADPREEMPTSTATE PreemptState = RTTHREADPREEMPTSTATE_INITIALIZER;
Args.pfnWorker = pfnWorker;
Args.pvUser1 = pvUser1;
Args.pvUser2 = pvUser2;
Args.idCpu = NIL_RTCPUID;
Args.cHits = 0;
RTThreadPreemptDisable(&PreemptState);
# if RTLNX_VER_MIN(5,3,0)
smp_call_function(rtmpLinuxWrapper, &Args, 1 /* wait */);
# elif RTLNX_VER_MIN(2,6,27)
int rc = smp_call_function(rtmpLinuxWrapper, &Args, 1 /* wait */);
Assert(rc == 0); NOREF(rc);
# else /* older kernels */
int rc = smp_call_function(rtmpLinuxWrapper, &Args, 0 /* retry */, 1 /* wait */);
Assert(rc == 0); NOREF(rc);
# endif /* older kernels */
RTThreadPreemptRestore(&PreemptState);
IPRT_LINUX_RESTORE_EFL_AC();
#else
RT_NOREF(pfnWorker, pvUser1, pvUser2);
#endif
return VINF_SUCCESS;
}
RT_EXPORT_SYMBOL(RTMpOnOthers);
#if RTLNX_VER_MAX(2,6,27) && defined(CONFIG_SMP)
/**
* Wrapper between the native linux per-cpu callbacks and PFNRTWORKER
* employed by RTMpOnPair on older kernels that lacks smp_call_function_many.
*
* @param pvInfo Pointer to the RTMPARGS package.
*/
static void rtMpLinuxOnPairWrapper(void *pvInfo)
{
PRTMPARGS pArgs = (PRTMPARGS)pvInfo;
RTCPUID idCpu = RTMpCpuId();
if ( idCpu == pArgs->idCpu
|| idCpu == pArgs->idCpu2)
{
pArgs->pfnWorker(idCpu, pArgs->pvUser1, pArgs->pvUser2);
ASMAtomicIncU32(&pArgs->cHits);
}
}
#endif
RTDECL(int) RTMpOnPair(RTCPUID idCpu1, RTCPUID idCpu2, uint32_t fFlags, PFNRTMPWORKER pfnWorker, void *pvUser1, void *pvUser2)
{
#ifdef CONFIG_SMP
IPRT_LINUX_SAVE_EFL_AC();
int rc;
RTTHREADPREEMPTSTATE PreemptState = RTTHREADPREEMPTSTATE_INITIALIZER;
# if RTLNX_VER_MIN(2,6,28) /* 2.6.28 introduces CONFIG_CPUMASK_OFFSTACK */
cpumask_var_t DstCpuMask;
# elif RTLNX_VER_MIN(2,6,27)
cpumask_t DstCpuMask;
# endif
AssertReturn(idCpu1 != idCpu2, VERR_INVALID_PARAMETER);
AssertReturn(!(fFlags & RTMPON_F_VALID_MASK), VERR_INVALID_FLAGS);
/*
* Prepare the CPU mask before we disable preemption.
*/
# if RTLNX_VER_MIN(2,6,30)
if (!zalloc_cpumask_var(&DstCpuMask, GFP_KERNEL))
return VERR_NO_MEMORY;
cpumask_set_cpu(idCpu1, DstCpuMask);
cpumask_set_cpu(idCpu2, DstCpuMask);
# elif RTLNX_VER_MIN(2,6,28)
if (!alloc_cpumask_var(&DstCpuMask, GFP_KERNEL))
return VERR_NO_MEMORY;
cpumask_clear(DstCpuMask);
cpumask_set_cpu(idCpu1, DstCpuMask);
cpumask_set_cpu(idCpu2, DstCpuMask);
# elif RTLNX_VER_MIN(2,6,27)
cpus_clear(DstCpuMask);
cpu_set(idCpu1, DstCpuMask);
cpu_set(idCpu2, DstCpuMask);
# endif
/*
* Check that both CPUs are online before doing the broadcast call.
*/
RTThreadPreemptDisable(&PreemptState);
if ( RTMpIsCpuOnline(idCpu1)
&& RTMpIsCpuOnline(idCpu2))
{
/*
* Use the smp_call_function variant taking a cpu mask where available,
* falling back on broadcast with filter. Slight snag if one of the
* CPUs is the one we're running on, we must do the call and the post
* call wait ourselves.
*/
RTCPUID idCpuSelf = RTMpCpuId();
bool const fCallSelf = idCpuSelf == idCpu1 || idCpuSelf == idCpu2;
RTMPARGS Args;
Args.pfnWorker = pfnWorker;
Args.pvUser1 = pvUser1;
Args.pvUser2 = pvUser2;
Args.idCpu = idCpu1;
Args.idCpu2 = idCpu2;
Args.cHits = 0;
# if RTLNX_VER_MIN(2,6,28)
smp_call_function_many(DstCpuMask, rtmpLinuxWrapperPostInc, &Args, !fCallSelf /* wait */);
rc = 0;
# elif RTLNX_VER_MIN(2,6,27)
rc = smp_call_function_mask(DstCpuMask, rtmpLinuxWrapperPostInc, &Args, !fCallSelf /* wait */);
# else /* older kernels */
rc = smp_call_function(rtMpLinuxOnPairWrapper, &Args, 0 /* retry */, !fCallSelf /* wait */);
# endif /* older kernels */
Assert(rc == 0);
/* Call ourselves if necessary and wait for the other party to be done. */
if (fCallSelf)
{
uint32_t cLoops = 0;
rtmpLinuxWrapper(&Args);
while (ASMAtomicReadU32(&Args.cHits) < 2)
{
if ((cLoops & 0x1ff) == 0 && !RTMpIsCpuOnline(idCpuSelf == idCpu1 ? idCpu2 : idCpu1))
break;
cLoops++;
ASMNopPause();
}
}
Assert(Args.cHits <= 2);
if (Args.cHits == 2)
rc = VINF_SUCCESS;
else if (Args.cHits == 1)
rc = VERR_NOT_ALL_CPUS_SHOWED;
else if (Args.cHits == 0)
rc = VERR_CPU_OFFLINE;
else
rc = VERR_CPU_IPE_1;
}
/*
* A CPU must be present to be considered just offline.
*/
else if ( RTMpIsCpuPresent(idCpu1)
&& RTMpIsCpuPresent(idCpu2))
rc = VERR_CPU_OFFLINE;
else
rc = VERR_CPU_NOT_FOUND;
RTThreadPreemptRestore(&PreemptState);;
# if RTLNX_VER_MIN(2,6,28)
free_cpumask_var(DstCpuMask);
# endif
IPRT_LINUX_RESTORE_EFL_AC();
return rc;
#else /* !CONFIG_SMP */
RT_NOREF(idCpu1, idCpu2, fFlags, pfnWorker, pvUser1, pvUser2);
return VERR_CPU_NOT_FOUND;
#endif /* !CONFIG_SMP */
}
RT_EXPORT_SYMBOL(RTMpOnPair);
RTDECL(bool) RTMpOnPairIsConcurrentExecSupported(void)
{
return true;
}
RT_EXPORT_SYMBOL(RTMpOnPairIsConcurrentExecSupported);
#if RTLNX_VER_MAX(2,6,19) && defined(CONFIG_SMP)
/**
* Wrapper between the native linux per-cpu callbacks and PFNRTWORKER
* employed by RTMpOnSpecific on older kernels that lacks smp_call_function_single.
*
* @param pvInfo Pointer to the RTMPARGS package.
*/
static void rtmpOnSpecificLinuxWrapper(void *pvInfo)
{
PRTMPARGS pArgs = (PRTMPARGS)pvInfo;
RTCPUID idCpu = RTMpCpuId();
if (idCpu == pArgs->idCpu)
{
pArgs->pfnWorker(idCpu, pArgs->pvUser1, pArgs->pvUser2);
ASMAtomicIncU32(&pArgs->cHits);
}
}
#endif
RTDECL(int) RTMpOnSpecific(RTCPUID idCpu, PFNRTMPWORKER pfnWorker, void *pvUser1, void *pvUser2)
{
IPRT_LINUX_SAVE_EFL_AC();
int rc;
RTMPARGS Args;
RTTHREADPREEMPTSTATE PreemptState = RTTHREADPREEMPTSTATE_INITIALIZER;
Args.pfnWorker = pfnWorker;
Args.pvUser1 = pvUser1;
Args.pvUser2 = pvUser2;
Args.idCpu = idCpu;
Args.cHits = 0;
if (!RTMpIsCpuPossible(idCpu))
return VERR_CPU_NOT_FOUND;
RTThreadPreemptDisable(&PreemptState);
if (idCpu != RTMpCpuId())
{
#ifdef CONFIG_SMP
if (RTMpIsCpuOnline(idCpu))
{
# if RTLNX_VER_MIN(2,6,27)
rc = smp_call_function_single(idCpu, rtmpLinuxWrapper, &Args, 1 /* wait */);
# elif RTLNX_VER_MIN(2,6,19)
rc = smp_call_function_single(idCpu, rtmpLinuxWrapper, &Args, 0 /* retry */, 1 /* wait */);
# else /* older kernels */
rc = smp_call_function(rtmpOnSpecificLinuxWrapper, &Args, 0 /* retry */, 1 /* wait */);
# endif /* older kernels */
Assert(rc == 0);
rc = Args.cHits ? VINF_SUCCESS : VERR_CPU_OFFLINE;
}
else
#endif /* CONFIG_SMP */
rc = VERR_CPU_OFFLINE;
}
else
{
rtmpLinuxWrapper(&Args);
rc = VINF_SUCCESS;
}
RTThreadPreemptRestore(&PreemptState);;
NOREF(rc);
IPRT_LINUX_RESTORE_EFL_AC();
return rc;
}
RT_EXPORT_SYMBOL(RTMpOnSpecific);
#if RTLNX_VER_MIN(2,6,19) && defined(CONFIG_SMP)
/**
* Dummy callback used by RTMpPokeCpu.
*
* @param pvInfo Ignored.
*/
static void rtmpLinuxPokeCpuCallback(void *pvInfo)
{
NOREF(pvInfo);
}
#endif
RTDECL(int) RTMpPokeCpu(RTCPUID idCpu)
{
#if RTLNX_VER_MIN(2,6,19)
IPRT_LINUX_SAVE_EFL_AC();
int rc;
if (RTMpIsCpuPossible(idCpu))
{
if (RTMpIsCpuOnline(idCpu))
{
# ifdef CONFIG_SMP
# if RTLNX_VER_MIN(2,6,27)
rc = smp_call_function_single(idCpu, rtmpLinuxPokeCpuCallback, NULL, 0 /* wait */);
# elif RTLNX_VER_MIN(2,6,19)
rc = smp_call_function_single(idCpu, rtmpLinuxPokeCpuCallback, NULL, 0 /* retry */, 0 /* wait */);
# else /* older kernels */
# error oops
# endif /* older kernels */
Assert(rc == 0);
# endif /* CONFIG_SMP */
rc = VINF_SUCCESS;
}
else
rc = VERR_CPU_OFFLINE;
}
else
rc = VERR_CPU_NOT_FOUND;
IPRT_LINUX_RESTORE_EFL_AC();
return rc;
#else /* older kernels */
/* no unicast here? */
return VERR_NOT_SUPPORTED;
#endif /* older kernels */
}
RT_EXPORT_SYMBOL(RTMpPokeCpu);
RTDECL(bool) RTMpOnAllIsConcurrentSafe(void)
{
return true;
}
RT_EXPORT_SYMBOL(RTMpOnAllIsConcurrentSafe);