%PDF- %PDF-
| Direktori : /proc/thread-self/root/usr/src/vboxhost-7.0.26/vboxdrv/common/log/ |
| Current File : //proc/thread-self/root/usr/src/vboxhost-7.0.26/vboxdrv/common/log/log.c |
/* $Id: log.cpp 159406 2023-10-06 18:37:28Z vgalitsy $ */
/** @file
* Runtime VBox - Logger.
*/
/*
* Copyright (C) 2006-2023 Oracle and/or its affiliates.
*
* This file is part of VirtualBox base platform packages, as
* available from https://www.virtualbox.org.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation, in version 3 of the
* License.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see <https://www.gnu.org/licenses>.
*
* The contents of this file may alternatively be used under the terms
* of the Common Development and Distribution License Version 1.0
* (CDDL), a copy of it is provided in the "COPYING.CDDL" file included
* in the VirtualBox distribution, in which case the provisions of the
* CDDL are applicable instead of those of the GPL.
*
* You may elect to license modified versions of this file under the
* terms and conditions of either the GPL or the CDDL or both.
*
* SPDX-License-Identifier: GPL-3.0-only OR CDDL-1.0
*/
/*********************************************************************************************************************************
* Header Files *
*********************************************************************************************************************************/
#include <iprt/log.h>
#include "internal/iprt.h"
#include <iprt/alloc.h>
#include <iprt/crc.h>
#include <iprt/process.h>
#include <iprt/semaphore.h>
#include <iprt/thread.h>
#include <iprt/mp.h>
#ifdef IN_RING3
# include <iprt/env.h>
# include <iprt/file.h>
# include <iprt/lockvalidator.h>
# include <iprt/path.h>
#endif
#include <iprt/time.h>
#include <iprt/asm.h>
#if defined(RT_ARCH_AMD64) || defined(RT_ARCH_X86)
# include <iprt/asm-amd64-x86.h>
#endif
#include <iprt/assert.h>
#include <iprt/err.h>
#include <iprt/param.h>
#include <iprt/stdarg.h>
#include <iprt/string.h>
#include <iprt/ctype.h>
#ifdef IN_RING3
# include <iprt/alloca.h>
# ifndef IPRT_NO_CRT
# include <stdio.h>
# endif
#endif
/*********************************************************************************************************************************
* Defined Constants And Macros *
*********************************************************************************************************************************/
/** @def RTLOG_RINGBUF_DEFAULT_SIZE
* The default ring buffer size. */
/** @def RTLOG_RINGBUF_MAX_SIZE
* The max ring buffer size. */
/** @def RTLOG_RINGBUF_MIN_SIZE
* The min ring buffer size. */
#ifdef IN_RING0
# define RTLOG_RINGBUF_DEFAULT_SIZE _64K
# define RTLOG_RINGBUF_MAX_SIZE _4M
# define RTLOG_RINGBUF_MIN_SIZE _1K
#elif defined(IN_RING3) || defined(DOXYGEN_RUNNING)
# define RTLOG_RINGBUF_DEFAULT_SIZE _512K
# define RTLOG_RINGBUF_MAX_SIZE _1G
# define RTLOG_RINGBUF_MIN_SIZE _4K
#endif
/** The start of ring buffer eye catcher (16 bytes). */
#define RTLOG_RINGBUF_EYE_CATCHER "START RING BUF\0"
AssertCompile(sizeof(RTLOG_RINGBUF_EYE_CATCHER) == 16);
/** The end of ring buffer eye catcher (16 bytes). This also ensures that the ring buffer
* forms are properly terminated C string (leading zero chars). */
#define RTLOG_RINGBUF_EYE_CATCHER_END "\0\0\0END RING BUF"
AssertCompile(sizeof(RTLOG_RINGBUF_EYE_CATCHER_END) == 16);
/** The default buffer size. */
#ifdef IN_RING0
# define RTLOG_BUFFER_DEFAULT_SIZE _16K
#else
# define RTLOG_BUFFER_DEFAULT_SIZE _128K
#endif
/** Buffer alignment used RTLogCreateExV. */
#define RTLOG_BUFFER_ALIGN 64
/** Resolved a_pLoggerInt to the default logger if NULL, returning @a a_rcRet if
* no default logger could be created. */
#define RTLOG_RESOLVE_DEFAULT_RET(a_pLoggerInt, a_rcRet) do {\
if (a_pLoggerInt) { /*maybe*/ } \
else \
{ \
a_pLoggerInt = (PRTLOGGERINTERNAL)rtLogDefaultInstanceCommon(); \
if (a_pLoggerInt) { /*maybe*/ } \
else \
return (a_rcRet); \
} \
} while (0)
/*********************************************************************************************************************************
* Structures and Typedefs *
*********************************************************************************************************************************/
/**
* Internal logger data.
*
* @remarks Don't make casual changes to this structure.
*/
typedef struct RTLOGGERINTERNAL
{
/** The public logger core. */
RTLOGGER Core;
/** The structure revision (RTLOGGERINTERNAL_REV). */
uint32_t uRevision;
/** The size of the internal logger structure. */
uint32_t cbSelf;
/** Logger instance flags - RTLOGFLAGS. */
uint64_t fFlags;
/** Destination flags - RTLOGDEST. */
uint32_t fDestFlags;
/** Number of buffer descriptors. */
uint8_t cBufDescs;
/** Index of the current buffer descriptor. */
uint8_t idxBufDesc;
/** Pointer to buffer the descriptors. */
PRTLOGBUFFERDESC paBufDescs;
/** Pointer to the current buffer the descriptor. */
PRTLOGBUFFERDESC pBufDesc;
/** Spinning mutex semaphore. Can be NIL. */
RTSEMSPINMUTEX hSpinMtx;
/** Pointer to the flush function. */
PFNRTLOGFLUSH pfnFlush;
/** Custom prefix callback. */
PFNRTLOGPREFIX pfnPrefix;
/** Prefix callback argument. */
void *pvPrefixUserArg;
/** This is set if a prefix is pending. */
bool fPendingPrefix;
/** Alignment padding. */
bool afPadding1[2];
/** Set if fully created. Used to avoid confusing in a few functions used to
* parse logger settings from environment variables. */
bool fCreated;
/** The max number of groups that there is room for in afGroups and papszGroups.
* Used by RTLogCopyGroupAndFlags(). */
uint32_t cMaxGroups;
/** Pointer to the group name array.
* (The data is readonly and provided by the user.) */
const char * const *papszGroups;
/** The number of log entries per group. NULL if
* RTLOGFLAGS_RESTRICT_GROUPS is not specified. */
uint32_t *pacEntriesPerGroup;
/** The max number of entries per group. */
uint32_t cMaxEntriesPerGroup;
/** @name Ring buffer logging
* The ring buffer records the last cbRingBuf - 1 of log output. The
* other configured log destinations are not touched until someone calls
* RTLogFlush(), when the ring buffer content is written to them all.
*
* The aim here is a fast logging destination, that avoids wasting storage
* space saving disk space when dealing with huge log volumes where the
* interesting bits usually are found near the end of the log. This is
* typically the case for scenarios that crashes or hits assertions.
*
* RTLogFlush() is called implicitly when hitting an assertion. While on a
* crash the most debuggers are able to make calls these days, it's usually
* possible to view the ring buffer memory.
*
* @{ */
/** Ring buffer size (including both eye catchers). */
uint32_t cbRingBuf;
/** Number of bytes passing thru the ring buffer since last RTLogFlush call.
* (This is used to avoid writing out the same bytes twice.) */
uint64_t volatile cbRingBufUnflushed;
/** Ring buffer pointer (points at RTLOG_RINGBUF_EYE_CATCHER). */
char *pszRingBuf;
/** Current ring buffer position (where to write the next char). */
char * volatile pchRingBufCur;
/** @} */
/** Program time base for ring-0 (copy of g_u64ProgramStartNanoTS). */
uint64_t nsR0ProgramStart;
/** Thread name for use in ring-0 with RTLOGFLAGS_PREFIX_THREAD. */
char szR0ThreadName[16];
#ifdef IN_RING3
/** @name File logging bits for the logger.
* @{ */
/** Pointer to the function called when starting logging, and when
* ending or starting a new log file as part of history rotation.
* This can be NULL. */
PFNRTLOGPHASE pfnPhase;
/** Pointer to the output interface used. */
PCRTLOGOUTPUTIF pOutputIf;
/** Opaque user data passed to the callbacks in the output interface. */
void *pvOutputIfUser;
/** Handle to log file (if open) - only used by the default output interface to avoid additional layers of indirection. */
RTFILE hFile;
/** Log file history settings: maximum amount of data to put in a file. */
uint64_t cbHistoryFileMax;
/** Log file history settings: current amount of data in a file. */
uint64_t cbHistoryFileWritten;
/** Log file history settings: maximum time to use a file (in seconds). */
uint32_t cSecsHistoryTimeSlot;
/** Log file history settings: in what time slot was the file created. */
uint32_t uHistoryTimeSlotStart;
/** Log file history settings: number of older files to keep.
* 0 means no history. */
uint32_t cHistory;
/** Pointer to filename. */
char szFilename[RTPATH_MAX];
/** Flag whether the log file was opened successfully. */
bool fLogOpened;
/** @} */
#endif /* IN_RING3 */
/** Number of groups in the afGroups and papszGroups members. */
uint32_t cGroups;
/** Group flags array - RTLOGGRPFLAGS.
* This member have variable length and may extend way beyond
* the declared size of 1 entry. */
RT_FLEXIBLE_ARRAY_EXTENSION
uint32_t afGroups[RT_FLEXIBLE_ARRAY];
} RTLOGGERINTERNAL;
/** The revision of the internal logger structure. */
# define RTLOGGERINTERNAL_REV UINT32_C(13)
AssertCompileMemberAlignment(RTLOGGERINTERNAL, cbRingBufUnflushed, sizeof(uint64_t));
#ifdef IN_RING3
AssertCompileMemberAlignment(RTLOGGERINTERNAL, hFile, sizeof(void *));
AssertCompileMemberAlignment(RTLOGGERINTERNAL, cbHistoryFileMax, sizeof(uint64_t));
#endif
/** Pointer to internal logger bits. */
typedef struct RTLOGGERINTERNAL *PRTLOGGERINTERNAL;
/**
* Arguments passed to the output function.
*/
typedef struct RTLOGOUTPUTPREFIXEDARGS
{
/** The logger instance. */
PRTLOGGERINTERNAL pLoggerInt;
/** The flags. (used for prefixing.) */
unsigned fFlags;
/** The group. (used for prefixing.) */
unsigned iGroup;
/** Used by RTLogBulkNestedWrite. */
const char *pszInfix;
} RTLOGOUTPUTPREFIXEDARGS, *PRTLOGOUTPUTPREFIXEDARGS;
/*********************************************************************************************************************************
* Internal Functions *
*********************************************************************************************************************************/
static unsigned rtlogGroupFlags(const char *psz);
#ifdef IN_RING3
static int rtR3LogOpenFileDestination(PRTLOGGERINTERNAL pLoggerInt, PRTERRINFO pErrInfo);
#endif
static void rtLogRingBufFlush(PRTLOGGERINTERNAL pLoggerInt);
static void rtlogFlush(PRTLOGGERINTERNAL pLoggerInt, bool fNeedSpace);
#ifdef IN_RING3
static FNRTLOGPHASEMSG rtlogPhaseMsgLocked;
static FNRTLOGPHASEMSG rtlogPhaseMsgNormal;
#endif
static DECLCALLBACK(size_t) rtLogOutputPrefixed(void *pv, const char *pachChars, size_t cbChars);
static void rtlogLoggerExFLocked(PRTLOGGERINTERNAL pLoggerInt, unsigned fFlags, unsigned iGroup, const char *pszFormat, ...);
/*********************************************************************************************************************************
* Global Variables *
*********************************************************************************************************************************/
/** Default logger instance. */
static PRTLOGGER g_pLogger;
/** Default release logger instance. */
static PRTLOGGER g_pRelLogger;
#ifdef IN_RING3
/** The RTThreadGetWriteLockCount() change caused by the logger mutex semaphore. */
static uint32_t volatile g_cLoggerLockCount;
#endif
#ifdef IN_RING0
/** Number of per-thread loggers. */
static int32_t volatile g_cPerThreadLoggers;
/** Per-thread loggers.
* This is just a quick TLS hack suitable for debug logging only.
* If we run out of entries, just unload and reload the driver. */
static struct RTLOGGERPERTHREAD
{
/** The thread. */
RTNATIVETHREAD volatile NativeThread;
/** The (process / session) key. */
uintptr_t volatile uKey;
/** The logger instance.*/
PRTLOGGER volatile pLogger;
} g_aPerThreadLoggers[8] =
{
{ NIL_RTNATIVETHREAD, 0, 0},
{ NIL_RTNATIVETHREAD, 0, 0},
{ NIL_RTNATIVETHREAD, 0, 0},
{ NIL_RTNATIVETHREAD, 0, 0},
{ NIL_RTNATIVETHREAD, 0, 0},
{ NIL_RTNATIVETHREAD, 0, 0},
{ NIL_RTNATIVETHREAD, 0, 0},
{ NIL_RTNATIVETHREAD, 0, 0}
};
#endif /* IN_RING0 */
/**
* Logger flags instructions.
*/
static struct
{
const char *pszInstr; /**< The name */
size_t cchInstr; /**< The size of the name. */
uint64_t fFlag; /**< The flag value. */
bool fInverted; /**< Inverse meaning? */
uint32_t fFixedDest; /**< RTLOGDEST_FIXED_XXX flags blocking this. */
} const g_aLogFlags[] =
{
{ "disabled", sizeof("disabled" ) - 1, RTLOGFLAGS_DISABLED, false, 0 },
{ "enabled", sizeof("enabled" ) - 1, RTLOGFLAGS_DISABLED, true, 0 },
{ "buffered", sizeof("buffered" ) - 1, RTLOGFLAGS_BUFFERED, false, 0 },
{ "unbuffered", sizeof("unbuffered" ) - 1, RTLOGFLAGS_BUFFERED, true, 0 },
{ "usecrlf", sizeof("usecrlf" ) - 1, RTLOGFLAGS_USECRLF, false, 0 },
{ "uself", sizeof("uself" ) - 1, RTLOGFLAGS_USECRLF, true, 0 },
{ "append", sizeof("append" ) - 1, RTLOGFLAGS_APPEND, false, RTLOGDEST_FIXED_FILE },
{ "overwrite", sizeof("overwrite" ) - 1, RTLOGFLAGS_APPEND, true, RTLOGDEST_FIXED_FILE },
{ "rel", sizeof("rel" ) - 1, RTLOGFLAGS_REL_TS, false, 0 },
{ "abs", sizeof("abs" ) - 1, RTLOGFLAGS_REL_TS, true, 0 },
{ "dec", sizeof("dec" ) - 1, RTLOGFLAGS_DECIMAL_TS, false, 0 },
{ "hex", sizeof("hex" ) - 1, RTLOGFLAGS_DECIMAL_TS, true, 0 },
{ "writethru", sizeof("writethru" ) - 1, RTLOGFLAGS_WRITE_THROUGH, false, 0 },
{ "writethrough", sizeof("writethrough") - 1, RTLOGFLAGS_WRITE_THROUGH, false, 0 },
{ "flush", sizeof("flush" ) - 1, RTLOGFLAGS_FLUSH, false, 0 },
{ "lockcnts", sizeof("lockcnts" ) - 1, RTLOGFLAGS_PREFIX_LOCK_COUNTS, false, 0 },
{ "cpuid", sizeof("cpuid" ) - 1, RTLOGFLAGS_PREFIX_CPUID, false, 0 },
{ "pid", sizeof("pid" ) - 1, RTLOGFLAGS_PREFIX_PID, false, 0 },
{ "flagno", sizeof("flagno" ) - 1, RTLOGFLAGS_PREFIX_FLAG_NO, false, 0 },
{ "flag", sizeof("flag" ) - 1, RTLOGFLAGS_PREFIX_FLAG, false, 0 },
{ "groupno", sizeof("groupno" ) - 1, RTLOGFLAGS_PREFIX_GROUP_NO, false, 0 },
{ "group", sizeof("group" ) - 1, RTLOGFLAGS_PREFIX_GROUP, false, 0 },
{ "tid", sizeof("tid" ) - 1, RTLOGFLAGS_PREFIX_TID, false, 0 },
{ "thread", sizeof("thread" ) - 1, RTLOGFLAGS_PREFIX_THREAD, false, 0 },
{ "custom", sizeof("custom" ) - 1, RTLOGFLAGS_PREFIX_CUSTOM, false, 0 },
{ "timeprog", sizeof("timeprog" ) - 1, RTLOGFLAGS_PREFIX_TIME_PROG, false, 0 },
{ "time", sizeof("time" ) - 1, RTLOGFLAGS_PREFIX_TIME, false, 0 },
{ "msprog", sizeof("msprog" ) - 1, RTLOGFLAGS_PREFIX_MS_PROG, false, 0 },
{ "tsc", sizeof("tsc" ) - 1, RTLOGFLAGS_PREFIX_TSC, false, 0 }, /* before ts! */
{ "ts", sizeof("ts" ) - 1, RTLOGFLAGS_PREFIX_TS, false, 0 },
/* We intentionally omit RTLOGFLAGS_RESTRICT_GROUPS. */
};
/**
* Logger destination instructions.
*/
static struct
{
const char *pszInstr; /**< The name. */
size_t cchInstr; /**< The size of the name. */
uint32_t fFlag; /**< The corresponding destination flag. */
} const g_aLogDst[] =
{
{ RT_STR_TUPLE("file"), RTLOGDEST_FILE }, /* Must be 1st! */
{ RT_STR_TUPLE("dir"), RTLOGDEST_FILE }, /* Must be 2nd! */
{ RT_STR_TUPLE("history"), 0 }, /* Must be 3rd! */
{ RT_STR_TUPLE("histsize"), 0 }, /* Must be 4th! */
{ RT_STR_TUPLE("histtime"), 0 }, /* Must be 5th! */
{ RT_STR_TUPLE("ringbuf"), RTLOGDEST_RINGBUF }, /* Must be 6th! */
{ RT_STR_TUPLE("stdout"), RTLOGDEST_STDOUT },
{ RT_STR_TUPLE("stderr"), RTLOGDEST_STDERR },
{ RT_STR_TUPLE("debugger"), RTLOGDEST_DEBUGGER },
{ RT_STR_TUPLE("com"), RTLOGDEST_COM },
{ RT_STR_TUPLE("nodeny"), RTLOGDEST_F_NO_DENY },
{ RT_STR_TUPLE("vmmrel"), RTLOGDEST_VMM_REL }, /* before vmm */
{ RT_STR_TUPLE("vmm"), RTLOGDEST_VMM },
{ RT_STR_TUPLE("user"), RTLOGDEST_USER },
/* The RTLOGDEST_FIXED_XXX flags are omitted on purpose. */
};
#ifdef IN_RING3
/** Log rotation backoff table - millisecond sleep intervals.
* Important on Windows host, especially for VBoxSVC release logging. Only a
* medium term solution, until a proper fix for log file handling is available.
* 10 seconds total.
*/
static const uint32_t g_acMsLogBackoff[] =
{ 10, 10, 10, 20, 50, 100, 200, 200, 200, 200, 500, 500, 500, 500, 1000, 1000, 1000, 1000, 1000, 1000, 1000 };
#endif
/**
* Locks the logger instance.
*
* @returns See RTSemSpinMutexRequest().
* @param pLoggerInt The logger instance.
*/
DECLINLINE(int) rtlogLock(PRTLOGGERINTERNAL pLoggerInt)
{
AssertMsgReturn(pLoggerInt->Core.u32Magic == RTLOGGER_MAGIC, ("%#x != %#x\n", pLoggerInt->Core.u32Magic, RTLOGGER_MAGIC),
VERR_INVALID_MAGIC);
AssertMsgReturn(pLoggerInt->uRevision == RTLOGGERINTERNAL_REV, ("%#x != %#x\n", pLoggerInt->uRevision, RTLOGGERINTERNAL_REV),
VERR_LOG_REVISION_MISMATCH);
AssertMsgReturn(pLoggerInt->cbSelf == sizeof(*pLoggerInt), ("%#x != %#x\n", pLoggerInt->cbSelf, sizeof(*pLoggerInt)),
VERR_LOG_REVISION_MISMATCH);
if (pLoggerInt->hSpinMtx != NIL_RTSEMSPINMUTEX)
{
int rc = RTSemSpinMutexRequest(pLoggerInt->hSpinMtx);
if (RT_FAILURE(rc))
return rc;
}
return VINF_SUCCESS;
}
/**
* Unlocks the logger instance.
* @param pLoggerInt The logger instance.
*/
DECLINLINE(void) rtlogUnlock(PRTLOGGERINTERNAL pLoggerInt)
{
if (pLoggerInt->hSpinMtx != NIL_RTSEMSPINMUTEX)
RTSemSpinMutexRelease(pLoggerInt->hSpinMtx);
return;
}
/*********************************************************************************************************************************
* Logger Instance Management. *
*********************************************************************************************************************************/
/**
* Common worker for RTLogDefaultInstance and RTLogDefaultInstanceEx.
*/
DECL_NO_INLINE(static, PRTLOGGER) rtLogDefaultInstanceCreateNew(void)
{
PRTLOGGER pRet = NULL;
/*
* It's soo easy to end up in a infinite recursion here when enabling 'all'
* the logging groups. So, only allow one thread to instantiate the default
* logger, muting other attempts at logging while it's being created.
*/
static volatile bool s_fCreating = false;
if (ASMAtomicCmpXchgBool(&s_fCreating, true, false))
{
pRet = RTLogDefaultInit();
if (pRet)
{
bool fRc = ASMAtomicCmpXchgPtr(&g_pLogger, pRet, NULL);
if (!fRc)
{
RTLogDestroy(pRet);
pRet = g_pLogger;
}
}
ASMAtomicWriteBool(&s_fCreating, true);
}
return pRet;
}
/**
* Common worker for RTLogDefaultInstance and RTLogDefaultInstanceEx.
*/
DECL_FORCE_INLINE(PRTLOGGER) rtLogDefaultInstanceCommon(void)
{
PRTLOGGER pRet;
#ifdef IN_RING0
/*
* Check per thread loggers first.
*/
if (g_cPerThreadLoggers)
{
const RTNATIVETHREAD Self = RTThreadNativeSelf();
int32_t i = RT_ELEMENTS(g_aPerThreadLoggers);
while (i-- > 0)
if (g_aPerThreadLoggers[i].NativeThread == Self)
return g_aPerThreadLoggers[i].pLogger;
}
#endif /* IN_RING0 */
/*
* If no per thread logger, use the default one.
*/
pRet = g_pLogger;
if (RT_LIKELY(pRet))
{ /* likely */ }
else
pRet = rtLogDefaultInstanceCreateNew();
return pRet;
}
RTDECL(PRTLOGGER) RTLogDefaultInstance(void)
{
return rtLogDefaultInstanceCommon();
}
RT_EXPORT_SYMBOL(RTLogDefaultInstance);
/**
* Worker for RTLogDefaultInstanceEx, RTLogGetDefaultInstanceEx,
* RTLogRelGetDefaultInstanceEx and RTLogCheckGroupFlags.
*/
DECL_FORCE_INLINE(PRTLOGGERINTERNAL) rtLogCheckGroupFlagsWorker(PRTLOGGERINTERNAL pLoggerInt, uint32_t fFlagsAndGroup)
{
if (pLoggerInt->fFlags & RTLOGFLAGS_DISABLED)
pLoggerInt = NULL;
else
{
uint32_t const fFlags = RT_LO_U16(fFlagsAndGroup);
uint16_t const iGroup = RT_HI_U16(fFlagsAndGroup);
if ( iGroup != UINT16_MAX
&& ( (pLoggerInt->afGroups[iGroup < pLoggerInt->cGroups ? iGroup : 0] & (fFlags | RTLOGGRPFLAGS_ENABLED))
!= (fFlags | RTLOGGRPFLAGS_ENABLED)))
pLoggerInt = NULL;
}
return pLoggerInt;
}
RTDECL(PRTLOGGER) RTLogDefaultInstanceEx(uint32_t fFlagsAndGroup)
{
PRTLOGGERINTERNAL pLoggerInt = (PRTLOGGERINTERNAL)rtLogDefaultInstanceCommon();
if (pLoggerInt)
pLoggerInt = rtLogCheckGroupFlagsWorker(pLoggerInt, fFlagsAndGroup);
AssertCompileMemberOffset(RTLOGGERINTERNAL, Core, 0);
return (PRTLOGGER)pLoggerInt;
}
RT_EXPORT_SYMBOL(RTLogDefaultInstanceEx);
/**
* Common worker for RTLogGetDefaultInstance and RTLogGetDefaultInstanceEx.
*/
DECL_FORCE_INLINE(PRTLOGGER) rtLogGetDefaultInstanceCommon(void)
{
#ifdef IN_RING0
/*
* Check per thread loggers first.
*/
if (g_cPerThreadLoggers)
{
const RTNATIVETHREAD Self = RTThreadNativeSelf();
int32_t i = RT_ELEMENTS(g_aPerThreadLoggers);
while (i-- > 0)
if (g_aPerThreadLoggers[i].NativeThread == Self)
return g_aPerThreadLoggers[i].pLogger;
}
#endif /* IN_RING0 */
return g_pLogger;
}
RTDECL(PRTLOGGER) RTLogGetDefaultInstance(void)
{
return rtLogGetDefaultInstanceCommon();
}
RT_EXPORT_SYMBOL(RTLogGetDefaultInstance);
RTDECL(PRTLOGGER) RTLogGetDefaultInstanceEx(uint32_t fFlagsAndGroup)
{
PRTLOGGERINTERNAL pLoggerInt = (PRTLOGGERINTERNAL)rtLogGetDefaultInstanceCommon();
if (pLoggerInt)
pLoggerInt = rtLogCheckGroupFlagsWorker(pLoggerInt, fFlagsAndGroup);
AssertCompileMemberOffset(RTLOGGERINTERNAL, Core, 0);
return (PRTLOGGER)pLoggerInt;
}
RT_EXPORT_SYMBOL(RTLogGetDefaultInstanceEx);
RTDECL(PRTLOGGER) RTLogSetDefaultInstance(PRTLOGGER pLogger)
{
#if defined(IN_RING3) && (defined(IN_RT_STATIC) || defined(IPRT_NO_CRT))
/* Set the pointers for emulating "weak symbols" the first time we're
called with something useful: */
if (pLogger != NULL && g_pfnRTLogGetDefaultInstanceEx == NULL)
{
g_pfnRTLogGetDefaultInstance = RTLogGetDefaultInstance;
g_pfnRTLogGetDefaultInstanceEx = RTLogGetDefaultInstanceEx;
}
#endif
return ASMAtomicXchgPtrT(&g_pLogger, pLogger, PRTLOGGER);
}
RT_EXPORT_SYMBOL(RTLogSetDefaultInstance);
#ifdef IN_RING0
/**
* Changes the default logger instance for the current thread.
*
* @returns IPRT status code.
* @param pLogger The logger instance. Pass NULL for deregistration.
* @param uKey Associated key for cleanup purposes. If pLogger is NULL,
* all instances with this key will be deregistered. So in
* order to only deregister the instance associated with the
* current thread use 0.
*/
RTR0DECL(int) RTLogSetDefaultInstanceThread(PRTLOGGER pLogger, uintptr_t uKey)
{
int rc;
RTNATIVETHREAD Self = RTThreadNativeSelf();
if (pLogger)
{
int32_t i;
unsigned j;
AssertReturn(pLogger->u32Magic == RTLOGGER_MAGIC, VERR_INVALID_MAGIC);
/*
* Iterate the table to see if there is already an entry for this thread.
*/
i = RT_ELEMENTS(g_aPerThreadLoggers);
while (i-- > 0)
if (g_aPerThreadLoggers[i].NativeThread == Self)
{
ASMAtomicWritePtr((void * volatile *)&g_aPerThreadLoggers[i].uKey, (void *)uKey);
g_aPerThreadLoggers[i].pLogger = pLogger;
return VINF_SUCCESS;
}
/*
* Allocate a new table entry.
*/
i = ASMAtomicIncS32(&g_cPerThreadLoggers);
if (i > (int32_t)RT_ELEMENTS(g_aPerThreadLoggers))
{
ASMAtomicDecS32(&g_cPerThreadLoggers);
return VERR_BUFFER_OVERFLOW; /* horrible error code! */
}
for (j = 0; j < 10; j++)
{
i = RT_ELEMENTS(g_aPerThreadLoggers);
while (i-- > 0)
{
AssertCompile(sizeof(RTNATIVETHREAD) == sizeof(void*));
if ( g_aPerThreadLoggers[i].NativeThread == NIL_RTNATIVETHREAD
&& ASMAtomicCmpXchgPtr((void * volatile *)&g_aPerThreadLoggers[i].NativeThread, (void *)Self, (void *)NIL_RTNATIVETHREAD))
{
ASMAtomicWritePtr((void * volatile *)&g_aPerThreadLoggers[i].uKey, (void *)uKey);
ASMAtomicWritePtr(&g_aPerThreadLoggers[i].pLogger, pLogger);
return VINF_SUCCESS;
}
}
}
ASMAtomicDecS32(&g_cPerThreadLoggers);
rc = VERR_INTERNAL_ERROR;
}
else
{
/*
* Search the array for the current thread.
*/
int32_t i = RT_ELEMENTS(g_aPerThreadLoggers);
while (i-- > 0)
if ( g_aPerThreadLoggers[i].NativeThread == Self
|| g_aPerThreadLoggers[i].uKey == uKey)
{
ASMAtomicWriteNullPtr((void * volatile *)&g_aPerThreadLoggers[i].uKey);
ASMAtomicWriteNullPtr(&g_aPerThreadLoggers[i].pLogger);
ASMAtomicWriteHandle(&g_aPerThreadLoggers[i].NativeThread, NIL_RTNATIVETHREAD);
ASMAtomicDecS32(&g_cPerThreadLoggers);
}
rc = VINF_SUCCESS;
}
return rc;
}
RT_EXPORT_SYMBOL(RTLogSetDefaultInstanceThread);
#endif /* IN_RING0 */
RTDECL(PRTLOGGER) RTLogRelGetDefaultInstance(void)
{
return g_pRelLogger;
}
RT_EXPORT_SYMBOL(RTLogRelGetDefaultInstance);
RTDECL(PRTLOGGER) RTLogRelGetDefaultInstanceEx(uint32_t fFlagsAndGroup)
{
PRTLOGGERINTERNAL pLoggerInt = (PRTLOGGERINTERNAL)g_pRelLogger;
if (pLoggerInt)
pLoggerInt = rtLogCheckGroupFlagsWorker(pLoggerInt, fFlagsAndGroup);
return (PRTLOGGER)pLoggerInt;
}
RT_EXPORT_SYMBOL(RTLogRelGetDefaultInstanceEx);
RTDECL(PRTLOGGER) RTLogRelSetDefaultInstance(PRTLOGGER pLogger)
{
#if defined(IN_RING3) && (defined(IN_RT_STATIC) || defined(IPRT_NO_CRT))
/* Set the pointers for emulating "weak symbols" the first time we're
called with something useful: */
if (pLogger != NULL && g_pfnRTLogRelGetDefaultInstanceEx == NULL)
{
g_pfnRTLogRelGetDefaultInstance = RTLogRelGetDefaultInstance;
g_pfnRTLogRelGetDefaultInstanceEx = RTLogRelGetDefaultInstanceEx;
}
#endif
return ASMAtomicXchgPtrT(&g_pRelLogger, pLogger, PRTLOGGER);
}
RT_EXPORT_SYMBOL(RTLogRelSetDefaultInstance);
RTDECL(PRTLOGGER) RTLogCheckGroupFlags(PRTLOGGER pLogger, uint32_t fFlagsAndGroup)
{
PRTLOGGERINTERNAL pLoggerInt = (PRTLOGGERINTERNAL)pLogger;
if (pLoggerInt)
pLoggerInt = rtLogCheckGroupFlagsWorker(pLoggerInt, fFlagsAndGroup);
return (PRTLOGGER)pLoggerInt;
}
RT_EXPORT_SYMBOL(RTLogCheckGroupFlags);
/*********************************************************************************************************************************
* Default file I/O interface *
*********************************************************************************************************************************/
#ifdef IN_RING3
static DECLCALLBACK(int) rtLogOutputIfDefOpen(PCRTLOGOUTPUTIF pIf, void *pvUser, const char *pszFilename, uint32_t fFlags)
{
RT_NOREF(pIf);
PRTLOGGERINTERNAL pLoggerInt = (PRTLOGGERINTERNAL)pvUser;
return RTFileOpen(&pLoggerInt->hFile, pszFilename, fFlags);
}
static DECLCALLBACK(int) rtLogOutputIfDefClose(PCRTLOGOUTPUTIF pIf, void *pvUser)
{
RT_NOREF(pIf);
PRTLOGGERINTERNAL pLoggerInt = (PRTLOGGERINTERNAL)pvUser;
int rc = VINF_SUCCESS;
if (pLoggerInt->hFile != NIL_RTFILE)
rc = RTFileClose(pLoggerInt->hFile);
pLoggerInt->hFile = NIL_RTFILE;
return rc;
}
static DECLCALLBACK(int) rtLogOutputIfDefDelete(PCRTLOGOUTPUTIF pIf, void *pvUser, const char *pszFilename)
{
RT_NOREF(pIf, pvUser);
return RTFileDelete(pszFilename);
}
static DECLCALLBACK(int) rtLogOutputIfDefRename(PCRTLOGOUTPUTIF pIf, void *pvUser, const char *pszFilenameOld,
const char *pszFilenameNew, uint32_t fFlags)
{
RT_NOREF(pIf, pvUser);
return RTFileRename(pszFilenameOld, pszFilenameNew, fFlags);
}
static DECLCALLBACK(int) rtLogOutputIfDefQuerySize(PCRTLOGOUTPUTIF pIf, void *pvUser, uint64_t *pcbSize)
{
RT_NOREF(pIf);
PRTLOGGERINTERNAL pLoggerInt = (PRTLOGGERINTERNAL)pvUser;
if (pLoggerInt->hFile != NIL_RTFILE)
return RTFileQuerySize(pLoggerInt->hFile, pcbSize);
*pcbSize = 0;
return VINF_SUCCESS;
}
static DECLCALLBACK(int) rtLogOutputIfDefWrite(PCRTLOGOUTPUTIF pIf, void *pvUser, const void *pvBuf,
size_t cbWrite, size_t *pcbWritten)
{
RT_NOREF(pIf);
PRTLOGGERINTERNAL pLoggerInt = (PRTLOGGERINTERNAL)pvUser;
if (pLoggerInt->hFile != NIL_RTFILE)
return RTFileWrite(pLoggerInt->hFile, pvBuf, cbWrite, pcbWritten);
return VINF_SUCCESS;
}
static DECLCALLBACK(int) rtLogOutputIfDefFlush(PCRTLOGOUTPUTIF pIf, void *pvUser)
{
RT_NOREF(pIf);
PRTLOGGERINTERNAL pLoggerInt = (PRTLOGGERINTERNAL)pvUser;
if (pLoggerInt->hFile != NIL_RTFILE)
return RTFileFlush(pLoggerInt->hFile);
return VINF_SUCCESS;
}
/**
* The default file output interface.
*/
static const RTLOGOUTPUTIF g_LogOutputIfDef =
{
rtLogOutputIfDefOpen,
rtLogOutputIfDefClose,
rtLogOutputIfDefDelete,
rtLogOutputIfDefRename,
rtLogOutputIfDefQuerySize,
rtLogOutputIfDefWrite,
rtLogOutputIfDefFlush
};
#endif
/*********************************************************************************************************************************
* Ring Buffer *
*********************************************************************************************************************************/
/**
* Adjusts the ring buffer.
*
* @returns IPRT status code.
* @param pLoggerInt The logger instance.
* @param cbNewSize The new ring buffer size (0 == default).
* @param fForce Whether to do this even if the logger instance hasn't
* really been fully created yet (i.e. during RTLogCreate).
*/
static int rtLogRingBufAdjust(PRTLOGGERINTERNAL pLoggerInt, uint32_t cbNewSize, bool fForce)
{
/*
* If this is early logger init, don't do anything.
*/
if (!pLoggerInt->fCreated && !fForce)
return VINF_SUCCESS;
/*
* Lock the logger and make the necessary changes.
*/
int rc = rtlogLock(pLoggerInt);
if (RT_SUCCESS(rc))
{
if (cbNewSize == 0)
cbNewSize = RTLOG_RINGBUF_DEFAULT_SIZE;
if ( pLoggerInt->cbRingBuf != cbNewSize
|| !pLoggerInt->pchRingBufCur)
{
uintptr_t offOld = pLoggerInt->pchRingBufCur - pLoggerInt->pszRingBuf;
if (offOld < sizeof(RTLOG_RINGBUF_EYE_CATCHER))
offOld = sizeof(RTLOG_RINGBUF_EYE_CATCHER);
else if (offOld >= cbNewSize)
{
memmove(pLoggerInt->pszRingBuf, &pLoggerInt->pszRingBuf[offOld - cbNewSize], cbNewSize);
offOld = sizeof(RTLOG_RINGBUF_EYE_CATCHER);
}
void *pvNew = RTMemRealloc(pLoggerInt->pchRingBufCur, cbNewSize);
if (pvNew)
{
pLoggerInt->pszRingBuf = (char *)pvNew;
pLoggerInt->pchRingBufCur = (char *)pvNew + offOld;
pLoggerInt->cbRingBuf = cbNewSize;
memcpy(pvNew, RTLOG_RINGBUF_EYE_CATCHER, sizeof(RTLOG_RINGBUF_EYE_CATCHER));
memcpy((char *)pvNew + cbNewSize - sizeof(RTLOG_RINGBUF_EYE_CATCHER_END),
RTLOG_RINGBUF_EYE_CATCHER_END, sizeof(RTLOG_RINGBUF_EYE_CATCHER_END));
rc = VINF_SUCCESS;
}
else
rc = VERR_NO_MEMORY;
}
rtlogUnlock(pLoggerInt);
}
return rc;
}
/**
* Writes text to the ring buffer.
*
* @param pInt The internal logger data structure.
* @param pachText The text to write.
* @param cchText The number of chars (bytes) to write.
*/
static void rtLogRingBufWrite(PRTLOGGERINTERNAL pInt, const char *pachText, size_t cchText)
{
/*
* Get the ring buffer data, adjusting it to only describe the writable
* part of the buffer.
*/
char * const pchStart = &pInt->pszRingBuf[sizeof(RTLOG_RINGBUF_EYE_CATCHER)];
size_t const cchBuf = pInt->cbRingBuf - sizeof(RTLOG_RINGBUF_EYE_CATCHER) - sizeof(RTLOG_RINGBUF_EYE_CATCHER_END);
char *pchCur = pInt->pchRingBufCur;
size_t cchLeft = pchCur - pchStart;
if (RT_LIKELY(cchLeft < cchBuf))
cchLeft = cchBuf - cchLeft;
else
{
/* May happen in ring-0 where a thread or two went ahead without getting the lock. */
pchCur = pchStart;
cchLeft = cchBuf;
}
Assert(cchBuf < pInt->cbRingBuf);
if (cchText < cchLeft)
{
/*
* The text fits in the remaining space.
*/
memcpy(pchCur, pachText, cchText);
pchCur[cchText] = '\0';
pInt->pchRingBufCur = &pchCur[cchText];
pInt->cbRingBufUnflushed += cchText;
}
else
{
/*
* The text wraps around. Taking the simple but inefficient approach
* to input texts that are longer than the ring buffer since that
* is unlikely to the be a frequent case.
*/
/* Fill to the end of the buffer. */
memcpy(pchCur, pachText, cchLeft);
pachText += cchLeft;
cchText -= cchLeft;
pInt->cbRingBufUnflushed += cchLeft;
pInt->pchRingBufCur = pchStart;
/* Ring buffer overflows (the plainly inefficient bit). */
while (cchText >= cchBuf)
{
memcpy(pchStart, pachText, cchBuf);
pachText += cchBuf;
cchText -= cchBuf;
pInt->cbRingBufUnflushed += cchBuf;
}
/* The final bit, if any. */
if (cchText > 0)
{
memcpy(pchStart, pachText, cchText);
pInt->cbRingBufUnflushed += cchText;
}
pchStart[cchText] = '\0';
pInt->pchRingBufCur = &pchStart[cchText];
}
}
/**
* Flushes the ring buffer to all the other log destinations.
*
* @param pLoggerInt The logger instance which ring buffer should be flushed.
*/
static void rtLogRingBufFlush(PRTLOGGERINTERNAL pLoggerInt)
{
const char *pszPreamble;
size_t cchPreamble;
const char *pszFirst;
size_t cchFirst;
const char *pszSecond;
size_t cchSecond;
/*
* Get the ring buffer data, adjusting it to only describe the writable
* part of the buffer.
*/
uint64_t cchUnflushed = pLoggerInt->cbRingBufUnflushed;
char * const pszBuf = &pLoggerInt->pszRingBuf[sizeof(RTLOG_RINGBUF_EYE_CATCHER)];
size_t const cchBuf = pLoggerInt->cbRingBuf - sizeof(RTLOG_RINGBUF_EYE_CATCHER) - sizeof(RTLOG_RINGBUF_EYE_CATCHER_END);
size_t offCur = pLoggerInt->pchRingBufCur - pszBuf;
size_t cchAfter;
if (RT_LIKELY(offCur < cchBuf))
cchAfter = cchBuf - offCur;
else /* May happen in ring-0 where a thread or two went ahead without getting the lock. */
{
offCur = 0;
cchAfter = cchBuf;
}
pLoggerInt->cbRingBufUnflushed = 0;
/*
* Figure out whether there are one or two segments that needs writing,
* making the last segment is terminated. (The first is always
* terminated because of the eye-catcher at the end of the buffer.)
*/
if (cchUnflushed == 0)
return;
pszBuf[offCur] = '\0';
if (cchUnflushed >= cchBuf)
{
pszFirst = &pszBuf[offCur + 1];
cchFirst = cchAfter ? cchAfter - 1 : 0;
pszSecond = pszBuf;
cchSecond = offCur;
pszPreamble = "\n*FLUSH RING BUF*\n";
cchPreamble = sizeof("\n*FLUSH RING BUF*\n") - 1;
}
else if ((size_t)cchUnflushed <= offCur)
{
cchFirst = (size_t)cchUnflushed;
pszFirst = &pszBuf[offCur - cchFirst];
pszSecond = "";
cchSecond = 0;
pszPreamble = "";
cchPreamble = 0;
}
else
{
cchFirst = (size_t)cchUnflushed - offCur;
pszFirst = &pszBuf[cchBuf - cchFirst];
pszSecond = pszBuf;
cchSecond = offCur;
pszPreamble = "";
cchPreamble = 0;
}
/*
* Write the ring buffer to all other destiations.
*/
if (pLoggerInt->fDestFlags & RTLOGDEST_USER)
{
if (cchPreamble)
RTLogWriteUser(pszPreamble, cchPreamble);
if (cchFirst)
RTLogWriteUser(pszFirst, cchFirst);
if (cchSecond)
RTLogWriteUser(pszSecond, cchSecond);
}
# if defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)
if (pLoggerInt->fDestFlags & RTLOGDEST_VMM)
{
if (cchPreamble)
RTLogWriteVmm(pszPreamble, cchPreamble, false /*fReleaseLog*/);
if (cchFirst)
RTLogWriteVmm(pszFirst, cchFirst, false /*fReleaseLog*/);
if (cchSecond)
RTLogWriteVmm(pszSecond, cchSecond, false /*fReleaseLog*/);
}
if (pLoggerInt->fDestFlags & RTLOGDEST_VMM_REL)
{
if (cchPreamble)
RTLogWriteVmm(pszPreamble, cchPreamble, true /*fReleaseLog*/);
if (cchFirst)
RTLogWriteVmm(pszFirst, cchFirst, true /*fReleaseLog*/);
if (cchSecond)
RTLogWriteVmm(pszSecond, cchSecond, true /*fReleaseLog*/);
}
# endif
if (pLoggerInt->fDestFlags & RTLOGDEST_DEBUGGER)
{
if (cchPreamble)
RTLogWriteDebugger(pszPreamble, cchPreamble);
if (cchFirst)
RTLogWriteDebugger(pszFirst, cchFirst);
if (cchSecond)
RTLogWriteDebugger(pszSecond, cchSecond);
}
# ifdef IN_RING3
if (pLoggerInt->fDestFlags & RTLOGDEST_FILE)
{
if (pLoggerInt->fLogOpened)
{
if (cchPreamble)
pLoggerInt->pOutputIf->pfnWrite(pLoggerInt->pOutputIf, pLoggerInt->pvOutputIfUser,
pszPreamble, cchPreamble, NULL /*pcbWritten*/);
if (cchFirst)
pLoggerInt->pOutputIf->pfnWrite(pLoggerInt->pOutputIf, pLoggerInt->pvOutputIfUser,
pszFirst, cchFirst, NULL /*pcbWritten*/);
if (cchSecond)
pLoggerInt->pOutputIf->pfnWrite(pLoggerInt->pOutputIf, pLoggerInt->pvOutputIfUser,
pszSecond, cchSecond, NULL /*pcbWritten*/);
if (pLoggerInt->fFlags & RTLOGFLAGS_FLUSH)
pLoggerInt->pOutputIf->pfnFlush(pLoggerInt->pOutputIf, pLoggerInt->pvOutputIfUser);
}
if (pLoggerInt->cHistory)
pLoggerInt->cbHistoryFileWritten += cchFirst + cchSecond;
}
# endif
if (pLoggerInt->fDestFlags & RTLOGDEST_STDOUT)
{
if (cchPreamble)
RTLogWriteStdOut(pszPreamble, cchPreamble);
if (cchFirst)
RTLogWriteStdOut(pszFirst, cchFirst);
if (cchSecond)
RTLogWriteStdOut(pszSecond, cchSecond);
}
if (pLoggerInt->fDestFlags & RTLOGDEST_STDERR)
{
if (cchPreamble)
RTLogWriteStdErr(pszPreamble, cchPreamble);
if (cchFirst)
RTLogWriteStdErr(pszFirst, cchFirst);
if (cchSecond)
RTLogWriteStdErr(pszSecond, cchSecond);
}
# if defined(IN_RING0) && !defined(LOG_NO_COM)
if (pLoggerInt->fDestFlags & RTLOGDEST_COM)
{
if (cchPreamble)
RTLogWriteCom(pszPreamble, cchPreamble);
if (cchFirst)
RTLogWriteCom(pszFirst, cchFirst);
if (cchSecond)
RTLogWriteCom(pszSecond, cchSecond);
}
# endif
}
/*********************************************************************************************************************************
* Create, Destroy, Setup *
*********************************************************************************************************************************/
RTDECL(int) RTLogCreateExV(PRTLOGGER *ppLogger, const char *pszEnvVarBase, uint64_t fFlags, const char *pszGroupSettings,
uint32_t cGroups, const char * const *papszGroups, uint32_t cMaxEntriesPerGroup,
uint32_t cBufDescs, PRTLOGBUFFERDESC paBufDescs, uint32_t fDestFlags,
PFNRTLOGPHASE pfnPhase, uint32_t cHistory, uint64_t cbHistoryFileMax, uint32_t cSecsHistoryTimeSlot,
PCRTLOGOUTPUTIF pOutputIf, void *pvOutputIfUser,
PRTERRINFO pErrInfo, const char *pszFilenameFmt, va_list args)
{
int rc;
size_t cbLogger;
size_t offBuffers;
PRTLOGGERINTERNAL pLoggerInt;
uint32_t i;
/*
* Validate input.
*/
AssertPtrReturn(ppLogger, VERR_INVALID_POINTER);
*ppLogger = NULL;
if (cGroups)
{
AssertPtrReturn(papszGroups, VERR_INVALID_POINTER);
AssertReturn(cGroups < _8K, VERR_OUT_OF_RANGE);
}
AssertMsgReturn(cHistory < _1M, ("%#x", cHistory), VERR_OUT_OF_RANGE);
AssertReturn(cBufDescs <= 128, VERR_OUT_OF_RANGE);
/*
* Calculate the logger size.
*/
AssertCompileSize(RTLOGGER, 32);
cbLogger = RT_UOFFSETOF_DYN(RTLOGGERINTERNAL, afGroups[cGroups]);
if (fFlags & RTLOGFLAGS_RESTRICT_GROUPS)
cbLogger += cGroups * sizeof(uint32_t);
if (cBufDescs == 0)
{
/* Allocate one buffer descriptor and a default sized buffer. */
cbLogger = RT_ALIGN_Z(cbLogger, RTLOG_BUFFER_ALIGN);
offBuffers = cbLogger;
cbLogger += RT_ALIGN_Z(sizeof(paBufDescs[0]), RTLOG_BUFFER_ALIGN) + RTLOG_BUFFER_DEFAULT_SIZE;
}
else
{
/* Caller-supplied buffer descriptors. If pchBuf is NULL, we have to allocate the buffers. */
AssertPtrReturn(paBufDescs, VERR_INVALID_POINTER);
if (paBufDescs[0].pchBuf != NULL)
offBuffers = 0;
else
{
cbLogger = RT_ALIGN_Z(cbLogger, RTLOG_BUFFER_ALIGN);
offBuffers = cbLogger;
}
for (i = 0; i < cBufDescs; i++)
{
AssertReturn(paBufDescs[i].u32Magic == RTLOGBUFFERDESC_MAGIC, VERR_INVALID_MAGIC);
AssertReturn(paBufDescs[i].uReserved == 0, VERR_INVALID_PARAMETER);
AssertMsgReturn(paBufDescs[i].cbBuf >= _1K && paBufDescs[i].cbBuf <= _64M,
("paBufDesc[%u].cbBuf=%#x\n", i, paBufDescs[i].cbBuf), VERR_OUT_OF_RANGE);
AssertReturn(paBufDescs[i].offBuf == 0, VERR_INVALID_PARAMETER);
if (offBuffers != 0)
{
cbLogger += RT_ALIGN_Z(paBufDescs[i].cbBuf, RTLOG_BUFFER_ALIGN);
AssertReturn(paBufDescs[i].pchBuf == NULL, VERR_INVALID_PARAMETER);
AssertReturn(paBufDescs[i].pAux == NULL, VERR_INVALID_PARAMETER);
}
else
{
AssertPtrReturn(paBufDescs[i].pchBuf, VERR_INVALID_POINTER);
AssertPtrNullReturn(paBufDescs[i].pAux, VERR_INVALID_POINTER);
}
}
}
/*
* Allocate a logger instance.
*/
pLoggerInt = (PRTLOGGERINTERNAL)RTMemAllocZVarTag(cbLogger, "may-leak:log-instance");
if (pLoggerInt)
{
# if defined(RT_ARCH_X86) && !defined(LOG_USE_C99)
uint8_t *pu8Code;
# endif
pLoggerInt->Core.u32Magic = RTLOGGER_MAGIC;
pLoggerInt->cGroups = cGroups;
pLoggerInt->fFlags = fFlags;
pLoggerInt->fDestFlags = fDestFlags;
pLoggerInt->uRevision = RTLOGGERINTERNAL_REV;
pLoggerInt->cbSelf = sizeof(RTLOGGERINTERNAL);
pLoggerInt->hSpinMtx = NIL_RTSEMSPINMUTEX;
pLoggerInt->pfnFlush = NULL;
pLoggerInt->pfnPrefix = NULL;
pLoggerInt->pvPrefixUserArg = NULL;
pLoggerInt->fPendingPrefix = true;
pLoggerInt->fCreated = false;
pLoggerInt->nsR0ProgramStart = 0;
RT_ZERO(pLoggerInt->szR0ThreadName);
pLoggerInt->cMaxGroups = cGroups;
pLoggerInt->papszGroups = papszGroups;
if (fFlags & RTLOGFLAGS_RESTRICT_GROUPS)
pLoggerInt->pacEntriesPerGroup = &pLoggerInt->afGroups[cGroups];
else
pLoggerInt->pacEntriesPerGroup = NULL;
pLoggerInt->cMaxEntriesPerGroup = cMaxEntriesPerGroup ? cMaxEntriesPerGroup : UINT32_MAX;
# ifdef IN_RING3
pLoggerInt->pfnPhase = pfnPhase;
pLoggerInt->hFile = NIL_RTFILE;
pLoggerInt->fLogOpened = false;
pLoggerInt->cHistory = cHistory;
if (cbHistoryFileMax == 0)
pLoggerInt->cbHistoryFileMax = UINT64_MAX;
else
pLoggerInt->cbHistoryFileMax = cbHistoryFileMax;
if (cSecsHistoryTimeSlot == 0)
pLoggerInt->cSecsHistoryTimeSlot = UINT32_MAX;
else
pLoggerInt->cSecsHistoryTimeSlot = cSecsHistoryTimeSlot;
if (pOutputIf)
{
pLoggerInt->pOutputIf = pOutputIf;
pLoggerInt->pvOutputIfUser = pvOutputIfUser;
}
else
{
/* Use the default interface for output logging. */
pLoggerInt->pOutputIf = &g_LogOutputIfDef;
pLoggerInt->pvOutputIfUser = pLoggerInt;
}
# else /* !IN_RING3 */
RT_NOREF_PV(pfnPhase); RT_NOREF_PV(cHistory); RT_NOREF_PV(cbHistoryFileMax); RT_NOREF_PV(cSecsHistoryTimeSlot);
RT_NOREF_PV(pOutputIf); RT_NOREF_PV(pvOutputIfUser);
# endif /* !IN_RING3 */
if (pszGroupSettings)
RTLogGroupSettings(&pLoggerInt->Core, pszGroupSettings);
/*
* Buffer descriptors.
*/
if (!offBuffers)
{
/* Caller-supplied descriptors: */
pLoggerInt->cBufDescs = cBufDescs;
pLoggerInt->paBufDescs = paBufDescs;
}
else if (cBufDescs)
{
/* Caller-supplied descriptors, but we allocate the actual buffers: */
pLoggerInt->cBufDescs = cBufDescs;
pLoggerInt->paBufDescs = paBufDescs;
for (i = 0; i < cBufDescs; i++)
{
paBufDescs[i].pchBuf = (char *)pLoggerInt + offBuffers;
offBuffers = RT_ALIGN_Z(offBuffers + paBufDescs[i].cbBuf, RTLOG_BUFFER_ALIGN);
}
Assert(offBuffers == cbLogger);
}
else
{
/* One descriptor with a default sized buffer. */
pLoggerInt->cBufDescs = cBufDescs = 1;
pLoggerInt->paBufDescs = paBufDescs = (PRTLOGBUFFERDESC)((char *)(char *)pLoggerInt + offBuffers);
offBuffers = RT_ALIGN_Z(offBuffers + sizeof(paBufDescs[0]) * cBufDescs, RTLOG_BUFFER_ALIGN);
for (i = 0; i < cBufDescs; i++)
{
paBufDescs[i].u32Magic = RTLOGBUFFERDESC_MAGIC;
paBufDescs[i].uReserved = 0;
paBufDescs[i].cbBuf = RTLOG_BUFFER_DEFAULT_SIZE;
paBufDescs[i].offBuf = 0;
paBufDescs[i].pAux = NULL;
paBufDescs[i].pchBuf = (char *)pLoggerInt + offBuffers;
offBuffers = RT_ALIGN_Z(offBuffers + RTLOG_BUFFER_DEFAULT_SIZE, RTLOG_BUFFER_ALIGN);
}
Assert(offBuffers == cbLogger);
}
pLoggerInt->pBufDesc = paBufDescs;
pLoggerInt->idxBufDesc = 0;
# if defined(RT_ARCH_X86) && !defined(LOG_USE_C99) && 0 /* retired */
/*
* Emit wrapper code.
*/
pu8Code = (uint8_t *)RTMemExecAlloc(64);
if (pu8Code)
{
pLoggerInt->Core.pfnLogger = *(PFNRTLOGGER *)&pu8Code;
*pu8Code++ = 0x68; /* push imm32 */
*(void **)pu8Code = &pLoggerInt->Core;
pu8Code += sizeof(void *);
*pu8Code++ = 0xe8; /* call rel32 */
*(uint32_t *)pu8Code = (uintptr_t)RTLogLogger - ((uintptr_t)pu8Code + sizeof(uint32_t));
pu8Code += sizeof(uint32_t);
*pu8Code++ = 0x8d; /* lea esp, [esp + 4] */
*pu8Code++ = 0x64;
*pu8Code++ = 0x24;
*pu8Code++ = 0x04;
*pu8Code++ = 0xc3; /* ret near */
AssertMsg((uintptr_t)pu8Code - (uintptr_t)pLoggerInt->Core.pfnLogger <= 64,
("Wrapper assembly is too big! %d bytes\n", (uintptr_t)pu8Code - (uintptr_t)pLoggerInt->Core.pfnLogger));
rc = VINF_SUCCESS;
}
else
{
rc = VERR_NO_MEMORY;
# ifdef RT_OS_LINUX
/* Most probably SELinux causing trouble since the larger RTMemAlloc succeeded. */
RTErrInfoSet(pErrInfo, rc, N_("mmap(PROT_WRITE | PROT_EXEC) failed -- SELinux?"));
# endif
}
if (RT_SUCCESS(rc))
# endif /* X86 wrapper code */
{
# ifdef IN_RING3 /* files and env.vars. are only accessible when in R3 at the present time. */
/*
* Format the filename.
*/
if (pszFilenameFmt)
{
/** @todo validate the length, fail on overflow. */
RTStrPrintfV(pLoggerInt->szFilename, sizeof(pLoggerInt->szFilename), pszFilenameFmt, args);
if (pLoggerInt->szFilename[0])
pLoggerInt->fDestFlags |= RTLOGDEST_FILE;
}
/*
* Parse the environment variables.
*/
if (pszEnvVarBase)
{
/* make temp copy of environment variable base. */
size_t cchEnvVarBase = strlen(pszEnvVarBase);
char *pszEnvVar = (char *)alloca(cchEnvVarBase + 16);
memcpy(pszEnvVar, pszEnvVarBase, cchEnvVarBase);
/*
* Destination.
*/
strcpy(pszEnvVar + cchEnvVarBase, "_DEST");
const char *pszValue = RTEnvGet(pszEnvVar);
if (pszValue)
RTLogDestinations(&pLoggerInt->Core, pszValue);
/*
* The flags.
*/
strcpy(pszEnvVar + cchEnvVarBase, "_FLAGS");
pszValue = RTEnvGet(pszEnvVar);
if (pszValue)
RTLogFlags(&pLoggerInt->Core, pszValue);
/*
* The group settings.
*/
pszEnvVar[cchEnvVarBase] = '\0';
pszValue = RTEnvGet(pszEnvVar);
if (pszValue)
RTLogGroupSettings(&pLoggerInt->Core, pszValue);
/*
* Group limit.
*/
strcpy(pszEnvVar + cchEnvVarBase, "_MAX_PER_GROUP");
pszValue = RTEnvGet(pszEnvVar);
if (pszValue)
{
uint32_t cMax;
rc = RTStrToUInt32Full(pszValue, 0, &cMax);
if (RT_SUCCESS(rc))
pLoggerInt->cMaxEntriesPerGroup = cMax ? cMax : UINT32_MAX;
else
AssertMsgFailed(("Invalid group limit! %s=%s\n", pszEnvVar, pszValue));
}
}
# else /* !IN_RING3 */
RT_NOREF_PV(pszEnvVarBase); RT_NOREF_PV(pszFilenameFmt); RT_NOREF_PV(args);
# endif /* !IN_RING3 */
/*
* Open the destination(s).
*/
rc = VINF_SUCCESS;
if ((pLoggerInt->fDestFlags & (RTLOGDEST_F_DELAY_FILE | RTLOGDEST_FILE)) == RTLOGDEST_F_DELAY_FILE)
pLoggerInt->fDestFlags &= ~RTLOGDEST_F_DELAY_FILE;
# ifdef IN_RING3
if ((pLoggerInt->fDestFlags & (RTLOGDEST_FILE | RTLOGDEST_F_DELAY_FILE)) == RTLOGDEST_FILE)
rc = rtR3LogOpenFileDestination(pLoggerInt, pErrInfo);
# endif
if ((pLoggerInt->fDestFlags & RTLOGDEST_RINGBUF) && RT_SUCCESS(rc))
rc = rtLogRingBufAdjust(pLoggerInt, pLoggerInt->cbRingBuf, true /*fForce*/);
/*
* Create mutex and check how much it counts when entering the lock
* so that we can report the values for RTLOGFLAGS_PREFIX_LOCK_COUNTS.
*/
if (RT_SUCCESS(rc))
{
if (!(fFlags & RTLOG_F_NO_LOCKING))
rc = RTSemSpinMutexCreate(&pLoggerInt->hSpinMtx, RTSEMSPINMUTEX_FLAGS_IRQ_SAFE);
if (RT_SUCCESS(rc))
{
# ifdef IN_RING3 /** @todo do counters in ring-0 too? */
RTTHREAD Thread = RTThreadSelf();
if (Thread != NIL_RTTHREAD)
{
int32_t c = RTLockValidatorWriteLockGetCount(Thread);
RTSemSpinMutexRequest(pLoggerInt->hSpinMtx);
c = RTLockValidatorWriteLockGetCount(Thread) - c;
RTSemSpinMutexRelease(pLoggerInt->hSpinMtx);
ASMAtomicWriteU32(&g_cLoggerLockCount, c);
}
/* Use the callback to generate some initial log contents. */
AssertPtrNull(pLoggerInt->pfnPhase);
if (pLoggerInt->pfnPhase)
pLoggerInt->pfnPhase(&pLoggerInt->Core, RTLOGPHASE_BEGIN, rtlogPhaseMsgNormal);
# endif
pLoggerInt->fCreated = true;
*ppLogger = &pLoggerInt->Core;
# if defined(IN_RING3) && (defined(IN_RT_STATIC) || defined(IPRT_NO_CRT))
/* Make sure the weak symbol emulation bits are ready before returning. */
if (!g_pfnRTLogLoggerExV)
g_pfnRTLogLoggerExV = RTLogLoggerExV;
# endif
return VINF_SUCCESS;
}
RTErrInfoSet(pErrInfo, rc, N_("failed to create semaphore"));
}
# ifdef IN_RING3
pLoggerInt->pOutputIf->pfnClose(pLoggerInt->pOutputIf, pLoggerInt->pvOutputIfUser);
# endif
# if defined(RT_ARCH_X86) && !defined(LOG_USE_C99) && 0 /* retired */
if (pLoggerInt->Core.pfnLogger)
{
RTMemExecFree(*(void **)&pLoggerInt->Core.pfnLogger, 64);
pLoggerInt->Core.pfnLogger = NULL;
}
# endif
}
RTMemFree(pLoggerInt);
}
else
rc = VERR_NO_MEMORY;
return rc;
}
RT_EXPORT_SYMBOL(RTLogCreateExV);
RTDECL(int) RTLogCreate(PRTLOGGER *ppLogger, uint64_t fFlags, const char *pszGroupSettings,
const char *pszEnvVarBase, unsigned cGroups, const char * const * papszGroups,
uint32_t fDestFlags, const char *pszFilenameFmt, ...)
{
va_list va;
int rc;
va_start(va, pszFilenameFmt);
rc = RTLogCreateExV(ppLogger, pszEnvVarBase, fFlags, pszGroupSettings, cGroups, papszGroups,
UINT32_MAX /*cMaxEntriesPerGroup*/,
0 /*cBufDescs*/, NULL /*paBufDescs*/, fDestFlags,
NULL /*pfnPhase*/, 0 /*cHistory*/, 0 /*cbHistoryFileMax*/, 0 /*cSecsHistoryTimeSlot*/,
NULL /*pOutputIf*/, NULL /*pvOutputIfUser*/,
NULL /*pErrInfo*/, pszFilenameFmt, va);
va_end(va);
return rc;
}
RT_EXPORT_SYMBOL(RTLogCreate);
RTDECL(int) RTLogDestroy(PRTLOGGER pLogger)
{
int rc;
uint32_t iGroup;
RTSEMSPINMUTEX hSpinMtx;
PRTLOGGERINTERNAL pLoggerInt = (PRTLOGGERINTERNAL)pLogger;
/*
* Validate input.
*/
if (!pLoggerInt)
return VINF_SUCCESS;
AssertPtrReturn(pLoggerInt, VERR_INVALID_POINTER);
AssertReturn(pLoggerInt->Core.u32Magic == RTLOGGER_MAGIC, VERR_INVALID_MAGIC);
/*
* Acquire logger instance sem and disable all logging. (paranoia)
*/
rc = rtlogLock(pLoggerInt);
AssertMsgRCReturn(rc, ("%Rrc\n", rc), rc);
pLoggerInt->fFlags |= RTLOGFLAGS_DISABLED;
iGroup = pLoggerInt->cGroups;
while (iGroup-- > 0)
pLoggerInt->afGroups[iGroup] = 0;
/*
* Flush it.
*/
rtlogFlush(pLoggerInt, false /*fNeedSpace*/);
# ifdef IN_RING3
/*
* Add end of logging message.
*/
if ( (pLoggerInt->fDestFlags & RTLOGDEST_FILE)
&& pLoggerInt->fLogOpened)
pLoggerInt->pfnPhase(&pLoggerInt->Core, RTLOGPHASE_END, rtlogPhaseMsgLocked);
/*
* Close output stuffs.
*/
if (pLoggerInt->fLogOpened)
{
int rc2 = pLoggerInt->pOutputIf->pfnClose(pLoggerInt->pOutputIf, pLoggerInt->pvOutputIfUser);
if (RT_FAILURE(rc2) && RT_SUCCESS(rc))
rc = rc2;
pLoggerInt->fLogOpened = false;
}
# endif
/*
* Free the mutex, the wrapper and the instance memory.
*/
hSpinMtx = pLoggerInt->hSpinMtx;
pLoggerInt->hSpinMtx = NIL_RTSEMSPINMUTEX;
if (hSpinMtx != NIL_RTSEMSPINMUTEX)
{
int rc2;
RTSemSpinMutexRelease(hSpinMtx);
rc2 = RTSemSpinMutexDestroy(hSpinMtx);
AssertRC(rc2);
if (RT_FAILURE(rc2) && RT_SUCCESS(rc))
rc = rc2;
}
# if defined(RT_ARCH_X86) && !defined(LOG_USE_C99) && 0 /* retired */
if (pLoggerInt->Core.pfnLogger)
{
RTMemExecFree(*(void **)&pLoggerInt->Core.pfnLogger, 64);
pLoggerInt->Core.pfnLogger = NULL;
}
# endif
RTMemFree(pLoggerInt);
return rc;
}
RT_EXPORT_SYMBOL(RTLogDestroy);
RTDECL(int) RTLogSetCustomPrefixCallback(PRTLOGGER pLogger, PFNRTLOGPREFIX pfnCallback, void *pvUser)
{
int rc;
PRTLOGGERINTERNAL pLoggerInt = (PRTLOGGERINTERNAL)pLogger;
RTLOG_RESOLVE_DEFAULT_RET(pLoggerInt, VINF_LOG_NO_LOGGER);
/*
* Do the work.
*/
rc = rtlogLock(pLoggerInt);
if (RT_SUCCESS(rc))
{
pLoggerInt->pvPrefixUserArg = pvUser;
pLoggerInt->pfnPrefix = pfnCallback;
rtlogUnlock(pLoggerInt);
}
return rc;
}
RT_EXPORT_SYMBOL(RTLogSetCustomPrefixCallback);
RTDECL(int) RTLogSetFlushCallback(PRTLOGGER pLogger, PFNRTLOGFLUSH pfnFlush)
{
int rc;
PRTLOGGERINTERNAL pLoggerInt = (PRTLOGGERINTERNAL)pLogger;
RTLOG_RESOLVE_DEFAULT_RET(pLoggerInt, VINF_LOG_NO_LOGGER);
/*
* Do the work.
*/
rc = rtlogLock(pLoggerInt);
if (RT_SUCCESS(rc))
{
if (pLoggerInt->pfnFlush && pLoggerInt->pfnFlush != pfnFlush)
rc = VWRN_ALREADY_EXISTS;
pLoggerInt->pfnFlush = pfnFlush;
rtlogUnlock(pLoggerInt);
}
return rc;
}
RT_EXPORT_SYMBOL(RTLogSetFlushCallback);
/**
* Matches a group name with a pattern mask in an case insensitive manner (ASCII).
*
* @returns true if matching and *ppachMask set to the end of the pattern.
* @returns false if no match.
* @param pszGrp The group name.
* @param ppachMask Pointer to the pointer to the mask. Only wildcard supported is '*'.
* @param cchMask The length of the mask, including modifiers. The modifiers is why
* we update *ppachMask on match.
*/
static bool rtlogIsGroupMatching(const char *pszGrp, const char **ppachMask, size_t cchMask)
{
const char *pachMask;
if (!pszGrp || !*pszGrp)
return false;
pachMask = *ppachMask;
for (;;)
{
if (RT_C_TO_LOWER(*pszGrp) != RT_C_TO_LOWER(*pachMask))
{
const char *pszTmp;
/*
* Check for wildcard and do a minimal match if found.
*/
if (*pachMask != '*')
return false;
/* eat '*'s. */
do pachMask++;
while (--cchMask && *pachMask == '*');
/* is there more to match? */
if ( !cchMask
|| *pachMask == '.'
|| *pachMask == '=')
break; /* we're good */
/* do extremely minimal matching (fixme) */
pszTmp = strchr(pszGrp, RT_C_TO_LOWER(*pachMask));
if (!pszTmp)
pszTmp = strchr(pszGrp, RT_C_TO_UPPER(*pachMask));
if (!pszTmp)
return false;
pszGrp = pszTmp;
continue;
}
/* done? */
if (!*++pszGrp)
{
/* trailing wildcard is ok. */
do
{
pachMask++;
cchMask--;
} while (cchMask && *pachMask == '*');
if ( !cchMask
|| *pachMask == '.'
|| *pachMask == '=')
break; /* we're good */
return false;
}
if (!--cchMask)
return false;
pachMask++;
}
/* match */
*ppachMask = pachMask;
return true;
}
RTDECL(int) RTLogGroupSettings(PRTLOGGER pLogger, const char *pszValue)
{
PRTLOGGERINTERNAL pLoggerInt = (PRTLOGGERINTERNAL)pLogger;
RTLOG_RESOLVE_DEFAULT_RET(pLoggerInt, VINF_LOG_NO_LOGGER);
Assert(pLoggerInt->Core.u32Magic == RTLOGGER_MAGIC);
/*
* Iterate the string.
*/
while (*pszValue)
{
/*
* Skip prefixes (blanks, ;, + and -).
*/
bool fEnabled = true;
char ch;
const char *pszStart;
unsigned i;
size_t cch;
while ((ch = *pszValue) == '+' || ch == '-' || ch == ' ' || ch == '\t' || ch == '\n' || ch == ';')
{
if (ch == '+' || ch == '-' || ch == ';')
fEnabled = ch != '-';
pszValue++;
}
if (!*pszValue)
break;
/*
* Find end.
*/
pszStart = pszValue;
while ((ch = *pszValue) != '\0' && ch != '+' && ch != '-' && ch != ' ' && ch != '\t')
pszValue++;
/*
* Find the group (ascii case insensitive search).
* Special group 'all'.
*/
cch = pszValue - pszStart;
if ( cch >= 3
&& (pszStart[0] == 'a' || pszStart[0] == 'A')
&& (pszStart[1] == 'l' || pszStart[1] == 'L')
&& (pszStart[2] == 'l' || pszStart[2] == 'L')
&& (cch == 3 || pszStart[3] == '.' || pszStart[3] == '='))
{
/*
* All.
*/
unsigned fFlags = cch == 3
? RTLOGGRPFLAGS_ENABLED | RTLOGGRPFLAGS_LEVEL_1
: rtlogGroupFlags(&pszStart[3]);
for (i = 0; i < pLoggerInt->cGroups; i++)
{
if (fEnabled)
pLoggerInt->afGroups[i] |= fFlags;
else
pLoggerInt->afGroups[i] &= ~fFlags;
}
}
else
{
/*
* Specific group(s).
*/
for (i = 0; i < pLoggerInt->cGroups; i++)
{
const char *psz2 = (const char*)pszStart;
if (rtlogIsGroupMatching(pLoggerInt->papszGroups[i], &psz2, cch))
{
unsigned fFlags = RTLOGGRPFLAGS_ENABLED | RTLOGGRPFLAGS_LEVEL_1;
if (*psz2 == '.' || *psz2 == '=')
fFlags = rtlogGroupFlags(psz2);
if (fEnabled)
pLoggerInt->afGroups[i] |= fFlags;
else
pLoggerInt->afGroups[i] &= ~fFlags;
}
} /* for each group */
}
} /* parse specification */
return VINF_SUCCESS;
}
RT_EXPORT_SYMBOL(RTLogGroupSettings);
/**
* Interprets the group flags suffix.
*
* @returns Flags specified. (0 is possible!)
* @param psz Start of Suffix. (Either dot or equal sign.)
*/
static unsigned rtlogGroupFlags(const char *psz)
{
unsigned fFlags = 0;
/*
* Literal flags.
*/
while (*psz == '.')
{
static struct
{
const char *pszFlag; /* lowercase!! */
unsigned fFlag;
} aFlags[] =
{
{ "eo", RTLOGGRPFLAGS_ENABLED },
{ "enabledonly",RTLOGGRPFLAGS_ENABLED },
{ "e", RTLOGGRPFLAGS_ENABLED | RTLOGGRPFLAGS_LEVEL_1 | RTLOGGRPFLAGS_WARN },
{ "enabled", RTLOGGRPFLAGS_ENABLED | RTLOGGRPFLAGS_LEVEL_1 | RTLOGGRPFLAGS_WARN },
{ "l1", RTLOGGRPFLAGS_LEVEL_1 },
{ "level1", RTLOGGRPFLAGS_LEVEL_1 },
{ "l", RTLOGGRPFLAGS_LEVEL_2 },
{ "l2", RTLOGGRPFLAGS_LEVEL_2 },
{ "level2", RTLOGGRPFLAGS_LEVEL_2 },
{ "l3", RTLOGGRPFLAGS_LEVEL_3 },
{ "level3", RTLOGGRPFLAGS_LEVEL_3 },
{ "l4", RTLOGGRPFLAGS_LEVEL_4 },
{ "level4", RTLOGGRPFLAGS_LEVEL_4 },
{ "l5", RTLOGGRPFLAGS_LEVEL_5 },
{ "level5", RTLOGGRPFLAGS_LEVEL_5 },
{ "l6", RTLOGGRPFLAGS_LEVEL_6 },
{ "level6", RTLOGGRPFLAGS_LEVEL_6 },
{ "l7", RTLOGGRPFLAGS_LEVEL_7 },
{ "level7", RTLOGGRPFLAGS_LEVEL_7 },
{ "l8", RTLOGGRPFLAGS_LEVEL_8 },
{ "level8", RTLOGGRPFLAGS_LEVEL_8 },
{ "l9", RTLOGGRPFLAGS_LEVEL_9 },
{ "level9", RTLOGGRPFLAGS_LEVEL_9 },
{ "l10", RTLOGGRPFLAGS_LEVEL_10 },
{ "level10", RTLOGGRPFLAGS_LEVEL_10 },
{ "l11", RTLOGGRPFLAGS_LEVEL_11 },
{ "level11", RTLOGGRPFLAGS_LEVEL_11 },
{ "l12", RTLOGGRPFLAGS_LEVEL_12 },
{ "level12", RTLOGGRPFLAGS_LEVEL_12 },
{ "f", RTLOGGRPFLAGS_FLOW },
{ "flow", RTLOGGRPFLAGS_FLOW },
{ "w", RTLOGGRPFLAGS_WARN },
{ "warn", RTLOGGRPFLAGS_WARN },
{ "warning", RTLOGGRPFLAGS_WARN },
{ "restrict", RTLOGGRPFLAGS_RESTRICT },
};
unsigned i;
bool fFound = false;
psz++;
for (i = 0; i < RT_ELEMENTS(aFlags) && !fFound; i++)
{
const char *psz1 = aFlags[i].pszFlag;
const char *psz2 = psz;
while (*psz1 == RT_C_TO_LOWER(*psz2))
{
psz1++;
psz2++;
if (!*psz1)
{
if ( (*psz2 >= 'a' && *psz2 <= 'z')
|| (*psz2 >= 'A' && *psz2 <= 'Z')
|| (*psz2 >= '0' && *psz2 <= '9') )
break;
fFlags |= aFlags[i].fFlag;
fFound = true;
psz = psz2;
break;
}
} /* strincmp */
} /* for each flags */
AssertMsg(fFound, ("%.15s...", psz));
}
/*
* Flag value.
*/
if (*psz == '=')
{
psz++;
if (*psz == '~')
fFlags = ~RTStrToInt32(psz + 1);
else
fFlags = RTStrToInt32(psz);
}
return fFlags;
}
/**
* Helper for RTLogGetGroupSettings.
*/
static int rtLogGetGroupSettingsAddOne(const char *pszName, uint32_t fGroup, char **ppszBuf, size_t *pcchBuf, bool *pfNotFirst)
{
#define APPEND_PSZ(psz,cch) do { memcpy(*ppszBuf, (psz), (cch)); *ppszBuf += (cch); *pcchBuf -= (cch); } while (0)
#define APPEND_SZ(sz) APPEND_PSZ(sz, sizeof(sz) - 1)
#define APPEND_CH(ch) do { **ppszBuf = (ch); *ppszBuf += 1; *pcchBuf -= 1; } while (0)
/*
* Add the name.
*/
size_t cchName = strlen(pszName);
if (cchName + 1 + *pfNotFirst > *pcchBuf)
return VERR_BUFFER_OVERFLOW;
if (*pfNotFirst)
APPEND_CH(' ');
else
*pfNotFirst = true;
APPEND_PSZ(pszName, cchName);
/*
* Only generate mnemonics for the simple+common bits.
*/
if (fGroup == (RTLOGGRPFLAGS_ENABLED | RTLOGGRPFLAGS_LEVEL_1))
/* nothing */;
else if ( fGroup == (RTLOGGRPFLAGS_ENABLED | RTLOGGRPFLAGS_LEVEL_1 | RTLOGGRPFLAGS_LEVEL_2 | RTLOGGRPFLAGS_FLOW)
&& *pcchBuf >= sizeof(".e.l.f"))
APPEND_SZ(".e.l.f");
else if ( fGroup == (RTLOGGRPFLAGS_ENABLED | RTLOGGRPFLAGS_LEVEL_1 | RTLOGGRPFLAGS_FLOW)
&& *pcchBuf >= sizeof(".e.f"))
APPEND_SZ(".e.f");
else if (*pcchBuf >= 1 + 10 + 1)
{
size_t cch;
APPEND_CH('=');
cch = RTStrFormatNumber(*ppszBuf, fGroup, 16, 0, 0, RTSTR_F_SPECIAL | RTSTR_F_32BIT);
*ppszBuf += cch;
*pcchBuf -= cch;
}
else
return VERR_BUFFER_OVERFLOW;
#undef APPEND_PSZ
#undef APPEND_SZ
#undef APPEND_CH
return VINF_SUCCESS;
}
RTDECL(int) RTLogQueryGroupSettings(PRTLOGGER pLogger, char *pszBuf, size_t cchBuf)
{
bool fNotFirst = false;
int rc = VINF_SUCCESS;
uint32_t cGroups;
uint32_t fGroup;
uint32_t i;
PRTLOGGERINTERNAL pLoggerInt = (PRTLOGGERINTERNAL)pLogger;
RTLOG_RESOLVE_DEFAULT_RET(pLoggerInt, VINF_LOG_NO_LOGGER);
Assert(pLoggerInt->Core.u32Magic == RTLOGGER_MAGIC);
Assert(cchBuf);
/*
* Check if all are the same.
*/
cGroups = pLoggerInt->cGroups;
fGroup = pLoggerInt->afGroups[0];
for (i = 1; i < cGroups; i++)
if (pLoggerInt->afGroups[i] != fGroup)
break;
if (i >= cGroups)
rc = rtLogGetGroupSettingsAddOne("all", fGroup, &pszBuf, &cchBuf, &fNotFirst);
else
{
/*
* Iterate all the groups and print all that are enabled.
*/
for (i = 0; i < cGroups; i++)
{
fGroup = pLoggerInt->afGroups[i];
if (fGroup)
{
const char *pszName = pLoggerInt->papszGroups[i];
if (pszName)
{
rc = rtLogGetGroupSettingsAddOne(pszName, fGroup, &pszBuf, &cchBuf, &fNotFirst);
if (rc)
break;
}
}
}
}
*pszBuf = '\0';
return rc;
}
RT_EXPORT_SYMBOL(RTLogQueryGroupSettings);
RTDECL(int) RTLogFlags(PRTLOGGER pLogger, const char *pszValue)
{
int rc = VINF_SUCCESS;
PRTLOGGERINTERNAL pLoggerInt = (PRTLOGGERINTERNAL)pLogger;
RTLOG_RESOLVE_DEFAULT_RET(pLoggerInt, VINF_LOG_NO_LOGGER);
Assert(pLoggerInt->Core.u32Magic == RTLOGGER_MAGIC);
/*
* Iterate the string.
*/
while (*pszValue)
{
/* check no prefix. */
bool fNo = false;
char ch;
unsigned i;
/* skip blanks. */
while (RT_C_IS_SPACE(*pszValue))
pszValue++;
if (!*pszValue)
return rc;
while ((ch = *pszValue) != '\0')
{
if (ch == 'n' && pszValue[1] == 'o')
{
pszValue += 2;
fNo = !fNo;
}
else if (ch == '+')
{
pszValue++;
fNo = true;
}
else if (ch == '-' || ch == '!' || ch == '~')
{
pszValue++;
fNo = !fNo;
}
else
break;
}
/* instruction. */
for (i = 0; i < RT_ELEMENTS(g_aLogFlags); i++)
{
if (!strncmp(pszValue, g_aLogFlags[i].pszInstr, g_aLogFlags[i].cchInstr))
{
if (!(g_aLogFlags[i].fFixedDest & pLoggerInt->fDestFlags))
{
if (fNo == g_aLogFlags[i].fInverted)
pLoggerInt->fFlags |= g_aLogFlags[i].fFlag;
else
pLoggerInt->fFlags &= ~g_aLogFlags[i].fFlag;
}
pszValue += g_aLogFlags[i].cchInstr;
break;
}
}
/* unknown instruction? */
if (i >= RT_ELEMENTS(g_aLogFlags))
{
AssertMsgFailed(("Invalid flags! unknown instruction %.20s\n", pszValue));
pszValue++;
}
/* skip blanks and delimiters. */
while (RT_C_IS_SPACE(*pszValue) || *pszValue == ';')
pszValue++;
} /* while more environment variable value left */
return rc;
}
RT_EXPORT_SYMBOL(RTLogFlags);
RTDECL(bool) RTLogSetBuffering(PRTLOGGER pLogger, bool fBuffered)
{
int rc;
bool fOld = false;
PRTLOGGERINTERNAL pLoggerInt = (PRTLOGGERINTERNAL)pLogger;
RTLOG_RESOLVE_DEFAULT_RET(pLoggerInt, false);
rc = rtlogLock(pLoggerInt);
if (RT_SUCCESS(rc))
{
fOld = !!(pLoggerInt->fFlags & RTLOGFLAGS_BUFFERED);
if (fBuffered)
pLoggerInt->fFlags |= RTLOGFLAGS_BUFFERED;
else
pLoggerInt->fFlags &= ~RTLOGFLAGS_BUFFERED;
rtlogUnlock(pLoggerInt);
}
return fOld;
}
RT_EXPORT_SYMBOL(RTLogSetBuffering);
RTDECL(uint32_t) RTLogSetGroupLimit(PRTLOGGER pLogger, uint32_t cMaxEntriesPerGroup)
{
int rc;
uint32_t cOld = UINT32_MAX;
PRTLOGGERINTERNAL pLoggerInt = (PRTLOGGERINTERNAL)pLogger;
RTLOG_RESOLVE_DEFAULT_RET(pLoggerInt, UINT32_MAX);
rc = rtlogLock(pLoggerInt);
if (RT_SUCCESS(rc))
{
cOld = pLoggerInt->cMaxEntriesPerGroup;
pLoggerInt->cMaxEntriesPerGroup = cMaxEntriesPerGroup;
rtlogUnlock(pLoggerInt);
}
return cOld;
}
RT_EXPORT_SYMBOL(RTLogSetGroupLimit);
#ifdef IN_RING0
RTR0DECL(int) RTLogSetR0ThreadNameV(PRTLOGGER pLogger, const char *pszNameFmt, va_list va)
{
PRTLOGGERINTERNAL pLoggerInt = (PRTLOGGERINTERNAL)pLogger;
int rc;
if (pLoggerInt)
{
rc = rtlogLock(pLoggerInt);
if (RT_SUCCESS(rc))
{
ssize_t cch = RTStrPrintf2V(pLoggerInt->szR0ThreadName, sizeof(pLoggerInt->szR0ThreadName), pszNameFmt, va);
rtlogUnlock(pLoggerInt);
rc = cch > 0 ? VINF_SUCCESS : VERR_BUFFER_OVERFLOW;
}
}
else
rc = VERR_INVALID_PARAMETER;
return rc;
}
RT_EXPORT_SYMBOL(RTLogSetR0ThreadNameV);
RTR0DECL(int) RTLogSetR0ProgramStart(PRTLOGGER pLogger, uint64_t nsStart)
{
PRTLOGGERINTERNAL pLoggerInt = (PRTLOGGERINTERNAL)pLogger;
int rc;
if (pLoggerInt)
{
rc = rtlogLock(pLoggerInt);
if (RT_SUCCESS(rc))
{
pLoggerInt->nsR0ProgramStart = nsStart;
rtlogUnlock(pLoggerInt);
}
}
else
rc = VERR_INVALID_PARAMETER;
return rc;
}
RT_EXPORT_SYMBOL(RTLogSetR0ProgramStart);
#endif /* IN_RING0 */
RTDECL(uint64_t) RTLogGetFlags(PRTLOGGER pLogger)
{
PRTLOGGERINTERNAL pLoggerInt = (PRTLOGGERINTERNAL)pLogger;
RTLOG_RESOLVE_DEFAULT_RET(pLoggerInt, UINT64_MAX);
Assert(pLoggerInt->Core.u32Magic == RTLOGGER_MAGIC);
return pLoggerInt->fFlags;
}
RT_EXPORT_SYMBOL(RTLogGetFlags);
RTDECL(int) RTLogChangeFlags(PRTLOGGER pLogger, uint64_t fSet, uint64_t fClear)
{
int rc;
PRTLOGGERINTERNAL pLoggerInt = (PRTLOGGERINTERNAL)pLogger;
AssertReturn(!(fSet & ~RTLOG_F_VALID_MASK), VERR_INVALID_FLAGS);
RTLOG_RESOLVE_DEFAULT_RET(pLoggerInt, VINF_LOG_NO_LOGGER);
/*
* Make the changes.
*/
rc = rtlogLock(pLoggerInt);
if (RT_SUCCESS(rc))
{
pLoggerInt->fFlags &= ~fClear;
pLoggerInt->fFlags |= fSet;
rtlogUnlock(pLoggerInt);
}
return rc;
}
RT_EXPORT_SYMBOL(RTLogChangeFlags);
RTDECL(int) RTLogQueryFlags(PRTLOGGER pLogger, char *pszBuf, size_t cchBuf)
{
bool fNotFirst = false;
int rc = VINF_SUCCESS;
uint32_t fFlags;
unsigned i;
PRTLOGGERINTERNAL pLoggerInt = (PRTLOGGERINTERNAL)pLogger;
Assert(cchBuf);
*pszBuf = '\0';
RTLOG_RESOLVE_DEFAULT_RET(pLoggerInt, VINF_LOG_NO_LOGGER);
Assert(pLoggerInt->Core.u32Magic == RTLOGGER_MAGIC);
/*
* Add the flags in the list.
*/
fFlags = pLoggerInt->fFlags;
for (i = 0; i < RT_ELEMENTS(g_aLogFlags); i++)
if ( !g_aLogFlags[i].fInverted
? (g_aLogFlags[i].fFlag & fFlags)
: !(g_aLogFlags[i].fFlag & fFlags))
{
size_t cchInstr = g_aLogFlags[i].cchInstr;
if (cchInstr + fNotFirst + 1 > cchBuf)
{
rc = VERR_BUFFER_OVERFLOW;
break;
}
if (fNotFirst)
{
*pszBuf++ = ' ';
cchBuf--;
}
memcpy(pszBuf, g_aLogFlags[i].pszInstr, cchInstr);
pszBuf += cchInstr;
cchBuf -= cchInstr;
fNotFirst = true;
}
*pszBuf = '\0';
return rc;
}
RT_EXPORT_SYMBOL(RTLogQueryFlags);
/**
* Finds the end of a destination value.
*
* The value ends when we counter a ';' or a free standing word (space on both
* from the g_aLogDst table. (If this is problematic for someone, we could
* always do quoting and escaping.)
*
* @returns Value length in chars.
* @param pszValue The first char after '=' or ':'.
*/
static size_t rtLogDestFindValueLength(const char *pszValue)
{
size_t off = 0;
char ch;
while ((ch = pszValue[off]) != '\0' && ch != ';')
{
if (!RT_C_IS_SPACE(ch))
off++;
else
{
unsigned i;
size_t cchThusFar = off;
do
off++;
while ((ch = pszValue[off]) != '\0' && RT_C_IS_SPACE(ch));
if (ch == ';')
return cchThusFar;
if (ch == 'n' && pszValue[off + 1] == 'o')
off += 2;
for (i = 0; i < RT_ELEMENTS(g_aLogDst); i++)
if (!strncmp(&pszValue[off], g_aLogDst[i].pszInstr, g_aLogDst[i].cchInstr))
{
ch = pszValue[off + g_aLogDst[i].cchInstr];
if (ch == '\0' || RT_C_IS_SPACE(ch) || ch == '=' || ch == ':' || ch == ';')
return cchThusFar;
}
}
}
return off;
}
RTDECL(int) RTLogDestinations(PRTLOGGER pLogger, char const *pszValue)
{
PRTLOGGERINTERNAL pLoggerInt = (PRTLOGGERINTERNAL)pLogger;
RTLOG_RESOLVE_DEFAULT_RET(pLoggerInt, VINF_LOG_NO_LOGGER);
Assert(pLoggerInt->Core.u32Magic == RTLOGGER_MAGIC);
/** @todo locking? */
/*
* Do the parsing.
*/
while (*pszValue)
{
bool fNo;
unsigned i;
/* skip blanks. */
while (RT_C_IS_SPACE(*pszValue))
pszValue++;
if (!*pszValue)
break;
/* check no prefix. */
fNo = false;
if ( pszValue[0] == 'n'
&& pszValue[1] == 'o'
&& ( pszValue[2] != 'd'
|| pszValue[3] != 'e'
|| pszValue[4] != 'n'
|| pszValue[5] != 'y'))
{
fNo = true;
pszValue += 2;
}
/* instruction. */
for (i = 0; i < RT_ELEMENTS(g_aLogDst); i++)
{
if (!strncmp(pszValue, g_aLogDst[i].pszInstr, g_aLogDst[i].cchInstr))
{
if (!fNo)
pLoggerInt->fDestFlags |= g_aLogDst[i].fFlag;
else
pLoggerInt->fDestFlags &= ~g_aLogDst[i].fFlag;
pszValue += g_aLogDst[i].cchInstr;
/* check for value. */
while (RT_C_IS_SPACE(*pszValue))
pszValue++;
if (*pszValue == '=' || *pszValue == ':')
{
pszValue++;
size_t cch = rtLogDestFindValueLength(pszValue);
const char *pszEnd = pszValue + cch;
# ifdef IN_RING3
char szTmp[sizeof(pLoggerInt->szFilename)];
# else
char szTmp[32];
# endif
if (0)
{ /* nothing */ }
# ifdef IN_RING3
/* log file name */
else if (i == 0 /* file */ && !fNo)
{
if (!(pLoggerInt->fDestFlags & RTLOGDEST_FIXED_FILE))
{
AssertReturn(cch < sizeof(pLoggerInt->szFilename), VERR_OUT_OF_RANGE);
memcpy(pLoggerInt->szFilename, pszValue, cch);
pLoggerInt->szFilename[cch] = '\0';
/** @todo reopen log file if pLoggerInt->fCreated is true ... */
}
}
/* log directory */
else if (i == 1 /* dir */ && !fNo)
{
if (!(pLoggerInt->fDestFlags & RTLOGDEST_FIXED_DIR))
{
const char *pszFile = RTPathFilename(pLoggerInt->szFilename);
size_t cchFile = pszFile ? strlen(pszFile) : 0;
AssertReturn(cchFile + cch + 1 < sizeof(pLoggerInt->szFilename), VERR_OUT_OF_RANGE);
memcpy(szTmp, cchFile ? pszFile : "", cchFile + 1);
memcpy(pLoggerInt->szFilename, pszValue, cch);
pLoggerInt->szFilename[cch] = '\0';
RTPathStripTrailingSlash(pLoggerInt->szFilename);
cch = strlen(pLoggerInt->szFilename);
pLoggerInt->szFilename[cch++] = '/';
memcpy(&pLoggerInt->szFilename[cch], szTmp, cchFile);
pLoggerInt->szFilename[cch + cchFile] = '\0';
/** @todo reopen log file if pLoggerInt->fCreated is true ... */
}
}
else if (i == 2 /* history */)
{
if (!fNo)
{
uint32_t cHistory = 0;
int rc = RTStrCopyEx(szTmp, sizeof(szTmp), pszValue, cch);
if (RT_SUCCESS(rc))
rc = RTStrToUInt32Full(szTmp, 0, &cHistory);
AssertMsgReturn(RT_SUCCESS(rc) && cHistory < _1M, ("Invalid history value %s (%Rrc)!\n", szTmp, rc), rc);
pLoggerInt->cHistory = cHistory;
}
else
pLoggerInt->cHistory = 0;
}
else if (i == 3 /* histsize */)
{
if (!fNo)
{
int rc = RTStrCopyEx(szTmp, sizeof(szTmp), pszValue, cch);
if (RT_SUCCESS(rc))
rc = RTStrToUInt64Full(szTmp, 0, &pLoggerInt->cbHistoryFileMax);
AssertMsgRCReturn(rc, ("Invalid history file size value %s (%Rrc)!\n", szTmp, rc), rc);
if (pLoggerInt->cbHistoryFileMax == 0)
pLoggerInt->cbHistoryFileMax = UINT64_MAX;
}
else
pLoggerInt->cbHistoryFileMax = UINT64_MAX;
}
else if (i == 4 /* histtime */)
{
if (!fNo)
{
int rc = RTStrCopyEx(szTmp, sizeof(szTmp), pszValue, cch);
if (RT_SUCCESS(rc))
rc = RTStrToUInt32Full(szTmp, 0, &pLoggerInt->cSecsHistoryTimeSlot);
AssertMsgRCReturn(rc, ("Invalid history time slot value %s (%Rrc)!\n", szTmp, rc), rc);
if (pLoggerInt->cSecsHistoryTimeSlot == 0)
pLoggerInt->cSecsHistoryTimeSlot = UINT32_MAX;
}
else
pLoggerInt->cSecsHistoryTimeSlot = UINT32_MAX;
}
# endif /* IN_RING3 */
else if (i == 5 /* ringbuf */ && !fNo)
{
int rc = RTStrCopyEx(szTmp, sizeof(szTmp), pszValue, cch);
uint32_t cbRingBuf = 0;
if (RT_SUCCESS(rc))
rc = RTStrToUInt32Full(szTmp, 0, &cbRingBuf);
AssertMsgRCReturn(rc, ("Invalid ring buffer size value '%s' (%Rrc)!\n", szTmp, rc), rc);
if (cbRingBuf == 0)
cbRingBuf = RTLOG_RINGBUF_DEFAULT_SIZE;
else if (cbRingBuf < RTLOG_RINGBUF_MIN_SIZE)
cbRingBuf = RTLOG_RINGBUF_MIN_SIZE;
else if (cbRingBuf > RTLOG_RINGBUF_MAX_SIZE)
cbRingBuf = RTLOG_RINGBUF_MAX_SIZE;
else
cbRingBuf = RT_ALIGN_32(cbRingBuf, 64);
rc = rtLogRingBufAdjust(pLoggerInt, cbRingBuf, false /*fForce*/);
if (RT_FAILURE(rc))
return rc;
}
else
AssertMsgFailedReturn(("Invalid destination value! %s%s doesn't take a value!\n",
fNo ? "no" : "", g_aLogDst[i].pszInstr),
VERR_INVALID_PARAMETER);
pszValue = pszEnd + (*pszEnd != '\0');
}
else if (i == 5 /* ringbuf */ && !fNo && !pLoggerInt->pszRingBuf)
{
int rc = rtLogRingBufAdjust(pLoggerInt, pLoggerInt->cbRingBuf, false /*fForce*/);
if (RT_FAILURE(rc))
return rc;
}
break;
}
}
/* assert known instruction */
AssertMsgReturn(i < RT_ELEMENTS(g_aLogDst),
("Invalid destination value! unknown instruction %.20s\n", pszValue),
VERR_INVALID_PARAMETER);
/* skip blanks and delimiters. */
while (RT_C_IS_SPACE(*pszValue) || *pszValue == ';')
pszValue++;
} /* while more environment variable value left */
return VINF_SUCCESS;
}
RT_EXPORT_SYMBOL(RTLogDestinations);
RTDECL(int) RTLogClearFileDelayFlag(PRTLOGGER pLogger, PRTERRINFO pErrInfo)
{
PRTLOGGERINTERNAL pLoggerInt = (PRTLOGGERINTERNAL)pLogger;
RTLOG_RESOLVE_DEFAULT_RET(pLoggerInt, VINF_LOG_NO_LOGGER);
/*
* Do the work.
*/
int rc = rtlogLock(pLoggerInt);
if (RT_SUCCESS(rc))
{
if (pLoggerInt->fDestFlags & RTLOGDEST_F_DELAY_FILE)
{
pLoggerInt->fDestFlags &= ~RTLOGDEST_F_DELAY_FILE;
# ifdef IN_RING3
if ( pLoggerInt->fDestFlags & RTLOGDEST_FILE
&& !pLoggerInt->fLogOpened)
{
rc = rtR3LogOpenFileDestination(pLoggerInt, pErrInfo);
if (RT_SUCCESS(rc))
rtlogFlush(pLoggerInt, false /*fNeedSpace*/);
}
# endif
RT_NOREF(pErrInfo); /** @todo fix create API to use RTErrInfo */
}
rtlogUnlock(pLoggerInt);
}
return VINF_SUCCESS;
}
RT_EXPORT_SYMBOL(RTLogClearFileDelayFlag);
RTDECL(int) RTLogChangeDestinations(PRTLOGGER pLogger, uint32_t fSet, uint32_t fClear)
{
int rc;
PRTLOGGERINTERNAL pLoggerInt = (PRTLOGGERINTERNAL)pLogger;
AssertCompile((RTLOG_DST_VALID_MASK & RTLOG_DST_CHANGE_MASK) == RTLOG_DST_CHANGE_MASK);
AssertReturn(!(fSet & ~RTLOG_DST_CHANGE_MASK), VERR_INVALID_FLAGS);
AssertReturn(!(fClear & ~RTLOG_DST_CHANGE_MASK), VERR_INVALID_FLAGS);
RTLOG_RESOLVE_DEFAULT_RET(pLoggerInt, VINF_LOG_NO_LOGGER);
/*
* Make the changes.
*/
rc = rtlogLock(pLoggerInt);
if (RT_SUCCESS(rc))
{
pLoggerInt->fDestFlags &= ~fClear;
pLoggerInt->fDestFlags |= fSet;
rtlogUnlock(pLoggerInt);
}
return VINF_SUCCESS;
}
RT_EXPORT_SYMBOL(RTLogChangeDestinations);
RTDECL(uint32_t) RTLogGetDestinations(PRTLOGGER pLogger)
{
PRTLOGGERINTERNAL pLoggerInt = (PRTLOGGERINTERNAL)pLogger;
if (!pLoggerInt)
{
pLoggerInt = (PRTLOGGERINTERNAL)RTLogDefaultInstance();
if (!pLoggerInt)
return UINT32_MAX;
}
return pLoggerInt->fDestFlags;
}
RT_EXPORT_SYMBOL(RTLogGetDestinations);
RTDECL(int) RTLogQueryDestinations(PRTLOGGER pLogger, char *pszBuf, size_t cchBuf)
{
PRTLOGGERINTERNAL pLoggerInt = (PRTLOGGERINTERNAL)pLogger;
bool fNotFirst = false;
int rc = VINF_SUCCESS;
uint32_t fDestFlags;
unsigned i;
AssertReturn(cchBuf, VERR_INVALID_PARAMETER);
*pszBuf = '\0';
RTLOG_RESOLVE_DEFAULT_RET(pLoggerInt, VINF_LOG_NO_LOGGER);
Assert(pLoggerInt->Core.u32Magic == RTLOGGER_MAGIC);
/*
* Add the flags in the list.
*/
fDestFlags = pLoggerInt->fDestFlags;
for (i = 6; i < RT_ELEMENTS(g_aLogDst); i++)
if (g_aLogDst[i].fFlag & fDestFlags)
{
if (fNotFirst)
{
rc = RTStrCopyP(&pszBuf, &cchBuf, " ");
if (RT_FAILURE(rc))
return rc;
}
rc = RTStrCopyP(&pszBuf, &cchBuf, g_aLogDst[i].pszInstr);
if (RT_FAILURE(rc))
return rc;
fNotFirst = true;
}
char szNum[32];
# ifdef IN_RING3
/*
* Add the filename.
*/
if (fDestFlags & RTLOGDEST_FILE)
{
rc = RTStrCopyP(&pszBuf, &cchBuf, fNotFirst ? " file=" : "file=");
if (RT_FAILURE(rc))
return rc;
rc = RTStrCopyP(&pszBuf, &cchBuf, pLoggerInt->szFilename);
if (RT_FAILURE(rc))
return rc;
fNotFirst = true;
if (pLoggerInt->cHistory)
{
RTStrPrintf(szNum, sizeof(szNum), fNotFirst ? " history=%u" : "history=%u", pLoggerInt->cHistory);
rc = RTStrCopyP(&pszBuf, &cchBuf, szNum);
if (RT_FAILURE(rc))
return rc;
fNotFirst = true;
}
if (pLoggerInt->cbHistoryFileMax != UINT64_MAX)
{
RTStrPrintf(szNum, sizeof(szNum), fNotFirst ? " histsize=%llu" : "histsize=%llu", pLoggerInt->cbHistoryFileMax);
rc = RTStrCopyP(&pszBuf, &cchBuf, szNum);
if (RT_FAILURE(rc))
return rc;
fNotFirst = true;
}
if (pLoggerInt->cSecsHistoryTimeSlot != UINT32_MAX)
{
RTStrPrintf(szNum, sizeof(szNum), fNotFirst ? " histtime=%llu" : "histtime=%llu", pLoggerInt->cSecsHistoryTimeSlot);
rc = RTStrCopyP(&pszBuf, &cchBuf, szNum);
if (RT_FAILURE(rc))
return rc;
fNotFirst = true;
}
}
# endif /* IN_RING3 */
/*
* Add the ring buffer.
*/
if (fDestFlags & RTLOGDEST_RINGBUF)
{
if (pLoggerInt->cbRingBuf == RTLOG_RINGBUF_DEFAULT_SIZE)
rc = RTStrCopyP(&pszBuf, &cchBuf, fNotFirst ? " ringbuf" : "ringbuf");
else
{
RTStrPrintf(szNum, sizeof(szNum), fNotFirst ? " ringbuf=%#x" : "ringbuf=%#x", pLoggerInt->cbRingBuf);
rc = RTStrCopyP(&pszBuf, &cchBuf, szNum);
}
if (RT_FAILURE(rc))
return rc;
fNotFirst = true;
}
return VINF_SUCCESS;
}
RT_EXPORT_SYMBOL(RTLogQueryDestinations);
/**
* Helper for calculating the CRC32 of all the group names.
*/
static uint32_t rtLogCalcGroupNameCrc32(PRTLOGGERINTERNAL pLoggerInt)
{
const char * const * const papszGroups = pLoggerInt->papszGroups;
uint32_t iGroup = pLoggerInt->cGroups;
uint32_t uCrc32 = RTCrc32Start();
while (iGroup-- > 0)
{
const char *pszGroup = papszGroups[iGroup];
uCrc32 = RTCrc32Process(uCrc32, pszGroup, strlen(pszGroup) + 1);
}
return RTCrc32Finish(uCrc32);
}
#ifdef IN_RING3
/**
* Opens/creates the log file.
*
* @param pLoggerInt The logger instance to update. NULL is not allowed!
* @param pErrInfo Where to return extended error information.
* Optional.
*/
static int rtlogFileOpen(PRTLOGGERINTERNAL pLoggerInt, PRTERRINFO pErrInfo)
{
uint32_t fOpen = RTFILE_O_WRITE | RTFILE_O_DENY_NONE;
if (pLoggerInt->fFlags & RTLOGFLAGS_APPEND)
fOpen |= RTFILE_O_OPEN_CREATE | RTFILE_O_APPEND;
else
{
pLoggerInt->pOutputIf->pfnDelete(pLoggerInt->pOutputIf, pLoggerInt->pvOutputIfUser,
pLoggerInt->szFilename);
fOpen |= RTFILE_O_CREATE;
}
if (pLoggerInt->fFlags & RTLOGFLAGS_WRITE_THROUGH)
fOpen |= RTFILE_O_WRITE_THROUGH;
if (pLoggerInt->fDestFlags & RTLOGDEST_F_NO_DENY)
fOpen = (fOpen & ~RTFILE_O_DENY_NONE) | RTFILE_O_DENY_NOT_DELETE;
unsigned cBackoff = 0;
int rc = pLoggerInt->pOutputIf->pfnOpen(pLoggerInt->pOutputIf, pLoggerInt->pvOutputIfUser,
pLoggerInt->szFilename, fOpen);
while ( ( rc == VERR_SHARING_VIOLATION
|| (rc == VERR_ALREADY_EXISTS && !(pLoggerInt->fFlags & RTLOGFLAGS_APPEND)))
&& cBackoff < RT_ELEMENTS(g_acMsLogBackoff))
{
RTThreadSleep(g_acMsLogBackoff[cBackoff++]);
if (!(pLoggerInt->fFlags & RTLOGFLAGS_APPEND))
pLoggerInt->pOutputIf->pfnDelete(pLoggerInt->pOutputIf, pLoggerInt->pvOutputIfUser,
pLoggerInt->szFilename);
rc = pLoggerInt->pOutputIf->pfnOpen(pLoggerInt->pOutputIf, pLoggerInt->pvOutputIfUser,
pLoggerInt->szFilename, fOpen);
}
if (RT_SUCCESS(rc))
{
pLoggerInt->fLogOpened = true;
rc = pLoggerInt->pOutputIf->pfnQuerySize(pLoggerInt->pOutputIf, pLoggerInt->pvOutputIfUser,
&pLoggerInt->cbHistoryFileWritten);
if (RT_FAILURE(rc))
{
/* Don't complain if this fails, assume the file is empty. */
pLoggerInt->cbHistoryFileWritten = 0;
rc = VINF_SUCCESS;
}
}
else
{
pLoggerInt->fLogOpened = false;
RTErrInfoSetF(pErrInfo, rc, N_("could not open file '%s' (fOpen=%#x)"), pLoggerInt->szFilename, fOpen);
}
return rc;
}
/**
* Closes, rotates and opens the log files if necessary.
*
* Used by the rtlogFlush() function as well as RTLogCreateExV() by way of
* rtR3LogOpenFileDestination().
*
* @param pLoggerInt The logger instance to update. NULL is not allowed!
* @param uTimeSlot Current time slot (for tikme based rotation).
* @param fFirst Flag whether this is the beginning of logging, i.e.
* called from RTLogCreateExV. Prevents pfnPhase from
* being called.
* @param pErrInfo Where to return extended error information. Optional.
*/
static void rtlogRotate(PRTLOGGERINTERNAL pLoggerInt, uint32_t uTimeSlot, bool fFirst, PRTERRINFO pErrInfo)
{
/* Suppress rotating empty log files simply because the time elapsed. */
if (RT_UNLIKELY(!pLoggerInt->cbHistoryFileWritten))
pLoggerInt->uHistoryTimeSlotStart = uTimeSlot;
/* Check rotation condition: file still small enough and not too old? */
if (RT_LIKELY( pLoggerInt->cbHistoryFileWritten < pLoggerInt->cbHistoryFileMax
&& uTimeSlot == pLoggerInt->uHistoryTimeSlotStart))
return;
/*
* Save "disabled" log flag and make sure logging is disabled.
* The logging in the functions called during log file history
* rotation would cause severe trouble otherwise.
*/
uint32_t const fSavedFlags = pLoggerInt->fFlags;
pLoggerInt->fFlags |= RTLOGFLAGS_DISABLED;
/*
* Disable log rotation temporarily, otherwise with extreme settings and
* chatty phase logging we could run into endless rotation.
*/
uint32_t const cSavedHistory = pLoggerInt->cHistory;
pLoggerInt->cHistory = 0;
/*
* Close the old log file.
*/
if (pLoggerInt->fLogOpened)
{
/* Use the callback to generate some final log contents, but only if
* this is a rotation with a fully set up logger. Leave the other case
* to the RTLogCreateExV function. */
if (pLoggerInt->pfnPhase && !fFirst)
{
uint32_t fODestFlags = pLoggerInt->fDestFlags;
pLoggerInt->fDestFlags &= RTLOGDEST_FILE;
pLoggerInt->pfnPhase(&pLoggerInt->Core, RTLOGPHASE_PREROTATE, rtlogPhaseMsgLocked);
pLoggerInt->fDestFlags = fODestFlags;
}
pLoggerInt->pOutputIf->pfnClose(pLoggerInt->pOutputIf, pLoggerInt->pvOutputIfUser);
}
if (cSavedHistory)
{
/*
* Rotate the log files.
*/
for (uint32_t i = cSavedHistory - 1; i + 1 > 0; i--)
{
char szOldName[sizeof(pLoggerInt->szFilename) + 32];
if (i > 0)
RTStrPrintf(szOldName, sizeof(szOldName), "%s.%u", pLoggerInt->szFilename, i);
else
RTStrCopy(szOldName, sizeof(szOldName), pLoggerInt->szFilename);
char szNewName[sizeof(pLoggerInt->szFilename) + 32];
RTStrPrintf(szNewName, sizeof(szNewName), "%s.%u", pLoggerInt->szFilename, i + 1);
unsigned cBackoff = 0;
int rc = pLoggerInt->pOutputIf->pfnRename(pLoggerInt->pOutputIf, pLoggerInt->pvOutputIfUser,
szOldName, szNewName, RTFILEMOVE_FLAGS_REPLACE);
while ( rc == VERR_SHARING_VIOLATION
&& cBackoff < RT_ELEMENTS(g_acMsLogBackoff))
{
RTThreadSleep(g_acMsLogBackoff[cBackoff++]);
rc = pLoggerInt->pOutputIf->pfnRename(pLoggerInt->pOutputIf, pLoggerInt->pvOutputIfUser,
szOldName, szNewName, RTFILEMOVE_FLAGS_REPLACE);
}
if (rc == VERR_FILE_NOT_FOUND)
pLoggerInt->pOutputIf->pfnDelete(pLoggerInt->pOutputIf, pLoggerInt->pvOutputIfUser, szNewName);
}
/*
* Delete excess log files.
*/
for (uint32_t i = cSavedHistory + 1; ; i++)
{
char szExcessName[sizeof(pLoggerInt->szFilename) + 32];
RTStrPrintf(szExcessName, sizeof(szExcessName), "%s.%u", pLoggerInt->szFilename, i);
int rc = pLoggerInt->pOutputIf->pfnDelete(pLoggerInt->pOutputIf, pLoggerInt->pvOutputIfUser, szExcessName);
if (RT_FAILURE(rc))
break;
}
}
/*
* Update logger state and create new log file.
*/
pLoggerInt->cbHistoryFileWritten = 0;
pLoggerInt->uHistoryTimeSlotStart = uTimeSlot;
rtlogFileOpen(pLoggerInt, pErrInfo);
/*
* Use the callback to generate some initial log contents, but only if this
* is a rotation with a fully set up logger. Leave the other case to the
* RTLogCreateExV function.
*/
if (pLoggerInt->pfnPhase && !fFirst)
{
uint32_t const fSavedDestFlags = pLoggerInt->fDestFlags;
pLoggerInt->fDestFlags &= RTLOGDEST_FILE;
pLoggerInt->pfnPhase(&pLoggerInt->Core, RTLOGPHASE_POSTROTATE, rtlogPhaseMsgLocked);
pLoggerInt->fDestFlags = fSavedDestFlags;
}
/* Restore saved values. */
pLoggerInt->cHistory = cSavedHistory;
pLoggerInt->fFlags = fSavedFlags;
}
/**
* Worker for RTLogCreateExV and RTLogClearFileDelayFlag.
*
* This will later be used to reopen the file by RTLogDestinations.
*
* @returns IPRT status code.
* @param pLoggerInt The logger.
* @param pErrInfo Where to return extended error information.
* Optional.
*/
static int rtR3LogOpenFileDestination(PRTLOGGERINTERNAL pLoggerInt, PRTERRINFO pErrInfo)
{
int rc;
if (pLoggerInt->fFlags & RTLOGFLAGS_APPEND)
{
rc = rtlogFileOpen(pLoggerInt, pErrInfo);
/* Rotate in case of appending to a too big log file,
otherwise this simply doesn't do anything. */
rtlogRotate(pLoggerInt, 0, true /* fFirst */, pErrInfo);
}
else
{
/* Force rotation if it is configured. */
pLoggerInt->cbHistoryFileWritten = UINT64_MAX;
rtlogRotate(pLoggerInt, 0, true /* fFirst */, pErrInfo);
/* If the file is not open then rotation is not set up. */
if (!pLoggerInt->fLogOpened)
{
pLoggerInt->cbHistoryFileWritten = 0;
rc = rtlogFileOpen(pLoggerInt, pErrInfo);
}
else
rc = VINF_SUCCESS;
}
return rc;
}
#endif /* IN_RING3 */
/*********************************************************************************************************************************
* Bulk Reconfig & Logging for ring-0 EMT loggers. *
*********************************************************************************************************************************/
RTDECL(int) RTLogBulkUpdate(PRTLOGGER pLogger, uint64_t fFlags, uint32_t uGroupCrc32, uint32_t cGroups, uint32_t const *pafGroups)
{
int rc;
PRTLOGGERINTERNAL pLoggerInt = (PRTLOGGERINTERNAL)pLogger;
RTLOG_RESOLVE_DEFAULT_RET(pLoggerInt, VINF_LOG_NO_LOGGER);
/*
* Do the updating.
*/
rc = rtlogLock(pLoggerInt);
if (RT_SUCCESS(rc))
{
pLoggerInt->fFlags = fFlags;
if ( uGroupCrc32 == rtLogCalcGroupNameCrc32(pLoggerInt)
&& pLoggerInt->cGroups == cGroups)
{
RT_BCOPY_UNFORTIFIED(pLoggerInt->afGroups, pafGroups, sizeof(pLoggerInt->afGroups[0]) * cGroups);
rc = VINF_SUCCESS;
}
else
rc = VERR_MISMATCH;
rtlogUnlock(pLoggerInt);
}
return rc;
}
RT_EXPORT_SYMBOL(RTLogBulkUpdate);
RTDECL(int) RTLogQueryBulk(PRTLOGGER pLogger, uint64_t *pfFlags, uint32_t *puGroupCrc32, uint32_t *pcGroups, uint32_t *pafGroups)
{
PRTLOGGERINTERNAL pLoggerInt = (PRTLOGGERINTERNAL)pLogger;
uint32_t const cGroupsAlloc = *pcGroups;
*pfFlags = 0;
*puGroupCrc32 = 0;
*pcGroups = 0;
RTLOG_RESOLVE_DEFAULT_RET(pLoggerInt, VINF_LOG_NO_LOGGER);
AssertReturn(pLoggerInt->Core.u32Magic == RTLOGGER_MAGIC, VERR_INVALID_MAGIC);
/*
* Get the data.
*/
*pfFlags = pLoggerInt->fFlags;
*pcGroups = pLoggerInt->cGroups;
if (cGroupsAlloc >= pLoggerInt->cGroups)
{
memcpy(pafGroups, pLoggerInt->afGroups, sizeof(pLoggerInt->afGroups[0]) * pLoggerInt->cGroups);
*puGroupCrc32 = rtLogCalcGroupNameCrc32(pLoggerInt);
return VINF_SUCCESS;
}
return VERR_BUFFER_OVERFLOW;
}
RT_EXPORT_SYMBOL(RTLogQueryBulk);
RTDECL(int) RTLogBulkWrite(PRTLOGGER pLogger, const char *pszBefore, const char *pch, size_t cch, const char *pszAfter)
{
PRTLOGGERINTERNAL pLoggerInt = (PRTLOGGERINTERNAL)pLogger;
RTLOG_RESOLVE_DEFAULT_RET(pLoggerInt, VINF_LOG_NO_LOGGER);
/*
* Lock and validate it.
*/
int rc = rtlogLock(pLoggerInt);
if (RT_SUCCESS(rc))
{
if (cch > 0)
{
/*
* Heading/marker.
*/
if (pszBefore)
rtlogLoggerExFLocked(pLoggerInt, RTLOGGRPFLAGS_LEVEL_1, UINT32_MAX, "%s", pszBefore);
/*
* Do the copying.
*/
do
{
PRTLOGBUFFERDESC const pBufDesc = pLoggerInt->pBufDesc;
char * const pchBuf = pBufDesc->pchBuf;
uint32_t const cbBuf = pBufDesc->cbBuf;
uint32_t offBuf = pBufDesc->offBuf;
if (cch + 1 < cbBuf - offBuf)
{
memcpy(&pchBuf[offBuf], pch, cch);
offBuf += (uint32_t)cch;
pchBuf[offBuf] = '\0';
pBufDesc->offBuf = offBuf;
if (pBufDesc->pAux)
pBufDesc->pAux->offBuf = offBuf;
if (!(pLoggerInt->fDestFlags & RTLOGFLAGS_BUFFERED))
rtlogFlush(pLoggerInt, false /*fNeedSpace*/);
break;
}
/* Not enough space. */
if (offBuf + 1 < cbBuf)
{
uint32_t cbToCopy = cbBuf - offBuf - 1;
memcpy(&pchBuf[offBuf], pch, cbToCopy);
offBuf += cbToCopy;
pchBuf[offBuf] = '\0';
pBufDesc->offBuf = offBuf;
if (pBufDesc->pAux)
pBufDesc->pAux->offBuf = offBuf;
pch += cbToCopy;
cch -= cbToCopy;
}
rtlogFlush(pLoggerInt, false /*fNeedSpace*/);
} while (cch > 0);
/*
* Footer/marker.
*/
if (pszAfter)
rtlogLoggerExFLocked(pLoggerInt, RTLOGGRPFLAGS_LEVEL_1, UINT32_MAX, "%s", pszAfter);
}
rtlogUnlock(pLoggerInt);
}
return rc;
}
RT_EXPORT_SYMBOL(RTLogBulkWrite);
RTDECL(int) RTLogBulkNestedWrite(PRTLOGGER pLogger, const char *pch, size_t cch, const char *pszInfix)
{
if (cch > 0)
{
PRTLOGGERINTERNAL pLoggerInt = (PRTLOGGERINTERNAL)pLogger;
RTLOG_RESOLVE_DEFAULT_RET(pLoggerInt, VINF_LOG_NO_LOGGER);
/*
* Lock and validate it.
*/
int rc = rtlogLock(pLoggerInt);
if (RT_SUCCESS(rc))
{
/*
* If we've got an auxilary descriptor, check if the buffer was flushed.
*/
PRTLOGBUFFERDESC pBufDesc = pLoggerInt->pBufDesc;
PRTLOGBUFFERAUXDESC pAuxDesc = pBufDesc->pAux;
if (!pAuxDesc || !pAuxDesc->fFlushedIndicator)
{ /* likely, except maybe for ring-0 */ }
else
{
pAuxDesc->fFlushedIndicator = false;
pBufDesc->offBuf = 0;
}
/*
* Write the stuff.
*/
RTLOGOUTPUTPREFIXEDARGS Args;
Args.pLoggerInt = pLoggerInt;
Args.fFlags = 0;
Args.iGroup = ~0U;
Args.pszInfix = pszInfix;
rtLogOutputPrefixed(&Args, pch, cch);
rtLogOutputPrefixed(&Args, pch, 0); /* termination call */
/*
* Maybe flush the buffer and update the auxiliary descriptor if there is one.
*/
pBufDesc = pLoggerInt->pBufDesc; /* (the descriptor may have changed) */
if ( !(pLoggerInt->fFlags & RTLOGFLAGS_BUFFERED)
&& pBufDesc->offBuf)
rtlogFlush(pLoggerInt, false /*fNeedSpace*/);
else
{
pAuxDesc = pBufDesc->pAux;
if (pAuxDesc)
pAuxDesc->offBuf = pBufDesc->offBuf;
}
rtlogUnlock(pLoggerInt);
}
return rc;
}
return VINF_SUCCESS;
}
RT_EXPORT_SYMBOL(RTLogBulkNestedWrite);
/*********************************************************************************************************************************
* Flushing *
*********************************************************************************************************************************/
RTDECL(int) RTLogFlush(PRTLOGGER pLogger)
{
if (!pLogger)
{
pLogger = rtLogGetDefaultInstanceCommon(); /* Get it if it exists, do _not_ create one if it doesn't. */
if (!pLogger)
return VINF_LOG_NO_LOGGER;
}
PRTLOGGERINTERNAL pLoggerInt = (PRTLOGGERINTERNAL)pLogger;
Assert(pLoggerInt->Core.u32Magic == RTLOGGER_MAGIC);
AssertPtr(pLoggerInt->pBufDesc);
Assert(pLoggerInt->pBufDesc->u32Magic == RTLOGBUFFERDESC_MAGIC);
/*
* Acquire logger instance sem.
*/
int rc = rtlogLock(pLoggerInt);
if (RT_SUCCESS(rc))
{
/*
* Any thing to flush?
*/
if ( pLoggerInt->pBufDesc->offBuf > 0
|| (pLoggerInt->fDestFlags & RTLOGDEST_RINGBUF))
{
/*
* Call worker.
*/
rtlogFlush(pLoggerInt, false /*fNeedSpace*/);
/*
* Since this is an explicit flush call, the ring buffer content should
* be flushed to the other destinations if active.
*/
if ( (pLoggerInt->fDestFlags & RTLOGDEST_RINGBUF)
&& pLoggerInt->pszRingBuf /* paranoia */)
rtLogRingBufFlush(pLoggerInt);
}
rtlogUnlock(pLoggerInt);
}
return rc;
}
RT_EXPORT_SYMBOL(RTLogFlush);
/**
* Writes the buffer to the given log device without checking for buffered
* data or anything.
*
* Used by the RTLogFlush() function.
*
* @param pLoggerInt The logger instance to write to. NULL is not allowed!
* @param fNeedSpace Set if the caller assumes space will be made available.
*/
static void rtlogFlush(PRTLOGGERINTERNAL pLoggerInt, bool fNeedSpace)
{
PRTLOGBUFFERDESC pBufDesc = pLoggerInt->pBufDesc;
uint32_t cchToFlush = pBufDesc->offBuf;
char * pchToFlush = pBufDesc->pchBuf;
uint32_t const cbBuf = pBufDesc->cbBuf;
Assert(pBufDesc->u32Magic == RTLOGBUFFERDESC_MAGIC);
NOREF(fNeedSpace);
if (cchToFlush == 0)
return; /* nothing to flush. */
AssertPtrReturnVoid(pchToFlush);
AssertReturnVoid(cbBuf > 0);
AssertMsgStmt(cchToFlush < cbBuf, ("%#x vs %#x\n", cchToFlush, cbBuf), cchToFlush = cbBuf - 1);
/*
* If the ring buffer is active, the other destinations are only written
* to when the ring buffer is flushed by RTLogFlush().
*/
if ( (pLoggerInt->fDestFlags & RTLOGDEST_RINGBUF)
&& pLoggerInt->pszRingBuf /* paranoia */)
{
rtLogRingBufWrite(pLoggerInt, pchToFlush, cchToFlush);
/* empty the buffer. */
pBufDesc->offBuf = 0;
*pchToFlush = '\0';
}
/*
* In file delay mode, we ignore flush requests except when we're full
* and the caller really needs some scratch space to get work done.
*/
else
#ifdef IN_RING3
if (!(pLoggerInt->fDestFlags & RTLOGDEST_F_DELAY_FILE))
#endif
{
/* Make sure the string is terminated. On Windows, RTLogWriteDebugger
will get upset if it isn't. */
pchToFlush[cchToFlush] = '\0';
if (pLoggerInt->fDestFlags & RTLOGDEST_USER)
RTLogWriteUser(pchToFlush, cchToFlush);
#if defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)
if (pLoggerInt->fDestFlags & RTLOGDEST_VMM)
RTLogWriteVmm(pchToFlush, cchToFlush, false /*fReleaseLog*/);
if (pLoggerInt->fDestFlags & RTLOGDEST_VMM_REL)
RTLogWriteVmm(pchToFlush, cchToFlush, true /*fReleaseLog*/);
#endif
if (pLoggerInt->fDestFlags & RTLOGDEST_DEBUGGER)
RTLogWriteDebugger(pchToFlush, cchToFlush);
#ifdef IN_RING3
if ((pLoggerInt->fDestFlags & (RTLOGDEST_FILE | RTLOGDEST_RINGBUF)) == RTLOGDEST_FILE)
{
if (pLoggerInt->fLogOpened)
{
pLoggerInt->pOutputIf->pfnWrite(pLoggerInt->pOutputIf, pLoggerInt->pvOutputIfUser,
pchToFlush, cchToFlush, NULL /*pcbWritten*/);
if (pLoggerInt->fFlags & RTLOGFLAGS_FLUSH)
pLoggerInt->pOutputIf->pfnFlush(pLoggerInt->pOutputIf, pLoggerInt->pvOutputIfUser);
}
if (pLoggerInt->cHistory)
pLoggerInt->cbHistoryFileWritten += cchToFlush;
}
#endif
if (pLoggerInt->fDestFlags & RTLOGDEST_STDOUT)
RTLogWriteStdOut(pchToFlush, cchToFlush);
if (pLoggerInt->fDestFlags & RTLOGDEST_STDERR)
RTLogWriteStdErr(pchToFlush, cchToFlush);
#if (defined(IN_RING0) || defined(IN_RC)) && !defined(LOG_NO_COM)
if (pLoggerInt->fDestFlags & RTLOGDEST_COM)
RTLogWriteCom(pchToFlush, cchToFlush);
#endif
if (pLoggerInt->pfnFlush)
{
/*
* We have a custom flush callback. Before calling it we must make
* sure the aux descriptor is up to date. When we get back, we may
* need to switch to the next buffer if the current is being flushed
* asynchronously. This of course requires there to be more than one
* buffer. (The custom flush callback is responsible for making sure
* the next buffer isn't being flushed before returning.)
*/
if (pBufDesc->pAux)
pBufDesc->pAux->offBuf = cchToFlush;
if (!pLoggerInt->pfnFlush(&pLoggerInt->Core, pBufDesc))
{
/* advance to the next buffer */
Assert(pLoggerInt->cBufDescs > 1);
size_t idxBufDesc = pBufDesc - pLoggerInt->paBufDescs;
Assert(idxBufDesc < pLoggerInt->cBufDescs);
idxBufDesc = (idxBufDesc + 1) % pLoggerInt->cBufDescs;
pLoggerInt->idxBufDesc = (uint8_t)idxBufDesc;
pLoggerInt->pBufDesc = pBufDesc = &pLoggerInt->paBufDescs[idxBufDesc];
pchToFlush = pBufDesc->pchBuf;
}
}
/* Empty the buffer. */
pBufDesc->offBuf = 0;
if (pBufDesc->pAux)
pBufDesc->pAux->offBuf = 0;
*pchToFlush = '\0';
#ifdef IN_RING3
/*
* Rotate the log file if configured. Must be done after everything is
* flushed, since this will also use logging/flushing to write the header
* and footer messages.
*/
if ( pLoggerInt->cHistory > 0
&& (pLoggerInt->fDestFlags & RTLOGDEST_FILE))
rtlogRotate(pLoggerInt, RTTimeProgramSecTS() / pLoggerInt->cSecsHistoryTimeSlot, false /*fFirst*/, NULL /*pErrInfo*/);
#endif
}
#ifdef IN_RING3
else
{
/*
* Delay file open but the caller really need some space. So, give him half a
* buffer and insert a message indicating that we've dropped output.
*/
uint32_t offHalf = cbBuf / 2;
if (cchToFlush > offHalf)
{
static const char s_szDropMsgLf[] = "\n[DROP DROP DROP]\n";
static const char s_szDropMsgCrLf[] = "\r\n[DROP DROP DROP]\r\n";
if (!(pLoggerInt->fFlags & RTLOGFLAGS_USECRLF))
{
memcpy(&pchToFlush[offHalf], RT_STR_TUPLE(s_szDropMsgLf));
offHalf += sizeof(s_szDropMsgLf) - 1;
}
else
{
memcpy(&pchToFlush[offHalf], RT_STR_TUPLE(s_szDropMsgCrLf));
offHalf += sizeof(s_szDropMsgCrLf) - 1;
}
pBufDesc->offBuf = offHalf;
}
}
#endif
}
/*********************************************************************************************************************************
* Logger Core *
*********************************************************************************************************************************/
#ifdef IN_RING0
/**
* For rtR0LogLoggerExFallbackOutput and rtR0LogLoggerExFallbackFlush.
*/
typedef struct RTR0LOGLOGGERFALLBACK
{
/** The current scratch buffer offset. */
uint32_t offScratch;
/** The destination flags. */
uint32_t fDestFlags;
/** For ring buffer output. */
PRTLOGGERINTERNAL pInt;
/** The scratch buffer. */
char achScratch[80];
} RTR0LOGLOGGERFALLBACK;
/** Pointer to RTR0LOGLOGGERFALLBACK which is used by
* rtR0LogLoggerExFallbackOutput. */
typedef RTR0LOGLOGGERFALLBACK *PRTR0LOGLOGGERFALLBACK;
/**
* Flushes the fallback buffer.
*
* @param pThis The scratch buffer.
*/
static void rtR0LogLoggerExFallbackFlush(PRTR0LOGLOGGERFALLBACK pThis)
{
if (!pThis->offScratch)
return;
if ( (pThis->fDestFlags & RTLOGDEST_RINGBUF)
&& pThis->pInt
&& pThis->pInt->pszRingBuf /* paranoia */)
rtLogRingBufWrite(pThis->pInt, pThis->achScratch, pThis->offScratch);
else
{
if (pThis->fDestFlags & RTLOGDEST_USER)
RTLogWriteUser(pThis->achScratch, pThis->offScratch);
# if defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)
if (pThis->fDestFlags & RTLOGDEST_VMM)
RTLogWriteVmm(pThis->achScratch, pThis->offScratch, false /*fReleaseLog*/);
if (pThis->fDestFlags & RTLOGDEST_VMM_REL)
RTLogWriteVmm(pThis->achScratch, pThis->offScratch, true /*fReleaseLog*/);
# endif
if (pThis->fDestFlags & RTLOGDEST_DEBUGGER)
RTLogWriteDebugger(pThis->achScratch, pThis->offScratch);
if (pThis->fDestFlags & RTLOGDEST_STDOUT)
RTLogWriteStdOut(pThis->achScratch, pThis->offScratch);
if (pThis->fDestFlags & RTLOGDEST_STDERR)
RTLogWriteStdErr(pThis->achScratch, pThis->offScratch);
# ifndef LOG_NO_COM
if (pThis->fDestFlags & RTLOGDEST_COM)
RTLogWriteCom(pThis->achScratch, pThis->offScratch);
# endif
}
/* empty the buffer. */
pThis->offScratch = 0;
}
/**
* Callback for RTLogFormatV used by rtR0LogLoggerExFallback.
* See PFNLOGOUTPUT() for details.
*/
static DECLCALLBACK(size_t) rtR0LogLoggerExFallbackOutput(void *pv, const char *pachChars, size_t cbChars)
{
PRTR0LOGLOGGERFALLBACK pThis = (PRTR0LOGLOGGERFALLBACK)pv;
if (cbChars)
{
size_t cbRet = 0;
for (;;)
{
/* how much */
uint32_t cb = sizeof(pThis->achScratch) - pThis->offScratch - 1; /* minus 1 - for the string terminator. */
if (cb > cbChars)
cb = (uint32_t)cbChars;
/* copy */
memcpy(&pThis->achScratch[pThis->offScratch], pachChars, cb);
/* advance */
pThis->offScratch += cb;
cbRet += cb;
cbChars -= cb;
/* done? */
if (cbChars <= 0)
return cbRet;
pachChars += cb;
/* flush */
pThis->achScratch[pThis->offScratch] = '\0';
rtR0LogLoggerExFallbackFlush(pThis);
}
/* won't ever get here! */
}
else
{
/*
* Termination call, flush the log.
*/
pThis->achScratch[pThis->offScratch] = '\0';
rtR0LogLoggerExFallbackFlush(pThis);
return 0;
}
}
/**
* Ring-0 fallback for cases where we're unable to grab the lock.
*
* This will happen when we're at a too high IRQL on Windows for instance and
* needs to be dealt with or we'll drop a lot of log output. This fallback will
* only output to some of the log destinations as a few of them may be doing
* dangerous things. We won't be doing any prefixing here either, at least not
* for the present, because it's too much hassle.
*
* @param fDestFlags The destination flags.
* @param fFlags The logger flags.
* @param pInt The internal logger data, for ring buffer output.
* @param pszFormat The format string.
* @param va The format arguments.
*/
static void rtR0LogLoggerExFallback(uint32_t fDestFlags, uint32_t fFlags, PRTLOGGERINTERNAL pInt,
const char *pszFormat, va_list va)
{
RTR0LOGLOGGERFALLBACK This;
This.fDestFlags = fDestFlags;
This.pInt = pInt;
/* fallback indicator. */
This.offScratch = 2;
This.achScratch[0] = '[';
This.achScratch[1] = 'F';
/* selected prefixes */
if (fFlags & RTLOGFLAGS_PREFIX_PID)
{
RTPROCESS Process = RTProcSelf();
This.achScratch[This.offScratch++] = ' ';
This.offScratch += RTStrFormatNumber(&This.achScratch[This.offScratch], Process, 16, sizeof(RTPROCESS) * 2, 0, RTSTR_F_ZEROPAD);
}
if (fFlags & RTLOGFLAGS_PREFIX_TID)
{
RTNATIVETHREAD Thread = RTThreadNativeSelf();
This.achScratch[This.offScratch++] = ' ';
This.offScratch += RTStrFormatNumber(&This.achScratch[This.offScratch], Thread, 16, sizeof(RTNATIVETHREAD) * 2, 0, RTSTR_F_ZEROPAD);
}
This.achScratch[This.offScratch++] = ']';
This.achScratch[This.offScratch++] = ' ';
RTLogFormatV(rtR0LogLoggerExFallbackOutput, &This, pszFormat, va);
}
#endif /* IN_RING0 */
/**
* Callback for RTLogFormatV which writes to the com port.
* See PFNLOGOUTPUT() for details.
*/
static DECLCALLBACK(size_t) rtLogOutput(void *pv, const char *pachChars, size_t cbChars)
{
PRTLOGGERINTERNAL pLoggerInt = (PRTLOGGERINTERNAL)pv;
if (cbChars)
{
size_t cbRet = 0;
for (;;)
{
PRTLOGBUFFERDESC const pBufDesc = pLoggerInt->pBufDesc;
if (pBufDesc->offBuf < pBufDesc->cbBuf)
{
/* how much */
char *pchBuf = pBufDesc->pchBuf;
uint32_t offBuf = pBufDesc->offBuf;
size_t cb = pBufDesc->cbBuf - offBuf - 1;
if (cb > cbChars)
cb = cbChars;
switch (cb)
{
default:
memcpy(&pchBuf[offBuf], pachChars, cb);
pBufDesc->offBuf = offBuf + (uint32_t)cb;
cbRet += cb;
cbChars -= cb;
if (cbChars <= 0)
return cbRet;
pachChars += cb;
break;
case 1:
pchBuf[offBuf] = pachChars[0];
pBufDesc->offBuf = offBuf + 1;
if (cbChars == 1)
return cbRet + 1;
cbChars -= 1;
pachChars += 1;
break;
case 2:
pchBuf[offBuf] = pachChars[0];
pchBuf[offBuf + 1] = pachChars[1];
pBufDesc->offBuf = offBuf + 2;
if (cbChars == 2)
return cbRet + 2;
cbChars -= 2;
pachChars += 2;
break;
case 3:
pchBuf[offBuf] = pachChars[0];
pchBuf[offBuf + 1] = pachChars[1];
pchBuf[offBuf + 2] = pachChars[2];
pBufDesc->offBuf = offBuf + 3;
if (cbChars == 3)
return cbRet + 3;
cbChars -= 3;
pachChars += 3;
break;
}
}
#if defined(RT_STRICT) && defined(IN_RING3)
else
{
# ifndef IPRT_NO_CRT
fprintf(stderr, "pBufDesc->offBuf >= pBufDesc->cbBuf (%#x >= %#x)\n", pBufDesc->offBuf, pBufDesc->cbBuf);
# else
RTLogWriteStdErr(RT_STR_TUPLE("pBufDesc->offBuf >= pBufDesc->cbBuf\n"));
# endif
AssertBreakpoint(); AssertBreakpoint();
}
#endif
/* flush */
rtlogFlush(pLoggerInt, true /*fNeedSpace*/);
}
/* won't ever get here! */
}
else
{
/*
* Termination call.
* There's always space for a terminator, and it's not counted.
*/
PRTLOGBUFFERDESC const pBufDesc = pLoggerInt->pBufDesc;
pBufDesc->pchBuf[RT_MIN(pBufDesc->offBuf, pBufDesc->cbBuf - 1)] = '\0';
return 0;
}
}
/**
* stpncpy implementation for use in rtLogOutputPrefixed w/ padding.
*
* @returns Pointer to the destination buffer byte following the copied string.
* @param pszDst The destination buffer.
* @param pszSrc The source string.
* @param cchSrcMax The maximum number of characters to copy from
* the string.
* @param cchMinWidth The minimum field with, padd with spaces to
* reach this.
*/
DECLINLINE(char *) rtLogStPNCpyPad(char *pszDst, const char *pszSrc, size_t cchSrcMax, size_t cchMinWidth)
{
size_t cchSrc = 0;
if (pszSrc)
{
cchSrc = strlen(pszSrc);
if (cchSrc > cchSrcMax)
cchSrc = cchSrcMax;
memcpy(pszDst, pszSrc, cchSrc);
pszDst += cchSrc;
}
do
*pszDst++ = ' ';
while (cchSrc++ < cchMinWidth);
return pszDst;
}
/**
* stpncpy implementation for use in rtLogOutputPrefixed w/ padding.
*
* @returns Pointer to the destination buffer byte following the copied string.
* @param pszDst The destination buffer.
* @param pszSrc The source string.
* @param cchSrc The number of characters to copy from the
* source. Equal or less than string length.
* @param cchMinWidth The minimum field with, padd with spaces to
* reach this.
*/
DECLINLINE(char *) rtLogStPNCpyPad2(char *pszDst, const char *pszSrc, size_t cchSrc, size_t cchMinWidth)
{
Assert(pszSrc);
Assert(strlen(pszSrc) >= cchSrc);
memcpy(pszDst, pszSrc, cchSrc);
pszDst += cchSrc;
do
*pszDst++ = ' ';
while (cchSrc++ < cchMinWidth);
return pszDst;
}
/**
* Callback for RTLogFormatV which writes to the logger instance.
* This version supports prefixes.
*
* See PFNLOGOUTPUT() for details.
*/
static DECLCALLBACK(size_t) rtLogOutputPrefixed(void *pv, const char *pachChars, size_t cbChars)
{
PRTLOGOUTPUTPREFIXEDARGS pArgs = (PRTLOGOUTPUTPREFIXEDARGS)pv;
PRTLOGGERINTERNAL pLoggerInt = pArgs->pLoggerInt;
if (cbChars)
{
uint64_t const fFlags = pLoggerInt->fFlags;
size_t cbRet = 0;
for (;;)
{
PRTLOGBUFFERDESC const pBufDesc = pLoggerInt->pBufDesc;
char * const pchBuf = pBufDesc->pchBuf;
uint32_t const cbBuf = pBufDesc->cbBuf;
uint32_t offBuf = pBufDesc->offBuf;
size_t cb = cbBuf - offBuf - 1;
const char *pszNewLine;
char *psz;
#if defined(RT_STRICT) && defined(IN_RING3)
/* sanity */
if (offBuf < cbBuf)
{ /* likely */ }
else
{
# ifndef IPRT_NO_CRT
fprintf(stderr, "offBuf >= cbBuf (%#x >= %#x)\n", offBuf, cbBuf);
# else
RTLogWriteStdErr(RT_STR_TUPLE("offBuf >= cbBuf\n"));
# endif
AssertBreakpoint(); AssertBreakpoint();
}
#endif
/*
* Pending prefix?
*/
if (pLoggerInt->fPendingPrefix)
{
/*
* Flush the buffer if there isn't enough room for the maximum prefix config.
* Max is 265, add a couple of extra bytes. See CCH_PREFIX check way below.
*/
if (cb >= 265 + 16)
pLoggerInt->fPendingPrefix = false;
else
{
rtlogFlush(pLoggerInt, true /*fNeedSpace*/);
continue;
}
/*
* Write the prefixes.
* psz is pointing to the current position.
*/
psz = &pchBuf[offBuf];
if (fFlags & RTLOGFLAGS_PREFIX_TS)
{
uint64_t u64 = RTTimeNanoTS();
int iBase = 16;
unsigned int fStrFlags = RTSTR_F_ZEROPAD;
if (fFlags & RTLOGFLAGS_DECIMAL_TS)
{
iBase = 10;
fStrFlags = 0;
}
if (fFlags & RTLOGFLAGS_REL_TS)
{
static volatile uint64_t s_u64LastTs;
uint64_t u64DiffTs = u64 - s_u64LastTs;
s_u64LastTs = u64;
/* We could have been preempted just before reading of s_u64LastTs by
* another thread which wrote s_u64LastTs. In that case the difference
* is negative which we simply ignore. */
u64 = (int64_t)u64DiffTs < 0 ? 0 : u64DiffTs;
}
/* 1E15 nanoseconds = 11 days */
psz += RTStrFormatNumber(psz, u64, iBase, 16, 0, fStrFlags);
*psz++ = ' ';
}
#define CCH_PREFIX_01 0 + 17
if (fFlags & RTLOGFLAGS_PREFIX_TSC)
{
#if defined(RT_ARCH_AMD64) || defined(RT_ARCH_X86)
uint64_t u64 = ASMReadTSC();
#else
uint64_t u64 = RTTimeNanoTS();
#endif
int iBase = 16;
unsigned int fStrFlags = RTSTR_F_ZEROPAD;
if (fFlags & RTLOGFLAGS_DECIMAL_TS)
{
iBase = 10;
fStrFlags = 0;
}
if (fFlags & RTLOGFLAGS_REL_TS)
{
static volatile uint64_t s_u64LastTsc;
int64_t i64DiffTsc = u64 - s_u64LastTsc;
s_u64LastTsc = u64;
/* We could have been preempted just before reading of s_u64LastTsc by
* another thread which wrote s_u64LastTsc. In that case the difference
* is negative which we simply ignore. */
u64 = i64DiffTsc < 0 ? 0 : i64DiffTsc;
}
/* 1E15 ticks at 4GHz = 69 hours */
psz += RTStrFormatNumber(psz, u64, iBase, 16, 0, fStrFlags);
*psz++ = ' ';
}
#define CCH_PREFIX_02 CCH_PREFIX_01 + 17
if (fFlags & RTLOGFLAGS_PREFIX_MS_PROG)
{
#ifndef IN_RING0
uint64_t u64 = RTTimeProgramMilliTS();
#else
uint64_t u64 = (RTTimeNanoTS() - pLoggerInt->nsR0ProgramStart) / RT_NS_1MS;
#endif
/* 1E8 milliseconds = 27 hours */
psz += RTStrFormatNumber(psz, u64, 10, 9, 0, RTSTR_F_ZEROPAD);
*psz++ = ' ';
}
#define CCH_PREFIX_03 CCH_PREFIX_02 + 21
if (fFlags & RTLOGFLAGS_PREFIX_TIME)
{
#if defined(IN_RING3) || defined(IN_RING0)
RTTIMESPEC TimeSpec;
RTTIME Time;
RTTimeExplode(&Time, RTTimeNow(&TimeSpec));
psz += RTStrFormatNumber(psz, Time.u8Hour, 10, 2, 0, RTSTR_F_ZEROPAD);
*psz++ = ':';
psz += RTStrFormatNumber(psz, Time.u8Minute, 10, 2, 0, RTSTR_F_ZEROPAD);
*psz++ = ':';
psz += RTStrFormatNumber(psz, Time.u8Second, 10, 2, 0, RTSTR_F_ZEROPAD);
*psz++ = '.';
psz += RTStrFormatNumber(psz, Time.u32Nanosecond / 1000, 10, 6, 0, RTSTR_F_ZEROPAD);
*psz++ = ' ';
#else
memset(psz, ' ', 16);
psz += 16;
#endif
}
#define CCH_PREFIX_04 CCH_PREFIX_03 + (3+1+3+1+3+1+7+1)
if (fFlags & RTLOGFLAGS_PREFIX_TIME_PROG)
{
#ifndef IN_RING0
uint64_t u64 = RTTimeProgramMicroTS();
#else
uint64_t u64 = (RTTimeNanoTS() - pLoggerInt->nsR0ProgramStart) / RT_NS_1US;
#endif
psz += RTStrFormatNumber(psz, (uint32_t)(u64 / RT_US_1HOUR), 10, 2, 0, RTSTR_F_ZEROPAD);
*psz++ = ':';
uint32_t u32 = (uint32_t)(u64 % RT_US_1HOUR);
psz += RTStrFormatNumber(psz, u32 / RT_US_1MIN, 10, 2, 0, RTSTR_F_ZEROPAD);
*psz++ = ':';
u32 %= RT_US_1MIN;
psz += RTStrFormatNumber(psz, u32 / RT_US_1SEC, 10, 2, 0, RTSTR_F_ZEROPAD);
*psz++ = '.';
psz += RTStrFormatNumber(psz, u32 % RT_US_1SEC, 10, 6, 0, RTSTR_F_ZEROPAD);
*psz++ = ' ';
}
#define CCH_PREFIX_05 CCH_PREFIX_04 + (9+1+2+1+2+1+6+1)
# if 0
if (fFlags & RTLOGFLAGS_PREFIX_DATETIME)
{
char szDate[32];
RTTIMESPEC Time;
RTTimeSpecToString(RTTimeNow(&Time), szDate, sizeof(szDate));
size_t cch = strlen(szDate);
memcpy(psz, szDate, cch);
psz += cch;
*psz++ = ' ';
}
# define CCH_PREFIX_06 CCH_PREFIX_05 + 32
# else
# define CCH_PREFIX_06 CCH_PREFIX_05 + 0
# endif
if (fFlags & RTLOGFLAGS_PREFIX_PID)
{
RTPROCESS Process = RTProcSelf();
psz += RTStrFormatNumber(psz, Process, 16, sizeof(RTPROCESS) * 2, 0, RTSTR_F_ZEROPAD);
*psz++ = ' ';
}
#define CCH_PREFIX_07 CCH_PREFIX_06 + 9
if (fFlags & RTLOGFLAGS_PREFIX_TID)
{
RTNATIVETHREAD Thread = RTThreadNativeSelf();
psz += RTStrFormatNumber(psz, Thread, 16, sizeof(RTNATIVETHREAD) * 2, 0, RTSTR_F_ZEROPAD);
*psz++ = ' ';
}
#define CCH_PREFIX_08 CCH_PREFIX_07 + 17
if (fFlags & RTLOGFLAGS_PREFIX_THREAD)
{
#ifdef IN_RING3
const char *pszName = RTThreadSelfName();
#elif defined IN_RC
const char *pszName = "EMT-RC";
#else
const char *pszName = pLoggerInt->szR0ThreadName[0] ? pLoggerInt->szR0ThreadName : "R0";
#endif
psz = rtLogStPNCpyPad(psz, pszName, 16, 8);
}
#define CCH_PREFIX_09 CCH_PREFIX_08 + 17
if (fFlags & RTLOGFLAGS_PREFIX_CPUID)
{
#if defined(RT_ARCH_AMD64) || defined(RT_ARCH_X86)
const uint8_t idCpu = ASMGetApicId();
#else
const RTCPUID idCpu = RTMpCpuId();
#endif
psz += RTStrFormatNumber(psz, idCpu, 16, sizeof(idCpu) * 2, 0, RTSTR_F_ZEROPAD);
*psz++ = ' ';
}
#define CCH_PREFIX_10 CCH_PREFIX_09 + 17
if ( (fFlags & RTLOGFLAGS_PREFIX_CUSTOM)
&& pLoggerInt->pfnPrefix)
{
psz += pLoggerInt->pfnPrefix(&pLoggerInt->Core, psz, 31, pLoggerInt->pvPrefixUserArg);
*psz++ = ' '; /* +32 */
}
#define CCH_PREFIX_11 CCH_PREFIX_10 + 32
if (fFlags & RTLOGFLAGS_PREFIX_LOCK_COUNTS)
{
#ifdef IN_RING3 /** @todo implement these counters in ring-0 too? */
RTTHREAD Thread = RTThreadSelf();
if (Thread != NIL_RTTHREAD)
{
uint32_t cReadLocks = RTLockValidatorReadLockGetCount(Thread);
uint32_t cWriteLocks = RTLockValidatorWriteLockGetCount(Thread) - g_cLoggerLockCount;
cReadLocks = RT_MIN(0xfff, cReadLocks);
cWriteLocks = RT_MIN(0xfff, cWriteLocks);
psz += RTStrFormatNumber(psz, cReadLocks, 16, 1, 0, RTSTR_F_ZEROPAD);
*psz++ = '/';
psz += RTStrFormatNumber(psz, cWriteLocks, 16, 1, 0, RTSTR_F_ZEROPAD);
}
else
#endif
{
*psz++ = '?';
*psz++ = '/';
*psz++ = '?';
}
*psz++ = ' ';
}
#define CCH_PREFIX_12 CCH_PREFIX_11 + 8
if (fFlags & RTLOGFLAGS_PREFIX_FLAG_NO)
{
psz += RTStrFormatNumber(psz, pArgs->fFlags, 16, 8, 0, RTSTR_F_ZEROPAD);
*psz++ = ' ';
}
#define CCH_PREFIX_13 CCH_PREFIX_12 + 9
if (fFlags & RTLOGFLAGS_PREFIX_FLAG)
{
#ifdef IN_RING3
const char *pszGroup = pArgs->iGroup != ~0U ? pLoggerInt->papszGroups[pArgs->iGroup] : NULL;
#else
const char *pszGroup = NULL;
#endif
psz = rtLogStPNCpyPad(psz, pszGroup, 16, 8);
}
#define CCH_PREFIX_14 CCH_PREFIX_13 + 17
if (fFlags & RTLOGFLAGS_PREFIX_GROUP_NO)
{
if (pArgs->iGroup != ~0U)
{
psz += RTStrFormatNumber(psz, pArgs->iGroup, 16, 3, 0, RTSTR_F_ZEROPAD);
*psz++ = ' ';
}
else
{
memcpy(psz, "-1 ", sizeof("-1 ") - 1);
psz += sizeof("-1 ") - 1;
} /* +9 */
}
#define CCH_PREFIX_15 CCH_PREFIX_14 + 9
if (fFlags & RTLOGFLAGS_PREFIX_GROUP)
{
const unsigned fGrp = pLoggerInt->afGroups[pArgs->iGroup != ~0U ? pArgs->iGroup : 0];
const char *pszGroup;
size_t cchGroup;
switch (pArgs->fFlags & fGrp)
{
case 0: pszGroup = "--------"; cchGroup = sizeof("--------") - 1; break;
case RTLOGGRPFLAGS_ENABLED: pszGroup = "enabled" ; cchGroup = sizeof("enabled" ) - 1; break;
case RTLOGGRPFLAGS_LEVEL_1: pszGroup = "level 1" ; cchGroup = sizeof("level 1" ) - 1; break;
case RTLOGGRPFLAGS_LEVEL_2: pszGroup = "level 2" ; cchGroup = sizeof("level 2" ) - 1; break;
case RTLOGGRPFLAGS_LEVEL_3: pszGroup = "level 3" ; cchGroup = sizeof("level 3" ) - 1; break;
case RTLOGGRPFLAGS_LEVEL_4: pszGroup = "level 4" ; cchGroup = sizeof("level 4" ) - 1; break;
case RTLOGGRPFLAGS_LEVEL_5: pszGroup = "level 5" ; cchGroup = sizeof("level 5" ) - 1; break;
case RTLOGGRPFLAGS_LEVEL_6: pszGroup = "level 6" ; cchGroup = sizeof("level 6" ) - 1; break;
case RTLOGGRPFLAGS_LEVEL_7: pszGroup = "level 7" ; cchGroup = sizeof("level 7" ) - 1; break;
case RTLOGGRPFLAGS_LEVEL_8: pszGroup = "level 8" ; cchGroup = sizeof("level 8" ) - 1; break;
case RTLOGGRPFLAGS_LEVEL_9: pszGroup = "level 9" ; cchGroup = sizeof("level 9" ) - 1; break;
case RTLOGGRPFLAGS_LEVEL_10: pszGroup = "level 10"; cchGroup = sizeof("level 10") - 1; break;
case RTLOGGRPFLAGS_LEVEL_11: pszGroup = "level 11"; cchGroup = sizeof("level 11") - 1; break;
case RTLOGGRPFLAGS_LEVEL_12: pszGroup = "level 12"; cchGroup = sizeof("level 12") - 1; break;
case RTLOGGRPFLAGS_FLOW: pszGroup = "flow" ; cchGroup = sizeof("flow" ) - 1; break;
case RTLOGGRPFLAGS_WARN: pszGroup = "warn" ; cchGroup = sizeof("warn" ) - 1; break;
default: pszGroup = "????????"; cchGroup = sizeof("????????") - 1; break;
}
psz = rtLogStPNCpyPad2(psz, pszGroup, RT_MIN(cchGroup, 16), 8);
}
#define CCH_PREFIX_16 CCH_PREFIX_15 + 17
if (pArgs->pszInfix)
{
size_t cchInfix = strlen(pArgs->pszInfix);
psz = rtLogStPNCpyPad2(psz, pArgs->pszInfix, RT_MIN(cchInfix, 8), 1);
}
#define CCH_PREFIX_17 CCH_PREFIX_16 + 9
#define CCH_PREFIX ( CCH_PREFIX_17 )
{ AssertCompile(CCH_PREFIX < 265); }
/*
* Done, figure what we've used and advance the buffer and free size.
*/
AssertMsg(psz - &pchBuf[offBuf] <= 223,
("%#zx (%zd) - fFlags=%#x\n", psz - &pchBuf[offBuf], psz - &pchBuf[offBuf], fFlags));
pBufDesc->offBuf = offBuf = (uint32_t)(psz - pchBuf);
cb = cbBuf - offBuf - 1;
}
else if (cb <= 2) /* 2 - Make sure we can write a \r\n and not loop forever. */
{
rtlogFlush(pLoggerInt, true /*fNeedSpace*/);
continue;
}
/*
* Done with the prefixing. Copy message text past the next newline.
*/
/* how much */
if (cb > cbChars)
cb = cbChars;
/* have newline? */
pszNewLine = (const char *)memchr(pachChars, '\n', cb);
if (pszNewLine)
{
cb = pszNewLine - pachChars;
if (!(fFlags & RTLOGFLAGS_USECRLF))
{
cb += 1;
memcpy(&pchBuf[offBuf], pachChars, cb);
pLoggerInt->fPendingPrefix = true;
}
else if (cb + 2U < cbBuf - offBuf)
{
memcpy(&pchBuf[offBuf], pachChars, cb);
pchBuf[offBuf + cb++] = '\r';
pchBuf[offBuf + cb++] = '\n';
cbChars++; /* Discount the extra '\r'. */
pachChars--; /* Ditto. */
cbRet--; /* Ditto. */
pLoggerInt->fPendingPrefix = true;
}
else
{
/* Insufficient buffer space, leave the '\n' for the next iteration. */
memcpy(&pchBuf[offBuf], pachChars, cb);
}
}
else
memcpy(&pchBuf[offBuf], pachChars, cb);
/* advance */
pBufDesc->offBuf = offBuf += (uint32_t)cb;
cbRet += cb;
cbChars -= cb;
/* done? */
if (cbChars <= 0)
return cbRet;
pachChars += cb;
}
/* won't ever get here! */
}
else
{
/*
* Termination call.
* There's always space for a terminator, and it's not counted.
*/
PRTLOGBUFFERDESC const pBufDesc = pLoggerInt->pBufDesc;
pBufDesc->pchBuf[RT_MIN(pBufDesc->offBuf, pBufDesc->cbBuf - 1)] = '\0';
return 0;
}
}
/**
* Write to a logger instance (worker function).
*
* This function will check whether the instance, group and flags makes up a
* logging kind which is currently enabled before writing anything to the log.
*
* @param pLoggerInt Pointer to logger instance. Must be non-NULL.
* @param fFlags The logging flags.
* @param iGroup The group.
* The value ~0U is reserved for compatibility with RTLogLogger[V] and is
* only for internal usage!
* @param pszFormat Format string.
* @param args Format arguments.
*/
static void rtlogLoggerExVLocked(PRTLOGGERINTERNAL pLoggerInt, unsigned fFlags, unsigned iGroup,
const char *pszFormat, va_list args)
{
/*
* If we've got an auxilary descriptor, check if the buffer was flushed.
*/
PRTLOGBUFFERDESC pBufDesc = pLoggerInt->pBufDesc;
PRTLOGBUFFERAUXDESC pAuxDesc = pBufDesc->pAux;
if (!pAuxDesc || !pAuxDesc->fFlushedIndicator)
{ /* likely, except maybe for ring-0 */ }
else
{
pAuxDesc->fFlushedIndicator = false;
pBufDesc->offBuf = 0;
}
/*
* Format the message.
*/
if (pLoggerInt->fFlags & (RTLOGFLAGS_PREFIX_MASK | RTLOGFLAGS_USECRLF))
{
RTLOGOUTPUTPREFIXEDARGS OutputArgs;
OutputArgs.pLoggerInt = pLoggerInt;
OutputArgs.iGroup = iGroup;
OutputArgs.fFlags = fFlags;
OutputArgs.pszInfix = NULL;
RTLogFormatV(rtLogOutputPrefixed, &OutputArgs, pszFormat, args);
}
else
RTLogFormatV(rtLogOutput, pLoggerInt, pszFormat, args);
/*
* Maybe flush the buffer and update the auxiliary descriptor if there is one.
*/
pBufDesc = pLoggerInt->pBufDesc; /* (the descriptor may have changed) */
if ( !(pLoggerInt->fFlags & RTLOGFLAGS_BUFFERED)
&& pBufDesc->offBuf)
rtlogFlush(pLoggerInt, false /*fNeedSpace*/);
else
{
pAuxDesc = pBufDesc->pAux;
if (pAuxDesc)
pAuxDesc->offBuf = pBufDesc->offBuf;
}
}
/**
* For calling rtlogLoggerExVLocked.
*
* @param pLoggerInt The logger.
* @param fFlags The logging flags.
* @param iGroup The group.
* The value ~0U is reserved for compatibility with RTLogLogger[V] and is
* only for internal usage!
* @param pszFormat Format string.
* @param ... Format arguments.
*/
static void rtlogLoggerExFLocked(PRTLOGGERINTERNAL pLoggerInt, unsigned fFlags, unsigned iGroup, const char *pszFormat, ...)
{
va_list va;
va_start(va, pszFormat);
rtlogLoggerExVLocked(pLoggerInt, fFlags, iGroup, pszFormat, va);
va_end(va);
}
RTDECL(int) RTLogLoggerExV(PRTLOGGER pLogger, unsigned fFlags, unsigned iGroup, const char *pszFormat, va_list args)
{
int rc;
PRTLOGGERINTERNAL pLoggerInt = (PRTLOGGERINTERNAL)pLogger;
RTLOG_RESOLVE_DEFAULT_RET(pLoggerInt, VINF_LOG_NO_LOGGER);
/*
* Validate and correct iGroup.
*/
if (iGroup != ~0U && iGroup >= pLoggerInt->cGroups)
iGroup = 0;
/*
* If no output, then just skip it.
*/
if ( (pLoggerInt->fFlags & RTLOGFLAGS_DISABLED)
|| !pLoggerInt->fDestFlags
|| !pszFormat || !*pszFormat)
return VINF_LOG_DISABLED;
if ( iGroup != ~0U
&& (pLoggerInt->afGroups[iGroup] & (fFlags | RTLOGGRPFLAGS_ENABLED)) != (fFlags | RTLOGGRPFLAGS_ENABLED))
return VINF_LOG_DISABLED;
/*
* Acquire logger instance sem.
*/
rc = rtlogLock(pLoggerInt);
if (RT_SUCCESS(rc))
{
/*
* Check group restrictions and call worker.
*/
if (RT_LIKELY( !(pLoggerInt->fFlags & RTLOGFLAGS_RESTRICT_GROUPS)
|| iGroup >= pLoggerInt->cGroups
|| !(pLoggerInt->afGroups[iGroup] & RTLOGGRPFLAGS_RESTRICT)
|| ++pLoggerInt->pacEntriesPerGroup[iGroup] < pLoggerInt->cMaxEntriesPerGroup ))
rtlogLoggerExVLocked(pLoggerInt, fFlags, iGroup, pszFormat, args);
else
{
uint32_t cEntries = pLoggerInt->pacEntriesPerGroup[iGroup];
if (cEntries > pLoggerInt->cMaxEntriesPerGroup)
pLoggerInt->pacEntriesPerGroup[iGroup] = cEntries - 1;
else
{
rtlogLoggerExVLocked(pLoggerInt, fFlags, iGroup, pszFormat, args);
if ( pLoggerInt->papszGroups
&& pLoggerInt->papszGroups[iGroup])
rtlogLoggerExFLocked(pLoggerInt, fFlags, iGroup, "%u messages from group %s (#%u), muting it.\n",
cEntries, pLoggerInt->papszGroups[iGroup], iGroup);
else
rtlogLoggerExFLocked(pLoggerInt, fFlags, iGroup, "%u messages from group #%u, muting it.\n", cEntries, iGroup);
}
}
/*
* Release the semaphore.
*/
rtlogUnlock(pLoggerInt);
return VINF_SUCCESS;
}
#ifdef IN_RING0
if (pLoggerInt->fDestFlags & ~RTLOGDEST_FILE)
{
rtR0LogLoggerExFallback(pLoggerInt->fDestFlags, pLoggerInt->fFlags, pLoggerInt, pszFormat, args);
return VINF_SUCCESS;
}
#endif
return rc;
}
RT_EXPORT_SYMBOL(RTLogLoggerExV);
RTDECL(void) RTLogLoggerV(PRTLOGGER pLogger, const char *pszFormat, va_list args)
{
RTLogLoggerExV(pLogger, 0, ~0U, pszFormat, args);
}
RT_EXPORT_SYMBOL(RTLogLoggerV);
RTDECL(void) RTLogPrintfV(const char *pszFormat, va_list va)
{
RTLogLoggerV(NULL, pszFormat, va);
}
RT_EXPORT_SYMBOL(RTLogPrintfV);
RTDECL(void) RTLogDumpPrintfV(void *pvUser, const char *pszFormat, va_list va)
{
RTLogLoggerV((PRTLOGGER)pvUser, pszFormat, va);
}
RT_EXPORT_SYMBOL(RTLogDumpPrintfV);
RTDECL(void) RTLogAssert(const char *pszFormat, ...)
{
va_list va;
va_start(va, pszFormat);
RTLogAssertV(pszFormat,va);
va_end(va);
}
RTDECL(void) RTLogAssertV(const char *pszFormat, va_list va)
{
/*
* To the release log if we got one.
*/
PRTLOGGER pLogger = RTLogRelGetDefaultInstance();
if (pLogger)
{
va_list vaCopy;
va_copy(vaCopy, va);
RTLogLoggerExV(pLogger, 0 /*fFlags*/, ~0U /*uGroup*/, pszFormat, vaCopy);
va_end(vaCopy);
#ifndef IN_RC
RTLogFlush(pLogger);
#endif
}
/*
* To the debug log if we got one, however when LOG_ENABLE (debug builds and
* such) we'll allow it to be created here.
*/
#ifdef LOG_ENABLED
pLogger = RTLogDefaultInstance();
#else
pLogger = RTLogGetDefaultInstance();
#endif
if (pLogger)
{
RTLogLoggerExV(pLogger, 0 /*fFlags*/, ~0U /*uGroup*/, pszFormat, va);
# ifndef IN_RC /* flushing is done automatically in RC */
RTLogFlush(pLogger);
#endif
}
}
#if defined(IN_RING3) && (defined(IN_RT_STATIC) || defined(IPRT_NO_CRT))
/**
* "Weak symbol" emulation to prevent dragging in log.cpp and all its friends
* just because some code is using Assert() in a statically linked binary.
*
* The pointers are in log-assert-pfn.cpp, so users only drag in that file and
* they remain NULL unless this file is also linked into the binary.
*/
class RTLogAssertWeakSymbolEmulator
{
public:
RTLogAssertWeakSymbolEmulator(void)
{
g_pfnRTLogAssert = RTLogAssert;
g_pfnRTLogAssertV = RTLogAssertV;
}
};
static RTLogAssertWeakSymbolEmulator rtLogInitWeakSymbolPointers;
#endif
#ifdef IN_RING3
/**
* @callback_method_impl{FNRTLOGPHASEMSG,
* Log phase callback function - assumes the lock is already held.}
*/
static DECLCALLBACK(void) rtlogPhaseMsgLocked(PRTLOGGER pLogger, const char *pszFormat, ...)
{
PRTLOGGERINTERNAL pLoggerInt = (PRTLOGGERINTERNAL)pLogger;
AssertPtrReturnVoid(pLoggerInt);
Assert(pLoggerInt->hSpinMtx != NIL_RTSEMSPINMUTEX);
va_list args;
va_start(args, pszFormat);
rtlogLoggerExVLocked(pLoggerInt, 0, ~0U, pszFormat, args);
va_end(args);
}
/**
* @callback_method_impl{FNRTLOGPHASEMSG,
* Log phase callback function - assumes the lock is not held.}
*/
static DECLCALLBACK(void) rtlogPhaseMsgNormal(PRTLOGGER pLogger, const char *pszFormat, ...)
{
PRTLOGGERINTERNAL pLoggerInt = (PRTLOGGERINTERNAL)pLogger;
AssertPtrReturnVoid(pLoggerInt);
Assert(pLoggerInt->hSpinMtx != NIL_RTSEMSPINMUTEX);
va_list args;
va_start(args, pszFormat);
RTLogLoggerExV(&pLoggerInt->Core, 0, ~0U, pszFormat, args);
va_end(args);
}
#endif /* IN_RING3 */