%PDF- %PDF-
| Direktori : /usr/include/boost/geometry/algorithms/detail/overlay/ |
| Current File : //usr/include/boost/geometry/algorithms/detail/overlay/handle_colocations.hpp |
// Boost.Geometry (aka GGL, Generic Geometry Library)
// Copyright (c) 2015 Barend Gehrels, Amsterdam, the Netherlands.
// Copyright (c) 2017 Adam Wulkiewicz, Lodz, Poland.
// This file was modified by Oracle on 2017.
// Modifications copyright (c) 2017 Oracle and/or its affiliates.
// Contributed and/or modified by Adam Wulkiewicz, on behalf of Oracle
// Use, modification and distribution is subject to the Boost Software License,
// Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_GEOMETRY_ALGORITHMS_DETAIL_OVERLAY_HANDLE_COLOCATIONS_HPP
#define BOOST_GEOMETRY_ALGORITHMS_DETAIL_OVERLAY_HANDLE_COLOCATIONS_HPP
#include <cstddef>
#include <algorithm>
#include <map>
#include <vector>
#include <boost/core/ignore_unused.hpp>
#include <boost/range.hpp>
#include <boost/geometry/core/assert.hpp>
#include <boost/geometry/core/point_order.hpp>
#include <boost/geometry/algorithms/detail/overlay/cluster_info.hpp>
#include <boost/geometry/algorithms/detail/overlay/do_reverse.hpp>
#include <boost/geometry/algorithms/detail/overlay/get_ring.hpp>
#include <boost/geometry/algorithms/detail/overlay/is_self_turn.hpp>
#include <boost/geometry/algorithms/detail/overlay/overlay_type.hpp>
#include <boost/geometry/algorithms/detail/overlay/sort_by_side.hpp>
#include <boost/geometry/algorithms/detail/overlay/turn_info.hpp>
#include <boost/geometry/algorithms/detail/overlay/segment_identifier.hpp>
#include <boost/geometry/util/condition.hpp>
#if defined(BOOST_GEOMETRY_DEBUG_HANDLE_COLOCATIONS)
# include <iostream>
# include <boost/geometry/algorithms/detail/overlay/debug_turn_info.hpp>
# include <boost/geometry/io/wkt/wkt.hpp>
# define BOOST_GEOMETRY_DEBUG_IDENTIFIER
#endif
namespace boost { namespace geometry
{
#ifndef DOXYGEN_NO_DETAIL
namespace detail { namespace overlay
{
template <typename SegmentRatio>
struct segment_fraction
{
segment_identifier seg_id;
SegmentRatio fraction;
segment_fraction(segment_identifier const& id, SegmentRatio const& fr)
: seg_id(id)
, fraction(fr)
{}
segment_fraction()
{}
bool operator<(segment_fraction<SegmentRatio> const& other) const
{
return seg_id == other.seg_id
? fraction < other.fraction
: seg_id < other.seg_id;
}
};
struct turn_operation_index
{
turn_operation_index(signed_size_type ti = -1,
signed_size_type oi = -1)
: turn_index(ti)
, op_index(oi)
{}
signed_size_type turn_index;
signed_size_type op_index; // only 0,1
};
template <typename Turns>
struct less_by_fraction_and_type
{
inline less_by_fraction_and_type(Turns const& turns)
: m_turns(turns)
{
}
inline bool operator()(turn_operation_index const& left,
turn_operation_index const& right) const
{
typedef typename boost::range_value<Turns>::type turn_type;
typedef typename turn_type::turn_operation_type turn_operation_type;
turn_type const& left_turn = m_turns[left.turn_index];
turn_type const& right_turn = m_turns[right.turn_index];
turn_operation_type const& left_op
= left_turn.operations[left.op_index];
turn_operation_type const& right_op
= right_turn.operations[right.op_index];
if (! (left_op.fraction == right_op.fraction))
{
return left_op.fraction < right_op.fraction;
}
// Order xx first - used to discard any following colocated turn
bool const left_both_xx = left_turn.both(operation_blocked);
bool const right_both_xx = right_turn.both(operation_blocked);
if (left_both_xx && ! right_both_xx)
{
return true;
}
if (! left_both_xx && right_both_xx)
{
return false;
}
bool const left_both_uu = left_turn.both(operation_union);
bool const right_both_uu = right_turn.both(operation_union);
if (left_both_uu && ! right_both_uu)
{
return true;
}
if (! left_both_uu && right_both_uu)
{
return false;
}
turn_operation_type const& left_other_op
= left_turn.operations[1 - left.op_index];
turn_operation_type const& right_other_op
= right_turn.operations[1 - right.op_index];
// Fraction is the same, now sort on ring id, first outer ring,
// then interior rings
return left_other_op.seg_id < right_other_op.seg_id;
}
private:
Turns const& m_turns;
};
template <typename Operation, typename ClusterPerSegment>
inline signed_size_type get_cluster_id(Operation const& op, ClusterPerSegment const& cluster_per_segment)
{
typedef typename ClusterPerSegment::key_type segment_fraction_type;
segment_fraction_type seg_frac(op.seg_id, op.fraction);
typename ClusterPerSegment::const_iterator it
= cluster_per_segment.find(seg_frac);
if (it == cluster_per_segment.end())
{
return -1;
}
return it->second;
}
template <typename Operation, typename ClusterPerSegment>
inline void add_cluster_id(Operation const& op,
ClusterPerSegment& cluster_per_segment, signed_size_type id)
{
typedef typename ClusterPerSegment::key_type segment_fraction_type;
segment_fraction_type seg_frac(op.seg_id, op.fraction);
cluster_per_segment[seg_frac] = id;
}
template <typename Turn, typename ClusterPerSegment>
inline signed_size_type add_turn_to_cluster(Turn const& turn,
ClusterPerSegment& cluster_per_segment, signed_size_type& cluster_id)
{
signed_size_type cid0 = get_cluster_id(turn.operations[0], cluster_per_segment);
signed_size_type cid1 = get_cluster_id(turn.operations[1], cluster_per_segment);
if (cid0 == -1 && cid1 == -1)
{
// Because of this, first cluster ID will be 1
++cluster_id;
add_cluster_id(turn.operations[0], cluster_per_segment, cluster_id);
add_cluster_id(turn.operations[1], cluster_per_segment, cluster_id);
return cluster_id;
}
else if (cid0 == -1 && cid1 != -1)
{
add_cluster_id(turn.operations[0], cluster_per_segment, cid1);
return cid1;
}
else if (cid0 != -1 && cid1 == -1)
{
add_cluster_id(turn.operations[1], cluster_per_segment, cid0);
return cid0;
}
else if (cid0 == cid1)
{
// Both already added to same cluster, no action
return cid0;
}
// Both operations.seg_id/fraction were already part of any cluster, and
// these clusters are not the same. Merge of two clusters is necessary
#if defined(BOOST_GEOMETRY_DEBUG_HANDLE_COLOCATIONS)
std::cout << " TODO: merge " << cid0 << " and " << cid1 << std::endl;
#endif
return cid0;
}
template
<
typename Turns,
typename ClusterPerSegment,
typename Operations,
typename Geometry1,
typename Geometry2
>
inline void handle_colocation_cluster(Turns& turns,
signed_size_type& cluster_id,
ClusterPerSegment& cluster_per_segment,
Operations const& operations,
Geometry1 const& /*geometry1*/, Geometry2 const& /*geometry2*/)
{
typedef typename boost::range_value<Turns>::type turn_type;
typedef typename turn_type::turn_operation_type turn_operation_type;
std::vector<turn_operation_index>::const_iterator vit = operations.begin();
turn_operation_index ref_toi = *vit;
signed_size_type ref_id = -1;
for (++vit; vit != operations.end(); ++vit)
{
turn_type& ref_turn = turns[ref_toi.turn_index];
turn_operation_type const& ref_op
= ref_turn.operations[ref_toi.op_index];
turn_operation_index const& toi = *vit;
turn_type& turn = turns[toi.turn_index];
turn_operation_type const& op = turn.operations[toi.op_index];
BOOST_GEOMETRY_ASSERT(ref_op.seg_id == op.seg_id);
if (ref_op.fraction == op.fraction)
{
turn_operation_type const& other_op = turn.operations[1 - toi.op_index];
if (ref_id == -1)
{
ref_id = add_turn_to_cluster(ref_turn, cluster_per_segment, cluster_id);
}
BOOST_GEOMETRY_ASSERT(ref_id != -1);
// ref_turn (both operations) are already added to cluster,
// so also "op" is already added to cluster,
// We only need to add other_op
signed_size_type id = get_cluster_id(other_op, cluster_per_segment);
if (id != -1 && id != ref_id)
{
}
else if (id == -1)
{
// Add to same cluster
add_cluster_id(other_op, cluster_per_segment, ref_id);
id = ref_id;
}
}
else
{
// Not on same fraction on this segment
// assign for next
ref_toi = toi;
ref_id = -1;
}
}
}
template
<
typename Turns,
typename Clusters,
typename ClusterPerSegment
>
inline void assign_cluster_to_turns(Turns& turns,
Clusters& clusters,
ClusterPerSegment const& cluster_per_segment)
{
typedef typename boost::range_value<Turns>::type turn_type;
typedef typename turn_type::turn_operation_type turn_operation_type;
typedef typename ClusterPerSegment::key_type segment_fraction_type;
signed_size_type turn_index = 0;
for (typename boost::range_iterator<Turns>::type it = turns.begin();
it != turns.end(); ++it, ++turn_index)
{
turn_type& turn = *it;
if (turn.discarded)
{
// They were processed (to create proper map) but will not be added
// This might leave a cluster with only 1 turn, which will be fixed
// afterwards
continue;
}
for (int i = 0; i < 2; i++)
{
turn_operation_type const& op = turn.operations[i];
segment_fraction_type seg_frac(op.seg_id, op.fraction);
typename ClusterPerSegment::const_iterator cit = cluster_per_segment.find(seg_frac);
if (cit != cluster_per_segment.end())
{
#if defined(BOOST_GEOMETRY_DEBUG_HANDLE_COLOCATIONS)
if (turn.is_clustered()
&& turn.cluster_id != cit->second)
{
std::cout << " CONFLICT " << std::endl;
}
#endif
turn.cluster_id = cit->second;
clusters[turn.cluster_id].turn_indices.insert(turn_index);
}
}
}
}
template <typename Turns, typename Clusters>
inline void remove_clusters(Turns& turns, Clusters& clusters)
{
typename Clusters::iterator it = clusters.begin();
while (it != clusters.end())
{
// Hold iterator and increase. We can erase cit, this keeps the
// iterator valid (cf The standard associative-container erase idiom)
typename Clusters::iterator current_it = it;
++it;
std::set<signed_size_type> const& turn_indices
= current_it->second.turn_indices;
if (turn_indices.size() == 1)
{
signed_size_type const turn_index = *turn_indices.begin();
turns[turn_index].cluster_id = -1;
clusters.erase(current_it);
}
}
}
template <typename Turns, typename Clusters>
inline void cleanup_clusters(Turns& turns, Clusters& clusters)
{
// Removes discarded turns from clusters
for (typename Clusters::iterator mit = clusters.begin();
mit != clusters.end(); ++mit)
{
cluster_info& cinfo = mit->second;
std::set<signed_size_type>& ids = cinfo.turn_indices;
for (std::set<signed_size_type>::iterator sit = ids.begin();
sit != ids.end(); /* no increment */)
{
std::set<signed_size_type>::iterator current_it = sit;
++sit;
signed_size_type const turn_index = *current_it;
if (turns[turn_index].discarded)
{
ids.erase(current_it);
}
}
}
remove_clusters(turns, clusters);
}
template <typename Turn, typename IdSet>
inline void discard_ie_turn(Turn& turn, IdSet& ids, signed_size_type id)
{
turn.discarded = true;
// Set cluster id to -1, but don't clear colocated flags
turn.cluster_id = -1;
// To remove it later from clusters
ids.insert(id);
}
template <bool Reverse>
inline bool is_interior(segment_identifier const& seg_id)
{
return Reverse ? seg_id.ring_index == -1 : seg_id.ring_index >= 0;
}
template <bool Reverse0, bool Reverse1>
inline bool is_ie_turn(segment_identifier const& ext_seg_0,
segment_identifier const& ext_seg_1,
segment_identifier const& int_seg_0,
segment_identifier const& other_seg_1)
{
if (ext_seg_0.source_index == ext_seg_1.source_index)
{
// External turn is a self-turn, dont discard internal turn for this
return false;
}
// Compares two segment identifiers from two turns (external / one internal)
// From first turn [0], both are from same polygon (multi_index),
// one is exterior (-1), the other is interior (>= 0),
// and the second turn [1] handles the same ring
// For difference, where the rings are processed in reversal, all interior
// rings become exterior and vice versa. But also the multi property changes:
// rings originally from the same multi should now be considered as from
// different multi polygons.
// But this is not always the case, and at this point hard to figure out
// (not yet implemented, TODO)
bool const same_multi0 = ! Reverse0
&& ext_seg_0.multi_index == int_seg_0.multi_index;
bool const same_multi1 = ! Reverse1
&& ext_seg_1.multi_index == other_seg_1.multi_index;
boost::ignore_unused(same_multi1);
return same_multi0
&& same_multi1
&& ! is_interior<Reverse0>(ext_seg_0)
&& is_interior<Reverse0>(int_seg_0)
&& ext_seg_1.ring_index == other_seg_1.ring_index;
// The other way round is tested in another call
}
template
<
bool Reverse0, bool Reverse1, // Reverse interpretation interior/exterior
typename Turns,
typename Clusters
>
inline void discard_interior_exterior_turns(Turns& turns, Clusters& clusters)
{
typedef std::set<signed_size_type>::const_iterator set_iterator;
typedef typename boost::range_value<Turns>::type turn_type;
std::set<signed_size_type> ids_to_remove;
for (typename Clusters::iterator cit = clusters.begin();
cit != clusters.end(); ++cit)
{
cluster_info& cinfo = cit->second;
std::set<signed_size_type>& ids = cinfo.turn_indices;
ids_to_remove.clear();
for (set_iterator it = ids.begin(); it != ids.end(); ++it)
{
turn_type& turn = turns[*it];
segment_identifier const& seg_0 = turn.operations[0].seg_id;
segment_identifier const& seg_1 = turn.operations[1].seg_id;
if (! (turn.both(operation_union)
|| turn.combination(operation_union, operation_blocked)))
{
// Not a uu/ux, so cannot be colocated with a iu turn
continue;
}
for (set_iterator int_it = ids.begin(); int_it != ids.end(); ++int_it)
{
if (*it == *int_it)
{
continue;
}
// Turn with, possibly, an interior ring involved
turn_type& int_turn = turns[*int_it];
segment_identifier const& int_seg_0 = int_turn.operations[0].seg_id;
segment_identifier const& int_seg_1 = int_turn.operations[1].seg_id;
if (is_ie_turn<Reverse0, Reverse1>(seg_0, seg_1, int_seg_0, int_seg_1))
{
discard_ie_turn(int_turn, ids_to_remove, *int_it);
}
if (is_ie_turn<Reverse1, Reverse0>(seg_1, seg_0, int_seg_1, int_seg_0))
{
discard_ie_turn(int_turn, ids_to_remove, *int_it);
}
}
}
// Erase from the ids (which cannot be done above)
for (set_iterator sit = ids_to_remove.begin();
sit != ids_to_remove.end(); ++sit)
{
ids.erase(*sit);
}
}
}
template <typename Geometry0, typename Geometry1>
inline segment_identifier get_preceding_segment_id(segment_identifier const& id,
Geometry0 const& geometry0, Geometry1 const& geometry1)
{
segment_identifier result = id;
if (result.segment_index == 0)
{
// Assign to segment_count before decrement
result.segment_index
= id.source_index == 0
? segment_count_on_ring(geometry0, id)
: segment_count_on_ring(geometry1, id);
}
result.segment_index--;
return result;
}
template
<
overlay_type OverlayType,
typename Turns,
typename Clusters
>
inline void set_colocation(Turns& turns, Clusters const& clusters)
{
typedef std::set<signed_size_type>::const_iterator set_iterator;
typedef typename boost::range_value<Turns>::type turn_type;
for (typename Clusters::const_iterator cit = clusters.begin();
cit != clusters.end(); ++cit)
{
cluster_info const& cinfo = cit->second;
std::set<signed_size_type> const& ids = cinfo.turn_indices;
bool both_target = false;
for (set_iterator it = ids.begin(); it != ids.end(); ++it)
{
turn_type const& turn = turns[*it];
if (turn.both(operation_from_overlay<OverlayType>::value))
{
both_target = true;
break;
}
}
if (both_target)
{
for (set_iterator it = ids.begin(); it != ids.end(); ++it)
{
turn_type& turn = turns[*it];
turn.has_colocated_both = true;
}
}
}
}
template
<
typename Turns,
typename Clusters
>
inline void check_colocation(bool& has_blocked,
signed_size_type cluster_id, Turns const& turns, Clusters const& clusters)
{
typedef typename boost::range_value<Turns>::type turn_type;
has_blocked = false;
typename Clusters::const_iterator mit = clusters.find(cluster_id);
if (mit == clusters.end())
{
return;
}
cluster_info const& cinfo = mit->second;
for (std::set<signed_size_type>::const_iterator it
= cinfo.turn_indices.begin();
it != cinfo.turn_indices.end(); ++it)
{
turn_type const& turn = turns[*it];
if (turn.any_blocked())
{
has_blocked = true;
}
}
}
// Checks colocated turns and flags combinations of uu/other, possibly a
// combination of a ring touching another geometry's interior ring which is
// tangential to the exterior ring
// This function can be extended to replace handle_tangencies: at each
// colocation incoming and outgoing vectors should be inspected
template
<
bool Reverse1, bool Reverse2,
overlay_type OverlayType,
typename Turns,
typename Clusters,
typename Geometry1,
typename Geometry2
>
inline bool handle_colocations(Turns& turns, Clusters& clusters,
Geometry1 const& geometry1, Geometry2 const& geometry2)
{
static const detail::overlay::operation_type target_operation
= detail::overlay::operation_from_overlay<OverlayType>::value;
typedef std::map
<
segment_identifier,
std::vector<turn_operation_index>
> map_type;
// Create and fill map on segment-identifier Map is sorted on seg_id,
// meaning it is sorted on ring_identifier too. This means that exterior
// rings are handled first. If there is a colocation on the exterior ring,
// that information can be used for the interior ring too
map_type map;
signed_size_type index = 0;
for (typename boost::range_iterator<Turns>::type
it = boost::begin(turns);
it != boost::end(turns);
++it, ++index)
{
map[it->operations[0].seg_id].push_back(turn_operation_index(index, 0));
map[it->operations[1].seg_id].push_back(turn_operation_index(index, 1));
}
// Check if there are multiple turns on one or more segments,
// if not then nothing is to be done
bool colocations = 0;
for (typename map_type::const_iterator it = map.begin();
it != map.end();
++it)
{
if (it->second.size() > 1u)
{
colocations = true;
break;
}
}
if (! colocations)
{
return false;
}
// Sort all vectors, per same segment
less_by_fraction_and_type<Turns> less(turns);
for (typename map_type::iterator it = map.begin();
it != map.end(); ++it)
{
std::sort(it->second.begin(), it->second.end(), less);
}
typedef typename boost::range_value<Turns>::type turn_type;
typedef typename turn_type::segment_ratio_type segment_ratio_type;
typedef std::map
<
segment_fraction<segment_ratio_type>,
signed_size_type
> cluster_per_segment_type;
cluster_per_segment_type cluster_per_segment;
// Assign to zero, because of pre-increment later the cluster_id
// effectively starts with 1
// (and can later be negated to use uniquely with turn_index)
signed_size_type cluster_id = 0;
for (typename map_type::const_iterator it = map.begin();
it != map.end(); ++it)
{
if (it->second.size() > 1u)
{
handle_colocation_cluster(turns, cluster_id, cluster_per_segment,
it->second, geometry1, geometry2);
}
}
assign_cluster_to_turns(turns, clusters, cluster_per_segment);
// Get colocated information here and not later, to keep information
// on turns which are discarded afterwards
set_colocation<OverlayType>(turns, clusters);
if (BOOST_GEOMETRY_CONDITION(target_operation == operation_intersection))
{
discard_interior_exterior_turns
<
do_reverse<geometry::point_order<Geometry1>::value>::value != Reverse1,
do_reverse<geometry::point_order<Geometry2>::value>::value != Reverse2
>(turns, clusters);
}
#if defined(BOOST_GEOMETRY_DEBUG_HANDLE_COLOCATIONS)
std::cout << "*** Colocations " << map.size() << std::endl;
for (typename map_type::const_iterator it = map.begin();
it != map.end(); ++it)
{
std::cout << it->first << std::endl;
for (std::vector<turn_operation_index>::const_iterator vit
= it->second.begin(); vit != it->second.end(); ++vit)
{
turn_operation_index const& toi = *vit;
std::cout << geometry::wkt(turns[toi.turn_index].point)
<< std::boolalpha
<< " discarded=" << turns[toi.turn_index].discarded
<< " colocated(uu)=" << turns[toi.turn_index].colocated_uu
<< " colocated(ii)=" << turns[toi.turn_index].colocated_ii
<< " " << operation_char(turns[toi.turn_index].operations[0].operation)
<< " " << turns[toi.turn_index].operations[0].seg_id
<< " " << turns[toi.turn_index].operations[0].fraction
<< " // " << operation_char(turns[toi.turn_index].operations[1].operation)
<< " " << turns[toi.turn_index].operations[1].seg_id
<< " " << turns[toi.turn_index].operations[1].fraction
<< std::endl;
}
}
#endif // DEBUG
return true;
}
struct is_turn_index
{
is_turn_index(signed_size_type index)
: m_index(index)
{}
template <typename Indexed>
inline bool operator()(Indexed const& indexed) const
{
// Indexed is a indexed_turn_operation<Operation>
return indexed.turn_index == m_index;
}
signed_size_type m_index;
};
template
<
typename Sbs,
typename Point,
typename Turns,
typename Geometry1,
typename Geometry2
>
inline bool fill_sbs(Sbs& sbs, Point& turn_point,
cluster_info const& cinfo,
Turns const& turns,
Geometry1 const& geometry1, Geometry2 const& geometry2)
{
typedef typename boost::range_value<Turns>::type turn_type;
std::set<signed_size_type> const& ids = cinfo.turn_indices;
if (ids.empty())
{
return false;
}
bool first = true;
for (std::set<signed_size_type>::const_iterator sit = ids.begin();
sit != ids.end(); ++sit)
{
signed_size_type turn_index = *sit;
turn_type const& turn = turns[turn_index];
if (first )
{
turn_point = turn.point;
}
for (int i = 0; i < 2; i++)
{
sbs.add(turn.operations[i], turn_index, i, geometry1, geometry2, first);
first = false;
}
}
return true;
}
template
<
bool Reverse1, bool Reverse2,
overlay_type OverlayType,
typename Turns,
typename Clusters,
typename Geometry1,
typename Geometry2,
typename SideStrategy
>
inline void gather_cluster_properties(Clusters& clusters, Turns& turns,
operation_type for_operation,
Geometry1 const& geometry1, Geometry2 const& geometry2,
SideStrategy const& strategy)
{
typedef typename boost::range_value<Turns>::type turn_type;
typedef typename turn_type::point_type point_type;
typedef typename turn_type::turn_operation_type turn_operation_type;
// Define sorter, sorting counter-clockwise such that polygons are on the
// right side
typedef sort_by_side::side_sorter
<
Reverse1, Reverse2, OverlayType, point_type, SideStrategy, std::less<int>
> sbs_type;
for (typename Clusters::iterator mit = clusters.begin();
mit != clusters.end(); ++mit)
{
cluster_info& cinfo = mit->second;
sbs_type sbs(strategy);
point_type turn_point; // should be all the same for all turns in cluster
if (! fill_sbs(sbs, turn_point, cinfo, turns, geometry1, geometry2))
{
continue;
}
sbs.apply(turn_point);
sbs.find_open();
sbs.assign_zones(for_operation);
cinfo.open_count = sbs.open_count(for_operation);
bool const set_startable = OverlayType != overlay_dissolve;
// Unset the startable flag for all 'closed' zones. This does not
// apply for self-turns, because those counts are not from both
// polygons
for (std::size_t i = 0; i < sbs.m_ranked_points.size(); i++)
{
typename sbs_type::rp const& ranked = sbs.m_ranked_points[i];
turn_type& turn = turns[ranked.turn_index];
turn_operation_type& op = turn.operations[ranked.operation_index];
if (set_startable
&& for_operation == operation_union && cinfo.open_count == 0)
{
op.enriched.startable = false;
}
if (ranked.direction != sort_by_side::dir_to)
{
continue;
}
op.enriched.count_left = ranked.count_left;
op.enriched.count_right = ranked.count_right;
op.enriched.rank = ranked.rank;
op.enriched.zone = ranked.zone;
if (! set_startable)
{
continue;
}
if (BOOST_GEOMETRY_CONDITION(OverlayType != overlay_difference)
&& is_self_turn<OverlayType>(turn))
{
// Difference needs the self-turns, TODO: investigate
continue;
}
if ((for_operation == operation_union
&& ranked.count_left != 0)
|| (for_operation == operation_intersection
&& ranked.count_right != 2))
{
op.enriched.startable = false;
}
}
}
}
}} // namespace detail::overlay
#endif //DOXYGEN_NO_DETAIL
}} // namespace boost::geometry
#endif // BOOST_GEOMETRY_ALGORITHMS_DETAIL_OVERLAY_HANDLE_COLOCATIONS_HPP