%PDF- %PDF-
| Direktori : /proc/thread-self/root/usr/lib/python3/dist-packages/sympy/polys/matrices/ |
| Current File : //proc/thread-self/root/usr/lib/python3/dist-packages/sympy/polys/matrices/normalforms.py |
'''Functions returning normal forms of matrices'''
from .domainmatrix import DomainMatrix
def smith_normal_form(m):
'''
Return the Smith Normal Form of a matrix `m` over the ring `domain`.
This will only work if the ring is a principal ideal domain.
Examples
========
>>> from sympy import ZZ
>>> from sympy.polys.matrices import DomainMatrix
>>> from sympy.polys.matrices.normalforms import smith_normal_form
>>> m = DomainMatrix([[ZZ(12), ZZ(6), ZZ(4)],
... [ZZ(3), ZZ(9), ZZ(6)],
... [ZZ(2), ZZ(16), ZZ(14)]], (3, 3), ZZ)
>>> print(smith_normal_form(m).to_Matrix())
Matrix([[1, 0, 0], [0, 10, 0], [0, 0, -30]])
'''
invs = invariant_factors(m)
smf = DomainMatrix.diag(invs, m.domain, m.shape)
return smf
def invariant_factors(m):
'''
Return the tuple of abelian invariants for a matrix `m`
(as in the Smith-Normal form)
References
==========
[1] https://en.wikipedia.org/wiki/Smith_normal_form#Algorithm
[2] http://sierra.nmsu.edu/morandi/notes/SmithNormalForm.pdf
'''
domain = m.domain
if not domain.is_PID:
msg = "The matrix entries must be over a principal ideal domain"
raise ValueError(msg)
if 0 in m.shape:
return ()
rows, cols = shape = m.shape
m = list(m.to_dense().rep)
def add_rows(m, i, j, a, b, c, d):
# replace m[i, :] by a*m[i, :] + b*m[j, :]
# and m[j, :] by c*m[i, :] + d*m[j, :]
for k in range(cols):
e = m[i][k]
m[i][k] = a*e + b*m[j][k]
m[j][k] = c*e + d*m[j][k]
def add_columns(m, i, j, a, b, c, d):
# replace m[:, i] by a*m[:, i] + b*m[:, j]
# and m[:, j] by c*m[:, i] + d*m[:, j]
for k in range(rows):
e = m[k][i]
m[k][i] = a*e + b*m[k][j]
m[k][j] = c*e + d*m[k][j]
def clear_column(m):
# make m[1:, 0] zero by row and column operations
if m[0][0] == 0:
return m # pragma: nocover
pivot = m[0][0]
for j in range(1, rows):
if m[j][0] == 0:
continue
d, r = domain.div(m[j][0], pivot)
if r == 0:
add_rows(m, 0, j, 1, 0, -d, 1)
else:
a, b, g = domain.gcdex(pivot, m[j][0])
d_0 = domain.div(m[j][0], g)[0]
d_j = domain.div(pivot, g)[0]
add_rows(m, 0, j, a, b, d_0, -d_j)
pivot = g
return m
def clear_row(m):
# make m[0, 1:] zero by row and column operations
if m[0][0] == 0:
return m # pragma: nocover
pivot = m[0][0]
for j in range(1, cols):
if m[0][j] == 0:
continue
d, r = domain.div(m[0][j], pivot)
if r == 0:
add_columns(m, 0, j, 1, 0, -d, 1)
else:
a, b, g = domain.gcdex(pivot, m[0][j])
d_0 = domain.div(m[0][j], g)[0]
d_j = domain.div(pivot, g)[0]
add_columns(m, 0, j, a, b, d_0, -d_j)
pivot = g
return m
# permute the rows and columns until m[0,0] is non-zero if possible
ind = [i for i in range(rows) if m[i][0] != 0]
if ind and ind[0] != 0:
m[0], m[ind[0]] = m[ind[0]], m[0]
else:
ind = [j for j in range(cols) if m[0][j] != 0]
if ind and ind[0] != 0:
for row in m:
row[0], row[ind[0]] = row[ind[0]], row[0]
# make the first row and column except m[0,0] zero
while (any([m[0][i] != 0 for i in range(1,cols)]) or
any([m[i][0] != 0 for i in range(1,rows)])):
m = clear_column(m)
m = clear_row(m)
if 1 in shape:
invs = ()
else:
lower_right = DomainMatrix([r[1:] for r in m[1:]], (rows-1, cols-1), domain)
invs = invariant_factors(lower_right)
if m[0][0]:
result = [m[0][0]]
result.extend(invs)
# in case m[0] doesn't divide the invariants of the rest of the matrix
for i in range(len(result)-1):
if result[i] and domain.div(result[i+1], result[i])[1] != 0:
g = domain.gcd(result[i+1], result[i])
result[i+1] = domain.div(result[i], g)[0]*result[i+1]
result[i] = g
else:
break
else:
result = invs + (m[0][0],)
return tuple(result)