%PDF- %PDF-
| Direktori : /usr/include/boost/geometry/algorithms/detail/equals/ |
| Current File : //usr/include/boost/geometry/algorithms/detail/equals/collect_vectors.hpp |
// Boost.Geometry (aka GGL, Generic Geometry Library)
// Copyright (c) 2007-2014 Barend Gehrels, Amsterdam, the Netherlands.
// Copyright (c) 2008-2014 Bruno Lalande, Paris, France.
// Copyright (c) 2009-2014 Mateusz Loskot, London, UK.
// Copyright (c) 2014-2017 Adam Wulkiewicz, Lodz, Poland.
// This file was modified by Oracle on 2017, 2019.
// Modifications copyright (c) 2017, 2019 Oracle and/or its affiliates.
// Contributed and/or modified by Adam Wulkiewicz, on behalf of Oracle
// Parts of Boost.Geometry are redesigned from Geodan's Geographic Library
// (geolib/GGL), copyright (c) 1995-2010 Geodan, Amsterdam, the Netherlands.
// Use, modification and distribution is subject to the Boost Software License,
// Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_GEOMETRY_ALGORITHMS_DETAIL_EQUALS_COLLECT_VECTORS_HPP
#define BOOST_GEOMETRY_ALGORITHMS_DETAIL_EQUALS_COLLECT_VECTORS_HPP
#include <boost/numeric/conversion/cast.hpp>
#include <boost/geometry/algorithms/detail/interior_iterator.hpp>
#include <boost/geometry/algorithms/detail/normalize.hpp>
#include <boost/geometry/algorithms/not_implemented.hpp>
#include <boost/geometry/core/cs.hpp>
#include <boost/geometry/core/interior_rings.hpp>
#include <boost/geometry/core/tags.hpp>
#include <boost/geometry/formulas/spherical.hpp>
#include <boost/geometry/geometries/concepts/check.hpp>
#include <boost/geometry/util/math.hpp>
#include <boost/geometry/util/range.hpp>
#include <boost/geometry/views/detail/normalized_view.hpp>
#include <boost/geometry/strategies/cartesian/side_by_triangle.hpp>
#include <boost/geometry/strategies/spherical/ssf.hpp>
#include <boost/geometry/strategies/normalize.hpp>
namespace boost { namespace geometry
{
// Since these vectors (though ray would be a better name) are used in the
// implementation of equals() for Areal geometries the internal representation
// should be consistent with the side strategy.
template
<
typename T,
typename Geometry,
typename SideStrategy,
typename CSTag = typename cs_tag<Geometry>::type
>
struct collected_vector
: nyi::not_implemented_tag
{};
// compatible with side_by_triangle cartesian strategy
template <typename T, typename Geometry, typename CT, typename CSTag>
struct collected_vector
<
T, Geometry, strategy::side::side_by_triangle<CT>, CSTag
>
{
typedef T type;
inline collected_vector()
{}
inline collected_vector(T const& px, T const& py,
T const& pdx, T const& pdy)
: x(px)
, y(py)
, dx(pdx)
, dy(pdy)
//, dx_0(dx)
//, dy_0(dy)
{}
template <typename Point>
inline collected_vector(Point const& p1, Point const& p2)
: x(get<0>(p1))
, y(get<1>(p1))
, dx(get<0>(p2) - x)
, dy(get<1>(p2) - y)
//, dx_0(dx)
//, dy_0(dy)
{}
bool normalize()
{
T magnitude = math::sqrt(
boost::numeric_cast<T>(dx * dx + dy * dy));
// NOTE: shouldn't here math::equals() be called?
if (magnitude > 0)
{
dx /= magnitude;
dy /= magnitude;
return true;
}
return false;
}
// For sorting
inline bool operator<(collected_vector const& other) const
{
if (math::equals(x, other.x))
{
if (math::equals(y, other.y))
{
if (math::equals(dx, other.dx))
{
return dy < other.dy;
}
return dx < other.dx;
}
return y < other.y;
}
return x < other.x;
}
inline bool next_is_collinear(collected_vector const& other) const
{
return same_direction(other);
}
// For std::equals
inline bool operator==(collected_vector const& other) const
{
return math::equals(x, other.x)
&& math::equals(y, other.y)
&& same_direction(other);
}
private:
inline bool same_direction(collected_vector const& other) const
{
// For high precision arithmetic, we have to be
// more relaxed then using ==
// Because 2/sqrt( (0,0)<->(2,2) ) == 1/sqrt( (0,0)<->(1,1) )
// is not always true (at least, it is not for ttmath)
return math::equals_with_epsilon(dx, other.dx)
&& math::equals_with_epsilon(dy, other.dy);
}
T x, y;
T dx, dy;
//T dx_0, dy_0;
};
// Compatible with spherical_side_formula which currently
// is the default spherical_equatorial and geographic strategy
// so CSTag is spherical_equatorial_tag or geographic_tag
template <typename T, typename Geometry, typename CT, typename CSTag>
struct collected_vector
<
T, Geometry, strategy::side::spherical_side_formula<CT>, CSTag
>
{
typedef T type;
typedef typename geometry::detail::cs_angular_units<Geometry>::type units_type;
typedef model::point<T, 2, cs::spherical_equatorial<units_type> > point_type;
typedef model::point<T, 3, cs::cartesian> vector_type;
collected_vector()
{}
template <typename Point>
collected_vector(Point const& p1, Point const& p2)
: origin(get<0>(p1), get<1>(p1))
{
origin = detail::return_normalized<point_type>(
origin,
strategy::normalize::spherical_point());
using namespace geometry::formula;
prev = sph_to_cart3d<vector_type>(p1);
next = sph_to_cart3d<vector_type>(p2);
direction = cross_product(prev, next);
}
bool normalize()
{
T magnitude_sqr = dot_product(direction, direction);
// NOTE: shouldn't here math::equals() be called?
if (magnitude_sqr > 0)
{
divide_value(direction, math::sqrt(magnitude_sqr));
return true;
}
return false;
}
bool operator<(collected_vector const& other) const
{
if (math::equals(get<0>(origin), get<0>(other.origin)))
{
if (math::equals(get<1>(origin), get<1>(other.origin)))
{
if (math::equals(get<0>(direction), get<0>(other.direction)))
{
if (math::equals(get<1>(direction), get<1>(other.direction)))
{
return get<2>(direction) < get<2>(other.direction);
}
return get<1>(direction) < get<1>(other.direction);
}
return get<0>(direction) < get<0>(other.direction);
}
return get<1>(origin) < get<1>(other.origin);
}
return get<0>(origin) < get<0>(other.origin);
}
// For consistency with side and intersection strategies used by relops
// IMPORTANT: this method should be called for previous vector
// and next vector should be passed as parameter
bool next_is_collinear(collected_vector const& other) const
{
return formula::sph_side_value(direction, other.next) == 0;
}
// For std::equals
bool operator==(collected_vector const& other) const
{
return math::equals(get<0>(origin), get<0>(other.origin))
&& math::equals(get<1>(origin), get<1>(other.origin))
&& is_collinear(other);
}
private:
// For consistency with side and intersection strategies used by relops
bool is_collinear(collected_vector const& other) const
{
return formula::sph_side_value(direction, other.prev) == 0
&& formula::sph_side_value(direction, other.next) == 0;
}
/*bool same_direction(collected_vector const& other) const
{
return math::equals_with_epsilon(get<0>(direction), get<0>(other.direction))
&& math::equals_with_epsilon(get<1>(direction), get<1>(other.direction))
&& math::equals_with_epsilon(get<2>(direction), get<2>(other.direction));
}*/
point_type origin; // used for sorting and equality check
vector_type direction; // used for sorting, only in operator<
vector_type prev; // used for collinearity check, only in operator==
vector_type next; // used for collinearity check
};
// Specialization for spherical polar
template <typename T, typename Geometry, typename CT>
struct collected_vector
<
T, Geometry,
strategy::side::spherical_side_formula<CT>,
spherical_polar_tag
>
: public collected_vector
<
T, Geometry,
strategy::side::spherical_side_formula<CT>,
spherical_equatorial_tag
>
{
typedef collected_vector
<
T, Geometry,
strategy::side::spherical_side_formula<CT>,
spherical_equatorial_tag
> base_type;
collected_vector() {}
template <typename Point>
collected_vector(Point const& p1, Point const& p2)
: base_type(to_equatorial(p1), to_equatorial(p2))
{}
private:
template <typename Point>
Point to_equatorial(Point const& p)
{
typedef typename coordinate_type<Point>::type coord_type;
typedef math::detail::constants_on_spheroid
<
coord_type,
typename coordinate_system<Point>::type::units
> constants;
coord_type const pi_2 = constants::half_period() / 2;
Point res = p;
set<1>(res, pi_2 - get<1>(p));
return res;
}
};
// TODO: specialize collected_vector for geographic_tag
#ifndef DOXYGEN_NO_DETAIL
namespace detail { namespace collect_vectors
{
template <typename Range, typename Collection>
struct range_collect_vectors
{
typedef typename boost::range_value<Collection>::type item_type;
typedef typename item_type::type calculation_type;
static inline void apply(Collection& collection, Range const& range)
{
typedef geometry::detail::normalized_view
<
Range const
> normalized_range_type;
apply_impl(collection, normalized_range_type(range));
}
private:
template <typename NormalizedRange>
static inline void apply_impl(Collection& collection, NormalizedRange const& range)
{
if (boost::size(range) < 2)
{
return;
}
typedef typename boost::range_size<Collection>::type collection_size_t;
collection_size_t c_old_size = boost::size(collection);
typedef typename boost::range_iterator<NormalizedRange const>::type iterator;
bool is_first = true;
iterator it = boost::begin(range);
for (iterator prev = it++;
it != boost::end(range);
prev = it++)
{
typename boost::range_value<Collection>::type v(*prev, *it);
// Normalize the vector -> this results in points+direction
// and is comparible between geometries
// Avoid non-duplicate points (AND division by zero)
if (v.normalize())
{
// Avoid non-direction changing points
if (is_first || ! collection.back().next_is_collinear(v))
{
collection.push_back(v);
}
is_first = false;
}
}
// If first one has same direction as last one, remove first one
collection_size_t collected_count = boost::size(collection) - c_old_size;
if ( collected_count > 1 )
{
typedef typename boost::range_iterator<Collection>::type c_iterator;
c_iterator first = range::pos(collection, c_old_size);
if (collection.back().next_is_collinear(*first) )
{
//collection.erase(first);
// O(1) instead of O(N)
*first = collection.back();
collection.pop_back();
}
}
}
};
// Default version (cartesian)
template <typename Box, typename Collection, typename CSTag = typename cs_tag<Box>::type>
struct box_collect_vectors
{
// Calculate on coordinate type, but if it is integer,
// then use double
typedef typename boost::range_value<Collection>::type item_type;
typedef typename item_type::type calculation_type;
static inline void apply(Collection& collection, Box const& box)
{
typename point_type<Box>::type lower_left, lower_right,
upper_left, upper_right;
geometry::detail::assign_box_corners(box, lower_left, lower_right,
upper_left, upper_right);
typedef typename boost::range_value<Collection>::type item;
collection.push_back(item(get<0>(lower_left), get<1>(lower_left), 0, 1));
collection.push_back(item(get<0>(upper_left), get<1>(upper_left), 1, 0));
collection.push_back(item(get<0>(upper_right), get<1>(upper_right), 0, -1));
collection.push_back(item(get<0>(lower_right), get<1>(lower_right), -1, 0));
}
};
// NOTE: This is not fully correct because Box in spherical and geographic
// cordinate systems cannot be seen as Polygon
template <typename Box, typename Collection>
struct box_collect_vectors<Box, Collection, spherical_equatorial_tag>
{
static inline void apply(Collection& collection, Box const& box)
{
typename point_type<Box>::type lower_left, lower_right,
upper_left, upper_right;
geometry::detail::assign_box_corners(box, lower_left, lower_right,
upper_left, upper_right);
typedef typename boost::range_value<Collection>::type item;
collection.push_back(item(lower_left, upper_left));
collection.push_back(item(upper_left, upper_right));
collection.push_back(item(upper_right, lower_right));
collection.push_back(item(lower_right, lower_left));
}
};
template <typename Box, typename Collection>
struct box_collect_vectors<Box, Collection, spherical_polar_tag>
: box_collect_vectors<Box, Collection, spherical_equatorial_tag>
{};
template <typename Box, typename Collection>
struct box_collect_vectors<Box, Collection, geographic_tag>
: box_collect_vectors<Box, Collection, spherical_equatorial_tag>
{};
template <typename Polygon, typename Collection>
struct polygon_collect_vectors
{
static inline void apply(Collection& collection, Polygon const& polygon)
{
typedef typename geometry::ring_type<Polygon>::type ring_type;
typedef range_collect_vectors<ring_type, Collection> per_range;
per_range::apply(collection, exterior_ring(polygon));
typename interior_return_type<Polygon const>::type
rings = interior_rings(polygon);
for (typename detail::interior_iterator<Polygon const>::type
it = boost::begin(rings); it != boost::end(rings); ++it)
{
per_range::apply(collection, *it);
}
}
};
template <typename MultiGeometry, typename Collection, typename SinglePolicy>
struct multi_collect_vectors
{
static inline void apply(Collection& collection, MultiGeometry const& multi)
{
for (typename boost::range_iterator<MultiGeometry const>::type
it = boost::begin(multi);
it != boost::end(multi);
++it)
{
SinglePolicy::apply(collection, *it);
}
}
};
}} // namespace detail::collect_vectors
#endif // DOXYGEN_NO_DETAIL
#ifndef DOXYGEN_NO_DISPATCH
namespace dispatch
{
template
<
typename Tag,
typename Collection,
typename Geometry
>
struct collect_vectors
{
static inline void apply(Collection&, Geometry const&)
{}
};
template <typename Collection, typename Box>
struct collect_vectors<box_tag, Collection, Box>
: detail::collect_vectors::box_collect_vectors<Box, Collection>
{};
template <typename Collection, typename Ring>
struct collect_vectors<ring_tag, Collection, Ring>
: detail::collect_vectors::range_collect_vectors<Ring, Collection>
{};
template <typename Collection, typename LineString>
struct collect_vectors<linestring_tag, Collection, LineString>
: detail::collect_vectors::range_collect_vectors<LineString, Collection>
{};
template <typename Collection, typename Polygon>
struct collect_vectors<polygon_tag, Collection, Polygon>
: detail::collect_vectors::polygon_collect_vectors<Polygon, Collection>
{};
template <typename Collection, typename MultiPolygon>
struct collect_vectors<multi_polygon_tag, Collection, MultiPolygon>
: detail::collect_vectors::multi_collect_vectors
<
MultiPolygon,
Collection,
detail::collect_vectors::polygon_collect_vectors
<
typename boost::range_value<MultiPolygon>::type,
Collection
>
>
{};
} // namespace dispatch
#endif
/*!
\ingroup collect_vectors
\tparam Collection Collection type, should be e.g. std::vector<>
\tparam Geometry geometry type
\param collection the collection of vectors
\param geometry the geometry to make collect_vectors
*/
template <typename Collection, typename Geometry>
inline void collect_vectors(Collection& collection, Geometry const& geometry)
{
concepts::check<Geometry const>();
dispatch::collect_vectors
<
typename tag<Geometry>::type,
Collection,
Geometry
>::apply(collection, geometry);
}
}} // namespace boost::geometry
#endif // BOOST_GEOMETRY_ALGORITHMS_DETAIL_EQUALS_COLLECT_VECTORS_HPP