%PDF- %PDF-
| Direktori : /proc/self/root/lib/python3/dist-packages/scipy/stats/ |
| Current File : //proc/self/root/lib/python3/dist-packages/scipy/stats/_continuous_distns.py |
# -*- coding: utf-8 -*-
#
# Author: Travis Oliphant 2002-2011 with contributions from
# SciPy Developers 2004-2011
#
import warnings
from collections.abc import Iterable
from functools import wraps
import ctypes
import numpy as np
from scipy._lib.doccer import (extend_notes_in_docstring,
replace_notes_in_docstring)
from scipy._lib._ccallback import LowLevelCallable
from scipy import optimize
from scipy import integrate
from scipy import interpolate
import scipy.special as sc
import scipy.special._ufuncs as scu
from scipy._lib._util import _lazyselect, _lazywhere
from . import _stats
from ._tukeylambda_stats import (tukeylambda_variance as _tlvar,
tukeylambda_kurtosis as _tlkurt)
from ._distn_infrastructure import (
get_distribution_names, _kurtosis, _ncx2_cdf, _ncx2_log_pdf, _ncx2_pdf,
rv_continuous, _skew, _get_fixed_fit_value, _check_shape)
from ._ksstats import kolmogn, kolmognp, kolmogni
from ._constants import (_XMIN, _EULER, _ZETA3,
_SQRT_2_OVER_PI, _LOG_SQRT_2_OVER_PI)
import scipy.stats._boost as _boost
def _remove_optimizer_parameters(kwds):
"""
Remove the optimizer-related keyword arguments 'loc', 'scale' and
'optimizer' from `kwds`. Then check that `kwds` is empty, and
raise `TypeError("Unknown arguments: %s." % kwds)` if it is not.
This function is used in the fit method of distributions that override
the default method and do not use the default optimization code.
`kwds` is modified in-place.
"""
kwds.pop('loc', None)
kwds.pop('scale', None)
kwds.pop('optimizer', None)
kwds.pop('method', None)
if kwds:
raise TypeError("Unknown arguments: %s." % kwds)
def _call_super_mom(fun):
# if fit method is overridden only for MLE and doesn't specify what to do
# if method == 'mm', this decorator calls generic implementation
@wraps(fun)
def wrapper(self, *args, **kwds):
method = kwds.get('method', 'mle').lower()
if method == 'mm':
return super(type(self), self).fit(*args, **kwds)
else:
return fun(self, *args, **kwds)
return wrapper
class ksone_gen(rv_continuous):
r"""Kolmogorov-Smirnov one-sided test statistic distribution.
This is the distribution of the one-sided Kolmogorov-Smirnov (KS)
statistics :math:`D_n^+` and :math:`D_n^-`
for a finite sample size ``n`` (the shape parameter).
%(before_notes)s
See Also
--------
kstwobign, kstwo, kstest
Notes
-----
:math:`D_n^+` and :math:`D_n^-` are given by
.. math::
D_n^+ &= \text{sup}_x (F_n(x) - F(x)),\\
D_n^- &= \text{sup}_x (F(x) - F_n(x)),\\
where :math:`F` is a continuous CDF and :math:`F_n` is an empirical CDF.
`ksone` describes the distribution under the null hypothesis of the KS test
that the empirical CDF corresponds to :math:`n` i.i.d. random variates
with CDF :math:`F`.
%(after_notes)s
References
----------
.. [1] Birnbaum, Z. W. and Tingey, F.H. "One-sided confidence contours
for probability distribution functions", The Annals of Mathematical
Statistics, 22(4), pp 592-596 (1951).
%(example)s
"""
def _pdf(self, x, n):
return -scu._smirnovp(n, x)
def _cdf(self, x, n):
return scu._smirnovc(n, x)
def _sf(self, x, n):
return sc.smirnov(n, x)
def _ppf(self, q, n):
return scu._smirnovci(n, q)
def _isf(self, q, n):
return sc.smirnovi(n, q)
ksone = ksone_gen(a=0.0, b=1.0, name='ksone')
class kstwo_gen(rv_continuous):
r"""Kolmogorov-Smirnov two-sided test statistic distribution.
This is the distribution of the two-sided Kolmogorov-Smirnov (KS)
statistic :math:`D_n` for a finite sample size ``n``
(the shape parameter).
%(before_notes)s
See Also
--------
kstwobign, ksone, kstest
Notes
-----
:math:`D_n` is given by
.. math::
D_n = \text{sup}_x |F_n(x) - F(x)|
where :math:`F` is a (continuous) CDF and :math:`F_n` is an empirical CDF.
`kstwo` describes the distribution under the null hypothesis of the KS test
that the empirical CDF corresponds to :math:`n` i.i.d. random variates
with CDF :math:`F`.
%(after_notes)s
References
----------
.. [1] Simard, R., L'Ecuyer, P. "Computing the Two-Sided
Kolmogorov-Smirnov Distribution", Journal of Statistical Software,
Vol 39, 11, 1-18 (2011).
%(example)s
"""
def _get_support(self, n):
return (0.5/(n if not isinstance(n, Iterable) else np.asanyarray(n)),
1.0)
def _pdf(self, x, n):
return kolmognp(n, x)
def _cdf(self, x, n):
return kolmogn(n, x)
def _sf(self, x, n):
return kolmogn(n, x, cdf=False)
def _ppf(self, q, n):
return kolmogni(n, q, cdf=True)
def _isf(self, q, n):
return kolmogni(n, q, cdf=False)
# Use the pdf, (not the ppf) to compute moments
kstwo = kstwo_gen(momtype=0, a=0.0, b=1.0, name='kstwo')
class kstwobign_gen(rv_continuous):
r"""Limiting distribution of scaled Kolmogorov-Smirnov two-sided test statistic.
This is the asymptotic distribution of the two-sided Kolmogorov-Smirnov
statistic :math:`\sqrt{n} D_n` that measures the maximum absolute
distance of the theoretical (continuous) CDF from the empirical CDF.
(see `kstest`).
%(before_notes)s
See Also
--------
ksone, kstwo, kstest
Notes
-----
:math:`\sqrt{n} D_n` is given by
.. math::
D_n = \text{sup}_x |F_n(x) - F(x)|
where :math:`F` is a continuous CDF and :math:`F_n` is an empirical CDF.
`kstwobign` describes the asymptotic distribution (i.e. the limit of
:math:`\sqrt{n} D_n`) under the null hypothesis of the KS test that the
empirical CDF corresponds to i.i.d. random variates with CDF :math:`F`.
%(after_notes)s
References
----------
.. [1] Feller, W. "On the Kolmogorov-Smirnov Limit Theorems for Empirical
Distributions", Ann. Math. Statist. Vol 19, 177-189 (1948).
%(example)s
"""
def _pdf(self, x):
return -scu._kolmogp(x)
def _cdf(self, x):
return scu._kolmogc(x)
def _sf(self, x):
return sc.kolmogorov(x)
def _ppf(self, q):
return scu._kolmogci(q)
def _isf(self, q):
return sc.kolmogi(q)
kstwobign = kstwobign_gen(a=0.0, name='kstwobign')
## Normal distribution
# loc = mu, scale = std
# Keep these implementations out of the class definition so they can be reused
# by other distributions.
_norm_pdf_C = np.sqrt(2*np.pi)
_norm_pdf_logC = np.log(_norm_pdf_C)
def _norm_pdf(x):
return np.exp(-x**2/2.0) / _norm_pdf_C
def _norm_logpdf(x):
return -x**2 / 2.0 - _norm_pdf_logC
def _norm_cdf(x):
return sc.ndtr(x)
def _norm_logcdf(x):
return sc.log_ndtr(x)
def _norm_ppf(q):
return sc.ndtri(q)
def _norm_sf(x):
return _norm_cdf(-x)
def _norm_logsf(x):
return _norm_logcdf(-x)
def _norm_isf(q):
return -_norm_ppf(q)
class norm_gen(rv_continuous):
r"""A normal continuous random variable.
The location (``loc``) keyword specifies the mean.
The scale (``scale``) keyword specifies the standard deviation.
%(before_notes)s
Notes
-----
The probability density function for `norm` is:
.. math::
f(x) = \frac{\exp(-x^2/2)}{\sqrt{2\pi}}
for a real number :math:`x`.
%(after_notes)s
%(example)s
"""
def _rvs(self, size=None, random_state=None):
return random_state.standard_normal(size)
def _pdf(self, x):
# norm.pdf(x) = exp(-x**2/2)/sqrt(2*pi)
return _norm_pdf(x)
def _logpdf(self, x):
return _norm_logpdf(x)
def _cdf(self, x):
return _norm_cdf(x)
def _logcdf(self, x):
return _norm_logcdf(x)
def _sf(self, x):
return _norm_sf(x)
def _logsf(self, x):
return _norm_logsf(x)
def _ppf(self, q):
return _norm_ppf(q)
def _isf(self, q):
return _norm_isf(q)
def _stats(self):
return 0.0, 1.0, 0.0, 0.0
def _entropy(self):
return 0.5*(np.log(2*np.pi)+1)
@_call_super_mom
@replace_notes_in_docstring(rv_continuous, notes="""\
For the normal distribution, method of moments and maximum likelihood
estimation give identical fits, and explicit formulas for the estimates
are available.
This function uses these explicit formulas for the maximum likelihood
estimation of the normal distribution parameters, so the
`optimizer` and `method` arguments are ignored.\n\n""")
def fit(self, data, **kwds):
floc = kwds.pop('floc', None)
fscale = kwds.pop('fscale', None)
_remove_optimizer_parameters(kwds)
if floc is not None and fscale is not None:
# This check is for consistency with `rv_continuous.fit`.
# Without this check, this function would just return the
# parameters that were given.
raise ValueError("All parameters fixed. There is nothing to "
"optimize.")
data = np.asarray(data)
if not np.isfinite(data).all():
raise RuntimeError("The data contains non-finite values.")
if floc is None:
loc = data.mean()
else:
loc = floc
if fscale is None:
scale = np.sqrt(((data - loc)**2).mean())
else:
scale = fscale
return loc, scale
def _munp(self, n):
"""
@returns Moments of standard normal distribution for integer n >= 0
See eq. 16 of https://arxiv.org/abs/1209.4340v2
"""
if n % 2 == 0:
return sc.factorial2(n - 1)
else:
return 0.
norm = norm_gen(name='norm')
class alpha_gen(rv_continuous):
r"""An alpha continuous random variable.
%(before_notes)s
Notes
-----
The probability density function for `alpha` ([1]_, [2]_) is:
.. math::
f(x, a) = \frac{1}{x^2 \Phi(a) \sqrt{2\pi}} *
\exp(-\frac{1}{2} (a-1/x)^2)
where :math:`\Phi` is the normal CDF, :math:`x > 0`, and :math:`a > 0`.
`alpha` takes ``a`` as a shape parameter.
%(after_notes)s
References
----------
.. [1] Johnson, Kotz, and Balakrishnan, "Continuous Univariate
Distributions, Volume 1", Second Edition, John Wiley and Sons,
p. 173 (1994).
.. [2] Anthony A. Salvia, "Reliability applications of the Alpha
Distribution", IEEE Transactions on Reliability, Vol. R-34,
No. 3, pp. 251-252 (1985).
%(example)s
"""
_support_mask = rv_continuous._open_support_mask
def _pdf(self, x, a):
# alpha.pdf(x, a) = 1/(x**2*Phi(a)*sqrt(2*pi)) * exp(-1/2 * (a-1/x)**2)
return 1.0/(x**2)/_norm_cdf(a)*_norm_pdf(a-1.0/x)
def _logpdf(self, x, a):
return -2*np.log(x) + _norm_logpdf(a-1.0/x) - np.log(_norm_cdf(a))
def _cdf(self, x, a):
return _norm_cdf(a-1.0/x) / _norm_cdf(a)
def _ppf(self, q, a):
return 1.0/np.asarray(a-sc.ndtri(q*_norm_cdf(a)))
def _stats(self, a):
return [np.inf]*2 + [np.nan]*2
alpha = alpha_gen(a=0.0, name='alpha')
class anglit_gen(rv_continuous):
r"""An anglit continuous random variable.
%(before_notes)s
Notes
-----
The probability density function for `anglit` is:
.. math::
f(x) = \sin(2x + \pi/2) = \cos(2x)
for :math:`-\pi/4 \le x \le \pi/4`.
%(after_notes)s
%(example)s
"""
def _pdf(self, x):
# anglit.pdf(x) = sin(2*x + \pi/2) = cos(2*x)
return np.cos(2*x)
def _cdf(self, x):
return np.sin(x+np.pi/4)**2.0
def _ppf(self, q):
return np.arcsin(np.sqrt(q))-np.pi/4
def _stats(self):
return 0.0, np.pi*np.pi/16-0.5, 0.0, -2*(np.pi**4 - 96)/(np.pi*np.pi-8)**2
def _entropy(self):
return 1-np.log(2)
anglit = anglit_gen(a=-np.pi/4, b=np.pi/4, name='anglit')
class arcsine_gen(rv_continuous):
r"""An arcsine continuous random variable.
%(before_notes)s
Notes
-----
The probability density function for `arcsine` is:
.. math::
f(x) = \frac{1}{\pi \sqrt{x (1-x)}}
for :math:`0 < x < 1`.
%(after_notes)s
%(example)s
"""
def _pdf(self, x):
# arcsine.pdf(x) = 1/(pi*sqrt(x*(1-x)))
with np.errstate(divide='ignore'):
return 1.0/np.pi/np.sqrt(x*(1-x))
def _cdf(self, x):
return 2.0/np.pi*np.arcsin(np.sqrt(x))
def _ppf(self, q):
return np.sin(np.pi/2.0*q)**2.0
def _stats(self):
mu = 0.5
mu2 = 1.0/8
g1 = 0
g2 = -3.0/2.0
return mu, mu2, g1, g2
def _entropy(self):
return -0.24156447527049044468
arcsine = arcsine_gen(a=0.0, b=1.0, name='arcsine')
class FitDataError(ValueError):
# This exception is raised by, for example, beta_gen.fit when both floc
# and fscale are fixed and there are values in the data not in the open
# interval (floc, floc+fscale).
def __init__(self, distr, lower, upper):
self.args = (
"Invalid values in `data`. Maximum likelihood "
"estimation with {distr!r} requires that {lower!r} < "
"(x - loc)/scale < {upper!r} for each x in `data`.".format(
distr=distr, lower=lower, upper=upper),
)
class FitSolverError(RuntimeError):
# This exception is raised by, for example, beta_gen.fit when
# optimize.fsolve returns with ier != 1.
def __init__(self, mesg):
emsg = "Solver for the MLE equations failed to converge: "
emsg += mesg.replace('\n', '')
self.args = (emsg,)
def _beta_mle_a(a, b, n, s1):
# The zeros of this function give the MLE for `a`, with
# `b`, `n` and `s1` given. `s1` is the sum of the logs of
# the data. `n` is the number of data points.
psiab = sc.psi(a + b)
func = s1 - n * (-psiab + sc.psi(a))
return func
def _beta_mle_ab(theta, n, s1, s2):
# Zeros of this function are critical points of
# the maximum likelihood function. Solving this system
# for theta (which contains a and b) gives the MLE for a and b
# given `n`, `s1` and `s2`. `s1` is the sum of the logs of the data,
# and `s2` is the sum of the logs of 1 - data. `n` is the number
# of data points.
a, b = theta
psiab = sc.psi(a + b)
func = [s1 - n * (-psiab + sc.psi(a)),
s2 - n * (-psiab + sc.psi(b))]
return func
class beta_gen(rv_continuous):
r"""A beta continuous random variable.
%(before_notes)s
Notes
-----
The probability density function for `beta` is:
.. math::
f(x, a, b) = \frac{\Gamma(a+b) x^{a-1} (1-x)^{b-1}}
{\Gamma(a) \Gamma(b)}
for :math:`0 <= x <= 1`, :math:`a > 0`, :math:`b > 0`, where
:math:`\Gamma` is the gamma function (`scipy.special.gamma`).
`beta` takes :math:`a` and :math:`b` as shape parameters.
%(after_notes)s
%(example)s
"""
def _rvs(self, a, b, size=None, random_state=None):
return random_state.beta(a, b, size)
def _pdf(self, x, a, b):
# gamma(a+b) * x**(a-1) * (1-x)**(b-1)
# beta.pdf(x, a, b) = ------------------------------------
# gamma(a)*gamma(b)
return _boost._beta_pdf(x, a, b)
def _logpdf(self, x, a, b):
lPx = sc.xlog1py(b - 1.0, -x) + sc.xlogy(a - 1.0, x)
lPx -= sc.betaln(a, b)
return lPx
def _cdf(self, x, a, b):
return _boost._beta_cdf(x, a, b)
def _sf(self, x, a, b):
return _boost._beta_sf(x, a, b)
def _isf(self, x, a, b):
with warnings.catch_warnings():
# See gh-14901
message = "overflow encountered in _beta_isf"
warnings.filterwarnings('ignore', message=message)
return _boost._beta_isf(x, a, b)
def _ppf(self, q, a, b):
with warnings.catch_warnings():
message = "overflow encountered in _beta_ppf"
warnings.filterwarnings('ignore', message=message)
return _boost._beta_ppf(q, a, b)
def _stats(self, a, b):
return(
_boost._beta_mean(a, b),
_boost._beta_variance(a, b),
_boost._beta_skewness(a, b),
_boost._beta_kurtosis_excess(a, b))
def _fitstart(self, data):
g1 = _skew(data)
g2 = _kurtosis(data)
def func(x):
a, b = x
sk = 2*(b-a)*np.sqrt(a + b + 1) / (a + b + 2) / np.sqrt(a*b)
ku = a**3 - a**2*(2*b-1) + b**2*(b+1) - 2*a*b*(b+2)
ku /= a*b*(a+b+2)*(a+b+3)
ku *= 6
return [sk-g1, ku-g2]
a, b = optimize.fsolve(func, (1.0, 1.0))
return super()._fitstart(data, args=(a, b))
@_call_super_mom
@extend_notes_in_docstring(rv_continuous, notes="""\
In the special case where `method="MLE"` and
both `floc` and `fscale` are given, a
`ValueError` is raised if any value `x` in `data` does not satisfy
`floc < x < floc + fscale`.\n\n""")
def fit(self, data, *args, **kwds):
# Override rv_continuous.fit, so we can more efficiently handle the
# case where floc and fscale are given.
floc = kwds.get('floc', None)
fscale = kwds.get('fscale', None)
if floc is None or fscale is None:
# do general fit
return super().fit(data, *args, **kwds)
# We already got these from kwds, so just pop them.
kwds.pop('floc', None)
kwds.pop('fscale', None)
f0 = _get_fixed_fit_value(kwds, ['f0', 'fa', 'fix_a'])
f1 = _get_fixed_fit_value(kwds, ['f1', 'fb', 'fix_b'])
_remove_optimizer_parameters(kwds)
if f0 is not None and f1 is not None:
# This check is for consistency with `rv_continuous.fit`.
raise ValueError("All parameters fixed. There is nothing to "
"optimize.")
# Special case: loc and scale are constrained, so we are fitting
# just the shape parameters. This can be done much more efficiently
# than the method used in `rv_continuous.fit`. (See the subsection
# "Two unknown parameters" in the section "Maximum likelihood" of
# the Wikipedia article on the Beta distribution for the formulas.)
if not np.isfinite(data).all():
raise RuntimeError("The data contains non-finite values.")
# Normalize the data to the interval [0, 1].
data = (np.ravel(data) - floc) / fscale
if np.any(data <= 0) or np.any(data >= 1):
raise FitDataError("beta", lower=floc, upper=floc + fscale)
xbar = data.mean()
if f0 is not None or f1 is not None:
# One of the shape parameters is fixed.
if f0 is not None:
# The shape parameter a is fixed, so swap the parameters
# and flip the data. We always solve for `a`. The result
# will be swapped back before returning.
b = f0
data = 1 - data
xbar = 1 - xbar
else:
b = f1
# Initial guess for a. Use the formula for the mean of the beta
# distribution, E[x] = a / (a + b), to generate a reasonable
# starting point based on the mean of the data and the given
# value of b.
a = b * xbar / (1 - xbar)
# Compute the MLE for `a` by solving _beta_mle_a.
theta, info, ier, mesg = optimize.fsolve(
_beta_mle_a, a,
args=(b, len(data), np.log(data).sum()),
full_output=True
)
if ier != 1:
raise FitSolverError(mesg=mesg)
a = theta[0]
if f0 is not None:
# The shape parameter a was fixed, so swap back the
# parameters.
a, b = b, a
else:
# Neither of the shape parameters is fixed.
# s1 and s2 are used in the extra arguments passed to _beta_mle_ab
# by optimize.fsolve.
s1 = np.log(data).sum()
s2 = sc.log1p(-data).sum()
# Use the "method of moments" to estimate the initial
# guess for a and b.
fac = xbar * (1 - xbar) / data.var(ddof=0) - 1
a = xbar * fac
b = (1 - xbar) * fac
# Compute the MLE for a and b by solving _beta_mle_ab.
theta, info, ier, mesg = optimize.fsolve(
_beta_mle_ab, [a, b],
args=(len(data), s1, s2),
full_output=True
)
if ier != 1:
raise FitSolverError(mesg=mesg)
a, b = theta
return a, b, floc, fscale
beta = beta_gen(a=0.0, b=1.0, name='beta')
class betaprime_gen(rv_continuous):
r"""A beta prime continuous random variable.
%(before_notes)s
Notes
-----
The probability density function for `betaprime` is:
.. math::
f(x, a, b) = \frac{x^{a-1} (1+x)^{-a-b}}{\beta(a, b)}
for :math:`x >= 0`, :math:`a > 0`, :math:`b > 0`, where
:math:`\beta(a, b)` is the beta function (see `scipy.special.beta`).
`betaprime` takes ``a`` and ``b`` as shape parameters.
%(after_notes)s
%(example)s
"""
_support_mask = rv_continuous._open_support_mask
def _rvs(self, a, b, size=None, random_state=None):
u1 = gamma.rvs(a, size=size, random_state=random_state)
u2 = gamma.rvs(b, size=size, random_state=random_state)
return u1 / u2
def _pdf(self, x, a, b):
# betaprime.pdf(x, a, b) = x**(a-1) * (1+x)**(-a-b) / beta(a, b)
return np.exp(self._logpdf(x, a, b))
def _logpdf(self, x, a, b):
return sc.xlogy(a - 1.0, x) - sc.xlog1py(a + b, x) - sc.betaln(a, b)
def _cdf(self, x, a, b):
return sc.betainc(a, b, x/(1.+x))
def _munp(self, n, a, b):
if n == 1.0:
return np.where(b > 1,
a/(b-1.0),
np.inf)
elif n == 2.0:
return np.where(b > 2,
a*(a+1.0)/((b-2.0)*(b-1.0)),
np.inf)
elif n == 3.0:
return np.where(b > 3,
a*(a+1.0)*(a+2.0)/((b-3.0)*(b-2.0)*(b-1.0)),
np.inf)
elif n == 4.0:
return np.where(b > 4,
(a*(a + 1.0)*(a + 2.0)*(a + 3.0) /
((b - 4.0)*(b - 3.0)*(b - 2.0)*(b - 1.0))),
np.inf)
else:
raise NotImplementedError
betaprime = betaprime_gen(a=0.0, name='betaprime')
class bradford_gen(rv_continuous):
r"""A Bradford continuous random variable.
%(before_notes)s
Notes
-----
The probability density function for `bradford` is:
.. math::
f(x, c) = \frac{c}{\log(1+c) (1+cx)}
for :math:`0 <= x <= 1` and :math:`c > 0`.
`bradford` takes ``c`` as a shape parameter for :math:`c`.
%(after_notes)s
%(example)s
"""
def _pdf(self, x, c):
# bradford.pdf(x, c) = c / (k * (1+c*x))
return c / (c*x + 1.0) / sc.log1p(c)
def _cdf(self, x, c):
return sc.log1p(c*x) / sc.log1p(c)
def _ppf(self, q, c):
return sc.expm1(q * sc.log1p(c)) / c
def _stats(self, c, moments='mv'):
k = np.log(1.0+c)
mu = (c-k)/(c*k)
mu2 = ((c+2.0)*k-2.0*c)/(2*c*k*k)
g1 = None
g2 = None
if 's' in moments:
g1 = np.sqrt(2)*(12*c*c-9*c*k*(c+2)+2*k*k*(c*(c+3)+3))
g1 /= np.sqrt(c*(c*(k-2)+2*k))*(3*c*(k-2)+6*k)
if 'k' in moments:
g2 = (c**3*(k-3)*(k*(3*k-16)+24)+12*k*c*c*(k-4)*(k-3) +
6*c*k*k*(3*k-14) + 12*k**3)
g2 /= 3*c*(c*(k-2)+2*k)**2
return mu, mu2, g1, g2
def _entropy(self, c):
k = np.log(1+c)
return k/2.0 - np.log(c/k)
bradford = bradford_gen(a=0.0, b=1.0, name='bradford')
class burr_gen(rv_continuous):
r"""A Burr (Type III) continuous random variable.
%(before_notes)s
See Also
--------
fisk : a special case of either `burr` or `burr12` with ``d=1``
burr12 : Burr Type XII distribution
mielke : Mielke Beta-Kappa / Dagum distribution
Notes
-----
The probability density function for `burr` is:
.. math::
f(x, c, d) = c d x^{-c - 1} / (1 + x^{-c})^{d + 1}
for :math:`x >= 0` and :math:`c, d > 0`.
`burr` takes :math:`c` and :math:`d` as shape parameters.
This is the PDF corresponding to the third CDF given in Burr's list;
specifically, it is equation (11) in Burr's paper [1]_. The distribution
is also commonly referred to as the Dagum distribution [2]_. If the
parameter :math:`c < 1` then the mean of the distribution does not
exist and if :math:`c < 2` the variance does not exist [2]_.
The PDF is finite at the left endpoint :math:`x = 0` if :math:`c * d >= 1`.
%(after_notes)s
References
----------
.. [1] Burr, I. W. "Cumulative frequency functions", Annals of
Mathematical Statistics, 13(2), pp 215-232 (1942).
.. [2] https://en.wikipedia.org/wiki/Dagum_distribution
.. [3] Kleiber, Christian. "A guide to the Dagum distributions."
Modeling Income Distributions and Lorenz Curves pp 97-117 (2008).
%(example)s
"""
# Do not set _support_mask to rv_continuous._open_support_mask
# Whether the left-hand endpoint is suitable for pdf evaluation is dependent
# on the values of c and d: if c*d >= 1, the pdf is finite, otherwise infinite.
def _pdf(self, x, c, d):
# burr.pdf(x, c, d) = c * d * x**(-c-1) * (1+x**(-c))**(-d-1)
output = _lazywhere(x == 0, [x, c, d],
lambda x_, c_, d_: c_ * d_ * (x_**(c_*d_-1)) / (1 + x_**c_),
f2 = lambda x_, c_, d_: (c_ * d_ * (x_ ** (-c_ - 1.0)) /
((1 + x_ ** (-c_)) ** (d_ + 1.0))))
if output.ndim == 0:
return output[()]
return output
def _logpdf(self, x, c, d):
output = _lazywhere(
x == 0, [x, c, d],
lambda x_, c_, d_: (np.log(c_) + np.log(d_) + sc.xlogy(c_*d_ - 1, x_)
- (d_+1) * sc.log1p(x_**(c_))),
f2 = lambda x_, c_, d_: (np.log(c_) + np.log(d_)
+ sc.xlogy(-c_ - 1, x_)
- sc.xlog1py(d_+1, x_**(-c_))))
if output.ndim == 0:
return output[()]
return output
def _cdf(self, x, c, d):
return (1 + x**(-c))**(-d)
def _logcdf(self, x, c, d):
return sc.log1p(x**(-c)) * (-d)
def _sf(self, x, c, d):
return np.exp(self._logsf(x, c, d))
def _logsf(self, x, c, d):
return np.log1p(- (1 + x**(-c))**(-d))
def _ppf(self, q, c, d):
return (q**(-1.0/d) - 1)**(-1.0/c)
def _stats(self, c, d):
nc = np.arange(1, 5).reshape(4,1) / c
#ek is the kth raw moment, e1 is the mean e2-e1**2 variance etc.
e1, e2, e3, e4 = sc.beta(d + nc, 1. - nc) * d
mu = np.where(c > 1.0, e1, np.nan)
mu2_if_c = e2 - mu**2
mu2 = np.where(c > 2.0, mu2_if_c, np.nan)
g1 = _lazywhere(
c > 3.0,
(c, e1, e2, e3, mu2_if_c),
lambda c, e1, e2, e3, mu2_if_c: (e3 - 3*e2*e1 + 2*e1**3) / np.sqrt((mu2_if_c)**3),
fillvalue=np.nan)
g2 = _lazywhere(
c > 4.0,
(c, e1, e2, e3, e4, mu2_if_c),
lambda c, e1, e2, e3, e4, mu2_if_c: (
((e4 - 4*e3*e1 + 6*e2*e1**2 - 3*e1**4) / mu2_if_c**2) - 3),
fillvalue=np.nan)
if np.ndim(c) == 0:
return mu.item(), mu2.item(), g1.item(), g2.item()
return mu, mu2, g1, g2
def _munp(self, n, c, d):
def __munp(n, c, d):
nc = 1. * n / c
return d * sc.beta(1.0 - nc, d + nc)
n, c, d = np.asarray(n), np.asarray(c), np.asarray(d)
return _lazywhere((c > n) & (n == n) & (d == d), (c, d, n),
lambda c, d, n: __munp(n, c, d),
np.nan)
burr = burr_gen(a=0.0, name='burr')
class burr12_gen(rv_continuous):
r"""A Burr (Type XII) continuous random variable.
%(before_notes)s
See Also
--------
fisk : a special case of either `burr` or `burr12` with ``d=1``
burr : Burr Type III distribution
Notes
-----
The probability density function for `burr` is:
.. math::
f(x, c, d) = c d x^{c-1} / (1 + x^c)^{d + 1}
for :math:`x >= 0` and :math:`c, d > 0`.
`burr12` takes ``c`` and ``d`` as shape parameters for :math:`c`
and :math:`d`.
This is the PDF corresponding to the twelfth CDF given in Burr's list;
specifically, it is equation (20) in Burr's paper [1]_.
%(after_notes)s
The Burr type 12 distribution is also sometimes referred to as
the Singh-Maddala distribution from NIST [2]_.
References
----------
.. [1] Burr, I. W. "Cumulative frequency functions", Annals of
Mathematical Statistics, 13(2), pp 215-232 (1942).
.. [2] https://www.itl.nist.gov/div898/software/dataplot/refman2/auxillar/b12pdf.htm
.. [3] "Burr distribution",
https://en.wikipedia.org/wiki/Burr_distribution
%(example)s
"""
def _pdf(self, x, c, d):
# burr12.pdf(x, c, d) = c * d * x**(c-1) * (1+x**(c))**(-d-1)
return np.exp(self._logpdf(x, c, d))
def _logpdf(self, x, c, d):
return np.log(c) + np.log(d) + sc.xlogy(c - 1, x) + sc.xlog1py(-d-1, x**c)
def _cdf(self, x, c, d):
return -sc.expm1(self._logsf(x, c, d))
def _logcdf(self, x, c, d):
return sc.log1p(-(1 + x**c)**(-d))
def _sf(self, x, c, d):
return np.exp(self._logsf(x, c, d))
def _logsf(self, x, c, d):
return sc.xlog1py(-d, x**c)
def _ppf(self, q, c, d):
# The following is an implementation of
# ((1 - q)**(-1.0/d) - 1)**(1.0/c)
# that does a better job handling small values of q.
return sc.expm1(-1/d * sc.log1p(-q))**(1/c)
def _munp(self, n, c, d):
nc = 1. * n / c
return d * sc.beta(1.0 + nc, d - nc)
burr12 = burr12_gen(a=0.0, name='burr12')
class fisk_gen(burr_gen):
r"""A Fisk continuous random variable.
The Fisk distribution is also known as the log-logistic distribution.
%(before_notes)s
See Also
--------
burr
Notes
-----
The probability density function for `fisk` is:
.. math::
f(x, c) = c x^{-c-1} (1 + x^{-c})^{-2}
for :math:`x >= 0` and :math:`c > 0`.
`fisk` takes ``c`` as a shape parameter for :math:`c`.
`fisk` is a special case of `burr` or `burr12` with ``d=1``.
%(after_notes)s
%(example)s
"""
def _pdf(self, x, c):
# fisk.pdf(x, c) = c * x**(-c-1) * (1 + x**(-c))**(-2)
return burr._pdf(x, c, 1.0)
def _cdf(self, x, c):
return burr._cdf(x, c, 1.0)
def _sf(self, x, c):
return burr._sf(x, c, 1.0)
def _logpdf(self, x, c):
# fisk.pdf(x, c) = c * x**(-c-1) * (1 + x**(-c))**(-2)
return burr._logpdf(x, c, 1.0)
def _logcdf(self, x, c):
return burr._logcdf(x, c, 1.0)
def _logsf(self, x, c):
return burr._logsf(x, c, 1.0)
def _ppf(self, x, c):
return burr._ppf(x, c, 1.0)
def _munp(self, n, c):
return burr._munp(n, c, 1.0)
def _stats(self, c):
return burr._stats(c, 1.0)
def _entropy(self, c):
return 2 - np.log(c)
fisk = fisk_gen(a=0.0, name='fisk')
class cauchy_gen(rv_continuous):
r"""A Cauchy continuous random variable.
%(before_notes)s
Notes
-----
The probability density function for `cauchy` is
.. math::
f(x) = \frac{1}{\pi (1 + x^2)}
for a real number :math:`x`.
%(after_notes)s
%(example)s
"""
def _pdf(self, x):
# cauchy.pdf(x) = 1 / (pi * (1 + x**2))
return 1.0/np.pi/(1.0+x*x)
def _cdf(self, x):
return 0.5 + 1.0/np.pi*np.arctan(x)
def _ppf(self, q):
return np.tan(np.pi*q-np.pi/2.0)
def _sf(self, x):
return 0.5 - 1.0/np.pi*np.arctan(x)
def _isf(self, q):
return np.tan(np.pi/2.0-np.pi*q)
def _stats(self):
return np.nan, np.nan, np.nan, np.nan
def _entropy(self):
return np.log(4*np.pi)
def _fitstart(self, data, args=None):
# Initialize ML guesses using quartiles instead of moments.
p25, p50, p75 = np.percentile(data, [25, 50, 75])
return p50, (p75 - p25)/2
cauchy = cauchy_gen(name='cauchy')
class chi_gen(rv_continuous):
r"""A chi continuous random variable.
%(before_notes)s
Notes
-----
The probability density function for `chi` is:
.. math::
f(x, k) = \frac{1}{2^{k/2-1} \Gamma \left( k/2 \right)}
x^{k-1} \exp \left( -x^2/2 \right)
for :math:`x >= 0` and :math:`k > 0` (degrees of freedom, denoted ``df``
in the implementation). :math:`\Gamma` is the gamma function
(`scipy.special.gamma`).
Special cases of `chi` are:
- ``chi(1, loc, scale)`` is equivalent to `halfnorm`
- ``chi(2, 0, scale)`` is equivalent to `rayleigh`
- ``chi(3, 0, scale)`` is equivalent to `maxwell`
`chi` takes ``df`` as a shape parameter.
%(after_notes)s
%(example)s
"""
def _rvs(self, df, size=None, random_state=None):
return np.sqrt(chi2.rvs(df, size=size, random_state=random_state))
def _pdf(self, x, df):
# x**(df-1) * exp(-x**2/2)
# chi.pdf(x, df) = -------------------------
# 2**(df/2-1) * gamma(df/2)
return np.exp(self._logpdf(x, df))
def _logpdf(self, x, df):
l = np.log(2) - .5*np.log(2)*df - sc.gammaln(.5*df)
return l + sc.xlogy(df - 1., x) - .5*x**2
def _cdf(self, x, df):
return sc.gammainc(.5*df, .5*x**2)
def _sf(self, x, df):
return sc.gammaincc(.5*df, .5*x**2)
def _ppf(self, q, df):
return np.sqrt(2*sc.gammaincinv(.5*df, q))
def _isf(self, q, df):
return np.sqrt(2*sc.gammainccinv(.5*df, q))
def _stats(self, df):
mu = np.sqrt(2)*np.exp(sc.gammaln(df/2.0+0.5)-sc.gammaln(df/2.0))
mu2 = df - mu*mu
g1 = (2*mu**3.0 + mu*(1-2*df))/np.asarray(np.power(mu2, 1.5))
g2 = 2*df*(1.0-df)-6*mu**4 + 4*mu**2 * (2*df-1)
g2 /= np.asarray(mu2**2.0)
return mu, mu2, g1, g2
chi = chi_gen(a=0.0, name='chi')
class chi2_gen(rv_continuous):
r"""A chi-squared continuous random variable.
For the noncentral chi-square distribution, see `ncx2`.
%(before_notes)s
See Also
--------
ncx2
Notes
-----
The probability density function for `chi2` is:
.. math::
f(x, k) = \frac{1}{2^{k/2} \Gamma \left( k/2 \right)}
x^{k/2-1} \exp \left( -x/2 \right)
for :math:`x > 0` and :math:`k > 0` (degrees of freedom, denoted ``df``
in the implementation).
`chi2` takes ``df`` as a shape parameter.
The chi-squared distribution is a special case of the gamma
distribution, with gamma parameters ``a = df/2``, ``loc = 0`` and
``scale = 2``.
%(after_notes)s
%(example)s
"""
def _rvs(self, df, size=None, random_state=None):
return random_state.chisquare(df, size)
def _pdf(self, x, df):
# chi2.pdf(x, df) = 1 / (2*gamma(df/2)) * (x/2)**(df/2-1) * exp(-x/2)
return np.exp(self._logpdf(x, df))
def _logpdf(self, x, df):
return sc.xlogy(df/2.-1, x) - x/2. - sc.gammaln(df/2.) - (np.log(2)*df)/2.
def _cdf(self, x, df):
return sc.chdtr(df, x)
def _sf(self, x, df):
return sc.chdtrc(df, x)
def _isf(self, p, df):
return sc.chdtri(df, p)
def _ppf(self, p, df):
return 2*sc.gammaincinv(df/2, p)
def _stats(self, df):
mu = df
mu2 = 2*df
g1 = 2*np.sqrt(2.0/df)
g2 = 12.0/df
return mu, mu2, g1, g2
chi2 = chi2_gen(a=0.0, name='chi2')
class cosine_gen(rv_continuous):
r"""A cosine continuous random variable.
%(before_notes)s
Notes
-----
The cosine distribution is an approximation to the normal distribution.
The probability density function for `cosine` is:
.. math::
f(x) = \frac{1}{2\pi} (1+\cos(x))
for :math:`-\pi \le x \le \pi`.
%(after_notes)s
%(example)s
"""
def _pdf(self, x):
# cosine.pdf(x) = 1/(2*pi) * (1+cos(x))
return 1.0/2/np.pi*(1+np.cos(x))
def _cdf(self, x):
return scu._cosine_cdf(x)
def _sf(self, x):
return scu._cosine_cdf(-x)
def _ppf(self, p):
return scu._cosine_invcdf(p)
def _isf(self, p):
return -scu._cosine_invcdf(p)
def _stats(self):
return 0.0, np.pi*np.pi/3.0-2.0, 0.0, -6.0*(np.pi**4-90)/(5.0*(np.pi*np.pi-6)**2)
def _entropy(self):
return np.log(4*np.pi)-1.0
cosine = cosine_gen(a=-np.pi, b=np.pi, name='cosine')
class dgamma_gen(rv_continuous):
r"""A double gamma continuous random variable.
%(before_notes)s
Notes
-----
The probability density function for `dgamma` is:
.. math::
f(x, a) = \frac{1}{2\Gamma(a)} |x|^{a-1} \exp(-|x|)
for a real number :math:`x` and :math:`a > 0`. :math:`\Gamma` is the
gamma function (`scipy.special.gamma`).
`dgamma` takes ``a`` as a shape parameter for :math:`a`.
%(after_notes)s
%(example)s
"""
def _rvs(self, a, size=None, random_state=None):
u = random_state.uniform(size=size)
gm = gamma.rvs(a, size=size, random_state=random_state)
return gm * np.where(u >= 0.5, 1, -1)
def _pdf(self, x, a):
# dgamma.pdf(x, a) = 1 / (2*gamma(a)) * abs(x)**(a-1) * exp(-abs(x))
ax = abs(x)
return 1.0/(2*sc.gamma(a))*ax**(a-1.0) * np.exp(-ax)
def _logpdf(self, x, a):
ax = abs(x)
return sc.xlogy(a - 1.0, ax) - ax - np.log(2) - sc.gammaln(a)
def _cdf(self, x, a):
fac = 0.5*sc.gammainc(a, abs(x))
return np.where(x > 0, 0.5 + fac, 0.5 - fac)
def _sf(self, x, a):
fac = 0.5*sc.gammainc(a, abs(x))
return np.where(x > 0, 0.5-fac, 0.5+fac)
def _ppf(self, q, a):
fac = sc.gammainccinv(a, 1-abs(2*q-1))
return np.where(q > 0.5, fac, -fac)
def _stats(self, a):
mu2 = a*(a+1.0)
return 0.0, mu2, 0.0, (a+2.0)*(a+3.0)/mu2-3.0
dgamma = dgamma_gen(name='dgamma')
class dweibull_gen(rv_continuous):
r"""A double Weibull continuous random variable.
%(before_notes)s
Notes
-----
The probability density function for `dweibull` is given by
.. math::
f(x, c) = c / 2 |x|^{c-1} \exp(-|x|^c)
for a real number :math:`x` and :math:`c > 0`.
`dweibull` takes ``c`` as a shape parameter for :math:`c`.
%(after_notes)s
%(example)s
"""
def _rvs(self, c, size=None, random_state=None):
u = random_state.uniform(size=size)
w = weibull_min.rvs(c, size=size, random_state=random_state)
return w * (np.where(u >= 0.5, 1, -1))
def _pdf(self, x, c):
# dweibull.pdf(x, c) = c / 2 * abs(x)**(c-1) * exp(-abs(x)**c)
ax = abs(x)
Px = c / 2.0 * ax**(c-1.0) * np.exp(-ax**c)
return Px
def _logpdf(self, x, c):
ax = abs(x)
return np.log(c) - np.log(2.0) + sc.xlogy(c - 1.0, ax) - ax**c
def _cdf(self, x, c):
Cx1 = 0.5 * np.exp(-abs(x)**c)
return np.where(x > 0, 1 - Cx1, Cx1)
def _ppf(self, q, c):
fac = 2. * np.where(q <= 0.5, q, 1. - q)
fac = np.power(-np.log(fac), 1.0 / c)
return np.where(q > 0.5, fac, -fac)
def _munp(self, n, c):
return (1 - (n % 2)) * sc.gamma(1.0 + 1.0 * n / c)
# since we know that all odd moments are zeros, return them at once.
# returning Nones from _stats makes the public stats call _munp
# so overall we're saving one or two gamma function evaluations here.
def _stats(self, c):
return 0, None, 0, None
dweibull = dweibull_gen(name='dweibull')
class expon_gen(rv_continuous):
r"""An exponential continuous random variable.
%(before_notes)s
Notes
-----
The probability density function for `expon` is:
.. math::
f(x) = \exp(-x)
for :math:`x \ge 0`.
%(after_notes)s
A common parameterization for `expon` is in terms of the rate parameter
``lambda``, such that ``pdf = lambda * exp(-lambda * x)``. This
parameterization corresponds to using ``scale = 1 / lambda``.
The exponential distribution is a special case of the gamma
distributions, with gamma shape parameter ``a = 1``.
%(example)s
"""
def _rvs(self, size=None, random_state=None):
return random_state.standard_exponential(size)
def _pdf(self, x):
# expon.pdf(x) = exp(-x)
return np.exp(-x)
def _logpdf(self, x):
return -x
def _cdf(self, x):
return -sc.expm1(-x)
def _ppf(self, q):
return -sc.log1p(-q)
def _sf(self, x):
return np.exp(-x)
def _logsf(self, x):
return -x
def _isf(self, q):
return -np.log(q)
def _stats(self):
return 1.0, 1.0, 2.0, 6.0
def _entropy(self):
return 1.0
@_call_super_mom
@replace_notes_in_docstring(rv_continuous, notes="""\
When `method='MLE'`,
this function uses explicit formulas for the maximum likelihood
estimation of the exponential distribution parameters, so the
`optimizer`, `loc` and `scale` keyword arguments are
ignored.\n\n""")
def fit(self, data, *args, **kwds):
if len(args) > 0:
raise TypeError("Too many arguments.")
floc = kwds.pop('floc', None)
fscale = kwds.pop('fscale', None)
_remove_optimizer_parameters(kwds)
if floc is not None and fscale is not None:
# This check is for consistency with `rv_continuous.fit`.
raise ValueError("All parameters fixed. There is nothing to "
"optimize.")
data = np.asarray(data)
if not np.isfinite(data).all():
raise RuntimeError("The data contains non-finite values.")
data_min = data.min()
if floc is None:
# ML estimate of the location is the minimum of the data.
loc = data_min
else:
loc = floc
if data_min < loc:
# There are values that are less than the specified loc.
raise FitDataError("expon", lower=floc, upper=np.inf)
if fscale is None:
# ML estimate of the scale is the shifted mean.
scale = data.mean() - loc
else:
scale = fscale
# We expect the return values to be floating point, so ensure it
# by explicitly converting to float.
return float(loc), float(scale)
expon = expon_gen(a=0.0, name='expon')
class exponnorm_gen(rv_continuous):
r"""An exponentially modified Normal continuous random variable.
Also known as the exponentially modified Gaussian distribution [1]_.
%(before_notes)s
Notes
-----
The probability density function for `exponnorm` is:
.. math::
f(x, K) = \frac{1}{2K} \exp\left(\frac{1}{2 K^2} - x / K \right)
\text{erfc}\left(-\frac{x - 1/K}{\sqrt{2}}\right)
where :math:`x` is a real number and :math:`K > 0`.
It can be thought of as the sum of a standard normal random variable
and an independent exponentially distributed random variable with rate
``1/K``.
%(after_notes)s
An alternative parameterization of this distribution (for example, in
the Wikpedia article [1]_) involves three parameters, :math:`\mu`,
:math:`\lambda` and :math:`\sigma`.
In the present parameterization this corresponds to having ``loc`` and
``scale`` equal to :math:`\mu` and :math:`\sigma`, respectively, and
shape parameter :math:`K = 1/(\sigma\lambda)`.
.. versionadded:: 0.16.0
References
----------
.. [1] Exponentially modified Gaussian distribution, Wikipedia,
https://en.wikipedia.org/wiki/Exponentially_modified_Gaussian_distribution
%(example)s
"""
def _rvs(self, K, size=None, random_state=None):
expval = random_state.standard_exponential(size) * K
gval = random_state.standard_normal(size)
return expval + gval
def _pdf(self, x, K):
return np.exp(self._logpdf(x, K))
def _logpdf(self, x, K):
invK = 1.0 / K
exparg = invK * (0.5 * invK - x)
return exparg + _norm_logcdf(x - invK) - np.log(K)
def _cdf(self, x, K):
invK = 1.0 / K
expval = invK * (0.5 * invK - x)
logprod = expval + _norm_logcdf(x - invK)
return _norm_cdf(x) - np.exp(logprod)
def _sf(self, x, K):
invK = 1.0 / K
expval = invK * (0.5 * invK - x)
logprod = expval + _norm_logcdf(x - invK)
return _norm_cdf(-x) + np.exp(logprod)
def _stats(self, K):
K2 = K * K
opK2 = 1.0 + K2
skw = 2 * K**3 * opK2**(-1.5)
krt = 6.0 * K2 * K2 * opK2**(-2)
return K, opK2, skw, krt
exponnorm = exponnorm_gen(name='exponnorm')
class exponweib_gen(rv_continuous):
r"""An exponentiated Weibull continuous random variable.
%(before_notes)s
See Also
--------
weibull_min, numpy.random.Generator.weibull
Notes
-----
The probability density function for `exponweib` is:
.. math::
f(x, a, c) = a c [1-\exp(-x^c)]^{a-1} \exp(-x^c) x^{c-1}
and its cumulative distribution function is:
.. math::
F(x, a, c) = [1-\exp(-x^c)]^a
for :math:`x > 0`, :math:`a > 0`, :math:`c > 0`.
`exponweib` takes :math:`a` and :math:`c` as shape parameters:
* :math:`a` is the exponentiation parameter,
with the special case :math:`a=1` corresponding to the
(non-exponentiated) Weibull distribution `weibull_min`.
* :math:`c` is the shape parameter of the non-exponentiated Weibull law.
%(after_notes)s
References
----------
https://en.wikipedia.org/wiki/Exponentiated_Weibull_distribution
%(example)s
"""
def _pdf(self, x, a, c):
# exponweib.pdf(x, a, c) =
# a * c * (1-exp(-x**c))**(a-1) * exp(-x**c)*x**(c-1)
return np.exp(self._logpdf(x, a, c))
def _logpdf(self, x, a, c):
negxc = -x**c
exm1c = -sc.expm1(negxc)
logp = (np.log(a) + np.log(c) + sc.xlogy(a - 1.0, exm1c) +
negxc + sc.xlogy(c - 1.0, x))
return logp
def _cdf(self, x, a, c):
exm1c = -sc.expm1(-x**c)
return exm1c**a
def _ppf(self, q, a, c):
return (-sc.log1p(-q**(1.0/a)))**np.asarray(1.0/c)
exponweib = exponweib_gen(a=0.0, name='exponweib')
class exponpow_gen(rv_continuous):
r"""An exponential power continuous random variable.
%(before_notes)s
Notes
-----
The probability density function for `exponpow` is:
.. math::
f(x, b) = b x^{b-1} \exp(1 + x^b - \exp(x^b))
for :math:`x \ge 0`, :math:`b > 0`. Note that this is a different
distribution from the exponential power distribution that is also known
under the names "generalized normal" or "generalized Gaussian".
`exponpow` takes ``b`` as a shape parameter for :math:`b`.
%(after_notes)s
References
----------
http://www.math.wm.edu/~leemis/chart/UDR/PDFs/Exponentialpower.pdf
%(example)s
"""
def _pdf(self, x, b):
# exponpow.pdf(x, b) = b * x**(b-1) * exp(1 + x**b - exp(x**b))
return np.exp(self._logpdf(x, b))
def _logpdf(self, x, b):
xb = x**b
f = 1 + np.log(b) + sc.xlogy(b - 1.0, x) + xb - np.exp(xb)
return f
def _cdf(self, x, b):
return -sc.expm1(-sc.expm1(x**b))
def _sf(self, x, b):
return np.exp(-sc.expm1(x**b))
def _isf(self, x, b):
return (sc.log1p(-np.log(x)))**(1./b)
def _ppf(self, q, b):
return pow(sc.log1p(-sc.log1p(-q)), 1.0/b)
exponpow = exponpow_gen(a=0.0, name='exponpow')
class fatiguelife_gen(rv_continuous):
r"""A fatigue-life (Birnbaum-Saunders) continuous random variable.
%(before_notes)s
Notes
-----
The probability density function for `fatiguelife` is:
.. math::
f(x, c) = \frac{x+1}{2c\sqrt{2\pi x^3}} \exp(-\frac{(x-1)^2}{2x c^2})
for :math:`x >= 0` and :math:`c > 0`.
`fatiguelife` takes ``c`` as a shape parameter for :math:`c`.
%(after_notes)s
References
----------
.. [1] "Birnbaum-Saunders distribution",
https://en.wikipedia.org/wiki/Birnbaum-Saunders_distribution
%(example)s
"""
_support_mask = rv_continuous._open_support_mask
def _rvs(self, c, size=None, random_state=None):
z = random_state.standard_normal(size)
x = 0.5*c*z
x2 = x*x
t = 1.0 + 2*x2 + 2*x*np.sqrt(1 + x2)
return t
def _pdf(self, x, c):
# fatiguelife.pdf(x, c) =
# (x+1) / (2*c*sqrt(2*pi*x**3)) * exp(-(x-1)**2/(2*x*c**2))
return np.exp(self._logpdf(x, c))
def _logpdf(self, x, c):
return (np.log(x+1) - (x-1)**2 / (2.0*x*c**2) - np.log(2*c) -
0.5*(np.log(2*np.pi) + 3*np.log(x)))
def _cdf(self, x, c):
return _norm_cdf(1.0 / c * (np.sqrt(x) - 1.0/np.sqrt(x)))
def _ppf(self, q, c):
tmp = c*sc.ndtri(q)
return 0.25 * (tmp + np.sqrt(tmp**2 + 4))**2
def _sf(self, x, c):
return _norm_sf(1.0 / c * (np.sqrt(x) - 1.0/np.sqrt(x)))
def _isf(self, q, c):
tmp = -c*sc.ndtri(q)
return 0.25 * (tmp + np.sqrt(tmp**2 + 4))**2
def _stats(self, c):
# NB: the formula for kurtosis in wikipedia seems to have an error:
# it's 40, not 41. At least it disagrees with the one from Wolfram
# Alpha. And the latter one, below, passes the tests, while the wiki
# one doesn't So far I didn't have the guts to actually check the
# coefficients from the expressions for the raw moments.
c2 = c*c
mu = c2 / 2.0 + 1.0
den = 5.0 * c2 + 4.0
mu2 = c2*den / 4.0
g1 = 4 * c * (11*c2 + 6.0) / np.power(den, 1.5)
g2 = 6 * c2 * (93*c2 + 40.0) / den**2.0
return mu, mu2, g1, g2
fatiguelife = fatiguelife_gen(a=0.0, name='fatiguelife')
class foldcauchy_gen(rv_continuous):
r"""A folded Cauchy continuous random variable.
%(before_notes)s
Notes
-----
The probability density function for `foldcauchy` is:
.. math::
f(x, c) = \frac{1}{\pi (1+(x-c)^2)} + \frac{1}{\pi (1+(x+c)^2)}
for :math:`x \ge 0`.
`foldcauchy` takes ``c`` as a shape parameter for :math:`c`.
%(example)s
"""
def _rvs(self, c, size=None, random_state=None):
return abs(cauchy.rvs(loc=c, size=size,
random_state=random_state))
def _pdf(self, x, c):
# foldcauchy.pdf(x, c) = 1/(pi*(1+(x-c)**2)) + 1/(pi*(1+(x+c)**2))
return 1.0/np.pi*(1.0/(1+(x-c)**2) + 1.0/(1+(x+c)**2))
def _cdf(self, x, c):
return 1.0/np.pi*(np.arctan(x-c) + np.arctan(x+c))
def _stats(self, c):
return np.inf, np.inf, np.nan, np.nan
foldcauchy = foldcauchy_gen(a=0.0, name='foldcauchy')
class f_gen(rv_continuous):
r"""An F continuous random variable.
For the noncentral F distribution, see `ncf`.
%(before_notes)s
See Also
--------
ncf
Notes
-----
The probability density function for `f` is:
.. math::
f(x, df_1, df_2) = \frac{df_2^{df_2/2} df_1^{df_1/2} x^{df_1 / 2-1}}
{(df_2+df_1 x)^{(df_1+df_2)/2}
B(df_1/2, df_2/2)}
for :math:`x > 0`.
`f` takes ``dfn`` and ``dfd`` as shape parameters.
%(after_notes)s
%(example)s
"""
def _rvs(self, dfn, dfd, size=None, random_state=None):
return random_state.f(dfn, dfd, size)
def _pdf(self, x, dfn, dfd):
# df2**(df2/2) * df1**(df1/2) * x**(df1/2-1)
# F.pdf(x, df1, df2) = --------------------------------------------
# (df2+df1*x)**((df1+df2)/2) * B(df1/2, df2/2)
return np.exp(self._logpdf(x, dfn, dfd))
def _logpdf(self, x, dfn, dfd):
n = 1.0 * dfn
m = 1.0 * dfd
lPx = (m/2 * np.log(m) + n/2 * np.log(n) + sc.xlogy(n/2 - 1, x)
- (((n+m)/2) * np.log(m + n*x) + sc.betaln(n/2, m/2)))
return lPx
def _cdf(self, x, dfn, dfd):
return sc.fdtr(dfn, dfd, x)
def _sf(self, x, dfn, dfd):
return sc.fdtrc(dfn, dfd, x)
def _ppf(self, q, dfn, dfd):
return sc.fdtri(dfn, dfd, q)
def _stats(self, dfn, dfd):
v1, v2 = 1. * dfn, 1. * dfd
v2_2, v2_4, v2_6, v2_8 = v2 - 2., v2 - 4., v2 - 6., v2 - 8.
mu = _lazywhere(
v2 > 2, (v2, v2_2),
lambda v2, v2_2: v2 / v2_2,
np.inf)
mu2 = _lazywhere(
v2 > 4, (v1, v2, v2_2, v2_4),
lambda v1, v2, v2_2, v2_4:
2 * v2 * v2 * (v1 + v2_2) / (v1 * v2_2**2 * v2_4),
np.inf)
g1 = _lazywhere(
v2 > 6, (v1, v2_2, v2_4, v2_6),
lambda v1, v2_2, v2_4, v2_6:
(2 * v1 + v2_2) / v2_6 * np.sqrt(v2_4 / (v1 * (v1 + v2_2))),
np.nan)
g1 *= np.sqrt(8.)
g2 = _lazywhere(
v2 > 8, (g1, v2_6, v2_8),
lambda g1, v2_6, v2_8: (8 + g1 * g1 * v2_6) / v2_8,
np.nan)
g2 *= 3. / 2.
return mu, mu2, g1, g2
f = f_gen(a=0.0, name='f')
## Folded Normal
## abs(Z) where (Z is normal with mu=L and std=S so that c=abs(L)/S)
##
## note: regress docs have scale parameter correct, but first parameter
## he gives is a shape parameter A = c * scale
## Half-normal is folded normal with shape-parameter c=0.
class foldnorm_gen(rv_continuous):
r"""A folded normal continuous random variable.
%(before_notes)s
Notes
-----
The probability density function for `foldnorm` is:
.. math::
f(x, c) = \sqrt{2/\pi} cosh(c x) \exp(-\frac{x^2+c^2}{2})
for :math:`c \ge 0`.
`foldnorm` takes ``c`` as a shape parameter for :math:`c`.
%(after_notes)s
%(example)s
"""
def _argcheck(self, c):
return c >= 0
def _rvs(self, c, size=None, random_state=None):
return abs(random_state.standard_normal(size) + c)
def _pdf(self, x, c):
# foldnormal.pdf(x, c) = sqrt(2/pi) * cosh(c*x) * exp(-(x**2+c**2)/2)
return _norm_pdf(x + c) + _norm_pdf(x-c)
def _cdf(self, x, c):
return _norm_cdf(x-c) + _norm_cdf(x+c) - 1.0
def _stats(self, c):
# Regina C. Elandt, Technometrics 3, 551 (1961)
# https://www.jstor.org/stable/1266561
#
c2 = c*c
expfac = np.exp(-0.5*c2) / np.sqrt(2.*np.pi)
mu = 2.*expfac + c * sc.erf(c/np.sqrt(2))
mu2 = c2 + 1 - mu*mu
g1 = 2. * (mu*mu*mu - c2*mu - expfac)
g1 /= np.power(mu2, 1.5)
g2 = c2 * (c2 + 6.) + 3 + 8.*expfac*mu
g2 += (2. * (c2 - 3.) - 3. * mu**2) * mu**2
g2 = g2 / mu2**2.0 - 3.
return mu, mu2, g1, g2
foldnorm = foldnorm_gen(a=0.0, name='foldnorm')
class weibull_min_gen(rv_continuous):
r"""Weibull minimum continuous random variable.
The Weibull Minimum Extreme Value distribution, from extreme value theory
(Fisher-Gnedenko theorem), is also often simply called the Weibull
distribution. It arises as the limiting distribution of the rescaled
minimum of iid random variables.
%(before_notes)s
See Also
--------
weibull_max, numpy.random.Generator.weibull, exponweib
Notes
-----
The probability density function for `weibull_min` is:
.. math::
f(x, c) = c x^{c-1} \exp(-x^c)
for :math:`x > 0`, :math:`c > 0`.
`weibull_min` takes ``c`` as a shape parameter for :math:`c`.
(named :math:`k` in Wikipedia article and :math:`a` in
``numpy.random.weibull``). Special shape values are :math:`c=1` and
:math:`c=2` where Weibull distribution reduces to the `expon` and
`rayleigh` distributions respectively.
%(after_notes)s
References
----------
https://en.wikipedia.org/wiki/Weibull_distribution
https://en.wikipedia.org/wiki/Fisher-Tippett-Gnedenko_theorem
%(example)s
"""
def _pdf(self, x, c):
# weibull_min.pdf(x, c) = c * x**(c-1) * exp(-x**c)
return c*pow(x, c-1)*np.exp(-pow(x, c))
def _logpdf(self, x, c):
return np.log(c) + sc.xlogy(c - 1, x) - pow(x, c)
def _cdf(self, x, c):
return -sc.expm1(-pow(x, c))
def _sf(self, x, c):
return np.exp(-pow(x, c))
def _logsf(self, x, c):
return -pow(x, c)
def _ppf(self, q, c):
return pow(-sc.log1p(-q), 1.0/c)
def _munp(self, n, c):
return sc.gamma(1.0+n*1.0/c)
def _entropy(self, c):
return -_EULER / c - np.log(c) + _EULER + 1
weibull_min = weibull_min_gen(a=0.0, name='weibull_min')
class weibull_max_gen(rv_continuous):
r"""Weibull maximum continuous random variable.
The Weibull Maximum Extreme Value distribution, from extreme value theory
(Fisher-Gnedenko theorem), is the limiting distribution of rescaled
maximum of iid random variables. This is the distribution of -X
if X is from the `weibull_min` function.
%(before_notes)s
See Also
--------
weibull_min
Notes
-----
The probability density function for `weibull_max` is:
.. math::
f(x, c) = c (-x)^{c-1} \exp(-(-x)^c)
for :math:`x < 0`, :math:`c > 0`.
`weibull_max` takes ``c`` as a shape parameter for :math:`c`.
%(after_notes)s
References
----------
https://en.wikipedia.org/wiki/Weibull_distribution
https://en.wikipedia.org/wiki/Fisher-Tippett-Gnedenko_theorem
%(example)s
"""
def _pdf(self, x, c):
# weibull_max.pdf(x, c) = c * (-x)**(c-1) * exp(-(-x)**c)
return c*pow(-x, c-1)*np.exp(-pow(-x, c))
def _logpdf(self, x, c):
return np.log(c) + sc.xlogy(c-1, -x) - pow(-x, c)
def _cdf(self, x, c):
return np.exp(-pow(-x, c))
def _logcdf(self, x, c):
return -pow(-x, c)
def _sf(self, x, c):
return -sc.expm1(-pow(-x, c))
def _ppf(self, q, c):
return -pow(-np.log(q), 1.0/c)
def _munp(self, n, c):
val = sc.gamma(1.0+n*1.0/c)
if int(n) % 2:
sgn = -1
else:
sgn = 1
return sgn * val
def _entropy(self, c):
return -_EULER / c - np.log(c) + _EULER + 1
weibull_max = weibull_max_gen(b=0.0, name='weibull_max')
class genlogistic_gen(rv_continuous):
r"""A generalized logistic continuous random variable.
%(before_notes)s
Notes
-----
The probability density function for `genlogistic` is:
.. math::
f(x, c) = c \frac{\exp(-x)}
{(1 + \exp(-x))^{c+1}}
for :math:`x >= 0`, :math:`c > 0`.
`genlogistic` takes ``c`` as a shape parameter for :math:`c`.
%(after_notes)s
%(example)s
"""
def _pdf(self, x, c):
# genlogistic.pdf(x, c) = c * exp(-x) / (1 + exp(-x))**(c+1)
return np.exp(self._logpdf(x, c))
def _logpdf(self, x, c):
# Two mathematically equivalent expressions for log(pdf(x, c)):
# log(pdf(x, c)) = log(c) - x - (c + 1)*log(1 + exp(-x))
# = log(c) + c*x - (c + 1)*log(1 + exp(x))
mult = -(c - 1) * (x < 0) - 1
absx = np.abs(x)
return np.log(c) + mult*absx - (c+1) * sc.log1p(np.exp(-absx))
def _cdf(self, x, c):
Cx = (1+np.exp(-x))**(-c)
return Cx
def _ppf(self, q, c):
vals = -np.log(pow(q, -1.0/c)-1)
return vals
def _stats(self, c):
mu = _EULER + sc.psi(c)
mu2 = np.pi*np.pi/6.0 + sc.zeta(2, c)
g1 = -2*sc.zeta(3, c) + 2*_ZETA3
g1 /= np.power(mu2, 1.5)
g2 = np.pi**4/15.0 + 6*sc.zeta(4, c)
g2 /= mu2**2.0
return mu, mu2, g1, g2
genlogistic = genlogistic_gen(name='genlogistic')
class genpareto_gen(rv_continuous):
r"""A generalized Pareto continuous random variable.
%(before_notes)s
Notes
-----
The probability density function for `genpareto` is:
.. math::
f(x, c) = (1 + c x)^{-1 - 1/c}
defined for :math:`x \ge 0` if :math:`c \ge 0`, and for
:math:`0 \le x \le -1/c` if :math:`c < 0`.
`genpareto` takes ``c`` as a shape parameter for :math:`c`.
For :math:`c=0`, `genpareto` reduces to the exponential
distribution, `expon`:
.. math::
f(x, 0) = \exp(-x)
For :math:`c=-1`, `genpareto` is uniform on ``[0, 1]``:
.. math::
f(x, -1) = 1
%(after_notes)s
%(example)s
"""
def _argcheck(self, c):
return np.isfinite(c)
def _get_support(self, c):
c = np.asarray(c)
b = _lazywhere(c < 0, (c,),
lambda c: -1. / c,
np.inf)
a = np.where(c >= 0, self.a, self.a)
return a, b
def _pdf(self, x, c):
# genpareto.pdf(x, c) = (1 + c * x)**(-1 - 1/c)
return np.exp(self._logpdf(x, c))
def _logpdf(self, x, c):
return _lazywhere((x == x) & (c != 0), (x, c),
lambda x, c: -sc.xlog1py(c + 1., c*x) / c,
-x)
def _cdf(self, x, c):
return -sc.inv_boxcox1p(-x, -c)
def _sf(self, x, c):
return sc.inv_boxcox(-x, -c)
def _logsf(self, x, c):
return _lazywhere((x == x) & (c != 0), (x, c),
lambda x, c: -sc.log1p(c*x) / c,
-x)
def _ppf(self, q, c):
return -sc.boxcox1p(-q, -c)
def _isf(self, q, c):
return -sc.boxcox(q, -c)
def _stats(self, c, moments='mv'):
if 'm' not in moments:
m = None
else:
m = _lazywhere(c < 1, (c,),
lambda xi: 1/(1 - xi),
np.inf)
if 'v' not in moments:
v = None
else:
v = _lazywhere(c < 1/2, (c,),
lambda xi: 1 / (1 - xi)**2 / (1 - 2*xi),
np.nan)
if 's' not in moments:
s = None
else:
s = _lazywhere(c < 1/3, (c,),
lambda xi: 2 * (1 + xi) * np.sqrt(1 - 2*xi) /
(1 - 3*xi),
np.nan)
if 'k' not in moments:
k = None
else:
k = _lazywhere(c < 1/4, (c,),
lambda xi: 3 * (1 - 2*xi) * (2*xi**2 + xi + 3) /
(1 - 3*xi) / (1 - 4*xi) - 3,
np.nan)
return m, v, s, k
def _munp(self, n, c):
def __munp(n, c):
val = 0.0
k = np.arange(0, n + 1)
for ki, cnk in zip(k, sc.comb(n, k)):
val = val + cnk * (-1) ** ki / (1.0 - c * ki)
return np.where(c * n < 1, val * (-1.0 / c) ** n, np.inf)
return _lazywhere(c != 0, (c,),
lambda c: __munp(n, c),
sc.gamma(n + 1))
def _entropy(self, c):
return 1. + c
genpareto = genpareto_gen(a=0.0, name='genpareto')
class genexpon_gen(rv_continuous):
r"""A generalized exponential continuous random variable.
%(before_notes)s
Notes
-----
The probability density function for `genexpon` is:
.. math::
f(x, a, b, c) = (a + b (1 - \exp(-c x)))
\exp(-a x - b x + \frac{b}{c} (1-\exp(-c x)))
for :math:`x \ge 0`, :math:`a, b, c > 0`.
`genexpon` takes :math:`a`, :math:`b` and :math:`c` as shape parameters.
%(after_notes)s
References
----------
H.K. Ryu, "An Extension of Marshall and Olkin's Bivariate Exponential
Distribution", Journal of the American Statistical Association, 1993.
N. Balakrishnan, "The Exponential Distribution: Theory, Methods and
Applications", Asit P. Basu.
%(example)s
"""
def _pdf(self, x, a, b, c):
# genexpon.pdf(x, a, b, c) = (a + b * (1 - exp(-c*x))) * \
# exp(-a*x - b*x + b/c * (1-exp(-c*x)))
return (a + b*(-sc.expm1(-c*x)))*np.exp((-a-b)*x +
b*(-sc.expm1(-c*x))/c)
def _logpdf(self, x, a, b, c):
return np.log(a+b*(-sc.expm1(-c*x))) + (-a-b)*x+b*(-sc.expm1(-c*x))/c
def _cdf(self, x, a, b, c):
return -sc.expm1((-a-b)*x + b*(-sc.expm1(-c*x))/c)
def _sf(self, x, a, b, c):
return np.exp((-a-b)*x + b*(-sc.expm1(-c*x))/c)
genexpon = genexpon_gen(a=0.0, name='genexpon')
class genextreme_gen(rv_continuous):
r"""A generalized extreme value continuous random variable.
%(before_notes)s
See Also
--------
gumbel_r
Notes
-----
For :math:`c=0`, `genextreme` is equal to `gumbel_r`.
The probability density function for `genextreme` is:
.. math::
f(x, c) = \begin{cases}
\exp(-\exp(-x)) \exp(-x) &\text{for } c = 0\\
\exp(-(1-c x)^{1/c}) (1-c x)^{1/c-1} &\text{for }
x \le 1/c, c > 0
\end{cases}
Note that several sources and software packages use the opposite
convention for the sign of the shape parameter :math:`c`.
`genextreme` takes ``c`` as a shape parameter for :math:`c`.
%(after_notes)s
%(example)s
"""
def _argcheck(self, c):
return np.where(abs(c) == np.inf, 0, 1)
def _get_support(self, c):
_b = np.where(c > 0, 1.0 / np.maximum(c, _XMIN), np.inf)
_a = np.where(c < 0, 1.0 / np.minimum(c, -_XMIN), -np.inf)
return _a, _b
def _loglogcdf(self, x, c):
return _lazywhere((x == x) & (c != 0), (x, c),
lambda x, c: sc.log1p(-c*x)/c, -x)
def _pdf(self, x, c):
# genextreme.pdf(x, c) =
# exp(-exp(-x))*exp(-x), for c==0
# exp(-(1-c*x)**(1/c))*(1-c*x)**(1/c-1), for x \le 1/c, c > 0
return np.exp(self._logpdf(x, c))
def _logpdf(self, x, c):
cx = _lazywhere((x == x) & (c != 0), (x, c), lambda x, c: c*x, 0.0)
logex2 = sc.log1p(-cx)
logpex2 = self._loglogcdf(x, c)
pex2 = np.exp(logpex2)
# Handle special cases
np.putmask(logpex2, (c == 0) & (x == -np.inf), 0.0)
logpdf = np.where((cx == 1) | (cx == -np.inf),
-np.inf,
-pex2+logpex2-logex2)
np.putmask(logpdf, (c == 1) & (x == 1), 0.0)
return logpdf
def _logcdf(self, x, c):
return -np.exp(self._loglogcdf(x, c))
def _cdf(self, x, c):
return np.exp(self._logcdf(x, c))
def _sf(self, x, c):
return -sc.expm1(self._logcdf(x, c))
def _ppf(self, q, c):
x = -np.log(-np.log(q))
return _lazywhere((x == x) & (c != 0), (x, c),
lambda x, c: -sc.expm1(-c * x) / c, x)
def _isf(self, q, c):
x = -np.log(-sc.log1p(-q))
return _lazywhere((x == x) & (c != 0), (x, c),
lambda x, c: -sc.expm1(-c * x) / c, x)
def _stats(self, c):
g = lambda n: sc.gamma(n*c + 1)
g1 = g(1)
g2 = g(2)
g3 = g(3)
g4 = g(4)
g2mg12 = np.where(abs(c) < 1e-7, (c*np.pi)**2.0/6.0, g2-g1**2.0)
gam2k = np.where(abs(c) < 1e-7, np.pi**2.0/6.0,
sc.expm1(sc.gammaln(2.0*c+1.0)-2*sc.gammaln(c + 1.0))/c**2.0)
eps = 1e-14
gamk = np.where(abs(c) < eps, -_EULER, sc.expm1(sc.gammaln(c + 1))/c)
m = np.where(c < -1.0, np.nan, -gamk)
v = np.where(c < -0.5, np.nan, g1**2.0*gam2k)
# skewness
sk1 = _lazywhere(c >= -1./3,
(c, g1, g2, g3, g2mg12),
lambda c, g1, g2, g3, g2gm12:
np.sign(c)*(-g3 + (g2 + 2*g2mg12)*g1)/g2mg12**1.5,
fillvalue=np.nan)
sk = np.where(abs(c) <= eps**0.29, 12*np.sqrt(6)*_ZETA3/np.pi**3, sk1)
# kurtosis
ku1 = _lazywhere(c >= -1./4,
(g1, g2, g3, g4, g2mg12),
lambda g1, g2, g3, g4, g2mg12:
(g4 + (-4*g3 + 3*(g2 + g2mg12)*g1)*g1)/g2mg12**2,
fillvalue=np.nan)
ku = np.where(abs(c) <= (eps)**0.23, 12.0/5.0, ku1-3.0)
return m, v, sk, ku
def _fitstart(self, data):
# This is better than the default shape of (1,).
g = _skew(data)
if g < 0:
a = 0.5
else:
a = -0.5
return super()._fitstart(data, args=(a,))
def _munp(self, n, c):
k = np.arange(0, n+1)
vals = 1.0/c**n * np.sum(
sc.comb(n, k) * (-1)**k * sc.gamma(c*k + 1),
axis=0)
return np.where(c*n > -1, vals, np.inf)
def _entropy(self, c):
return _EULER*(1 - c) + 1
genextreme = genextreme_gen(name='genextreme')
def _digammainv(y):
"""Inverse of the digamma function (real positive arguments only).
This function is used in the `fit` method of `gamma_gen`.
The function uses either optimize.fsolve or optimize.newton
to solve `sc.digamma(x) - y = 0`. There is probably room for
improvement, but currently it works over a wide range of y:
>>> rng = np.random.default_rng()
>>> y = 64*rng.standard_normal(1000000)
>>> y.min(), y.max()
(-311.43592651416662, 351.77388222276869)
>>> x = [_digammainv(t) for t in y]
>>> np.abs(sc.digamma(x) - y).max()
1.1368683772161603e-13
"""
_em = 0.5772156649015328606065120
func = lambda x: sc.digamma(x) - y
if y > -0.125:
x0 = np.exp(y) + 0.5
if y < 10:
# Some experimentation shows that newton reliably converges
# must faster than fsolve in this y range. For larger y,
# newton sometimes fails to converge.
value = optimize.newton(func, x0, tol=1e-10)
return value
elif y > -3:
x0 = np.exp(y/2.332) + 0.08661
else:
x0 = 1.0 / (-y - _em)
value, info, ier, mesg = optimize.fsolve(func, x0, xtol=1e-11,
full_output=True)
if ier != 1:
raise RuntimeError("_digammainv: fsolve failed, y = %r" % y)
return value[0]
## Gamma (Use MATLAB and MATHEMATICA (b=theta=scale, a=alpha=shape) definition)
## gamma(a, loc, scale) with a an integer is the Erlang distribution
## gamma(1, loc, scale) is the Exponential distribution
## gamma(df/2, 0, 2) is the chi2 distribution with df degrees of freedom.
class gamma_gen(rv_continuous):
r"""A gamma continuous random variable.
%(before_notes)s
See Also
--------
erlang, expon
Notes
-----
The probability density function for `gamma` is:
.. math::
f(x, a) = \frac{x^{a-1} e^{-x}}{\Gamma(a)}
for :math:`x \ge 0`, :math:`a > 0`. Here :math:`\Gamma(a)` refers to the
gamma function.
`gamma` takes ``a`` as a shape parameter for :math:`a`.
When :math:`a` is an integer, `gamma` reduces to the Erlang
distribution, and when :math:`a=1` to the exponential distribution.
Gamma distributions are sometimes parameterized with two variables,
with a probability density function of:
.. math::
f(x, \alpha, \beta) = \frac{\beta^\alpha x^{\alpha - 1} e^{-\beta x }}{\Gamma(\alpha)}
Note that this parameterization is equivalent to the above, with
``scale = 1 / beta``.
%(after_notes)s
%(example)s
"""
def _rvs(self, a, size=None, random_state=None):
return random_state.standard_gamma(a, size)
def _pdf(self, x, a):
# gamma.pdf(x, a) = x**(a-1) * exp(-x) / gamma(a)
return np.exp(self._logpdf(x, a))
def _logpdf(self, x, a):
return sc.xlogy(a-1.0, x) - x - sc.gammaln(a)
def _cdf(self, x, a):
return sc.gammainc(a, x)
def _sf(self, x, a):
return sc.gammaincc(a, x)
def _ppf(self, q, a):
return sc.gammaincinv(a, q)
def _isf(self, q, a):
return sc.gammainccinv(a, q)
def _stats(self, a):
return a, a, 2.0/np.sqrt(a), 6.0/a
def _entropy(self, a):
return sc.psi(a)*(1-a) + a + sc.gammaln(a)
def _fitstart(self, data):
# The skewness of the gamma distribution is `2 / np.sqrt(a)`.
# We invert that to estimate the shape `a` using the skewness
# of the data. The formula is regularized with 1e-8 in the
# denominator to allow for degenerate data where the skewness
# is close to 0.
a = 4 / (1e-8 + _skew(data)**2)
return super()._fitstart(data, args=(a,))
@extend_notes_in_docstring(rv_continuous, notes="""\
When the location is fixed by using the argument `floc`
and `method='MLE'`, this
function uses explicit formulas or solves a simpler numerical
problem than the full ML optimization problem. So in that case,
the `optimizer`, `loc` and `scale` arguments are ignored.
\n\n""")
def fit(self, data, *args, **kwds):
floc = kwds.get('floc', None)
method = kwds.get('method', 'mle')
if floc is None or method.lower() == 'mm':
# loc is not fixed. Use the default fit method.
return super().fit(data, *args, **kwds)
# We already have this value, so just pop it from kwds.
kwds.pop('floc', None)
f0 = _get_fixed_fit_value(kwds, ['f0', 'fa', 'fix_a'])
fscale = kwds.pop('fscale', None)
_remove_optimizer_parameters(kwds)
# Special case: loc is fixed.
if f0 is not None and fscale is not None:
# This check is for consistency with `rv_continuous.fit`.
# Without this check, this function would just return the
# parameters that were given.
raise ValueError("All parameters fixed. There is nothing to "
"optimize.")
# Fixed location is handled by shifting the data.
data = np.asarray(data)
if not np.isfinite(data).all():
raise RuntimeError("The data contains non-finite values.")
if np.any(data <= floc):
raise FitDataError("gamma", lower=floc, upper=np.inf)
if floc != 0:
# Don't do the subtraction in-place, because `data` might be a
# view of the input array.
data = data - floc
xbar = data.mean()
# Three cases to handle:
# * shape and scale both free
# * shape fixed, scale free
# * shape free, scale fixed
if fscale is None:
# scale is free
if f0 is not None:
# shape is fixed
a = f0
else:
# shape and scale are both free.
# The MLE for the shape parameter `a` is the solution to:
# np.log(a) - sc.digamma(a) - np.log(xbar) +
# np.log(data).mean() = 0
s = np.log(xbar) - np.log(data).mean()
func = lambda a: np.log(a) - sc.digamma(a) - s
aest = (3-s + np.sqrt((s-3)**2 + 24*s)) / (12*s)
xa = aest*(1-0.4)
xb = aest*(1+0.4)
a = optimize.brentq(func, xa, xb, disp=0)
# The MLE for the scale parameter is just the data mean
# divided by the shape parameter.
scale = xbar / a
else:
# scale is fixed, shape is free
# The MLE for the shape parameter `a` is the solution to:
# sc.digamma(a) - np.log(data).mean() + np.log(fscale) = 0
c = np.log(data).mean() - np.log(fscale)
a = _digammainv(c)
scale = fscale
return a, floc, scale
gamma = gamma_gen(a=0.0, name='gamma')
class erlang_gen(gamma_gen):
"""An Erlang continuous random variable.
%(before_notes)s
See Also
--------
gamma
Notes
-----
The Erlang distribution is a special case of the Gamma distribution, with
the shape parameter `a` an integer. Note that this restriction is not
enforced by `erlang`. It will, however, generate a warning the first time
a non-integer value is used for the shape parameter.
Refer to `gamma` for examples.
"""
def _argcheck(self, a):
allint = np.all(np.floor(a) == a)
if not allint:
# An Erlang distribution shouldn't really have a non-integer
# shape parameter, so warn the user.
warnings.warn(
'The shape parameter of the erlang distribution '
'has been given a non-integer value %r.' % (a,),
RuntimeWarning)
return a > 0
def _fitstart(self, data):
# Override gamma_gen_fitstart so that an integer initial value is
# used. (Also regularize the division, to avoid issues when
# _skew(data) is 0 or close to 0.)
a = int(4.0 / (1e-8 + _skew(data)**2))
return super(gamma_gen, self)._fitstart(data, args=(a,))
# Trivial override of the fit method, so we can monkey-patch its
# docstring.
def fit(self, data, *args, **kwds):
return super().fit(data, *args, **kwds)
if fit.__doc__:
fit.__doc__ = (rv_continuous.fit.__doc__ +
"""
Notes
-----
The Erlang distribution is generally defined to have integer values
for the shape parameter. This is not enforced by the `erlang` class.
When fitting the distribution, it will generally return a non-integer
value for the shape parameter. By using the keyword argument
`f0=<integer>`, the fit method can be constrained to fit the data to
a specific integer shape parameter.
""")
erlang = erlang_gen(a=0.0, name='erlang')
class gengamma_gen(rv_continuous):
r"""A generalized gamma continuous random variable.
%(before_notes)s
See Also
--------
gamma, invgamma, weibull_min
Notes
-----
The probability density function for `gengamma` is ([1]_):
.. math::
f(x, a, c) = \frac{|c| x^{c a-1} \exp(-x^c)}{\Gamma(a)}
for :math:`x \ge 0`, :math:`a > 0`, and :math:`c \ne 0`.
:math:`\Gamma` is the gamma function (`scipy.special.gamma`).
`gengamma` takes :math:`a` and :math:`c` as shape parameters.
%(after_notes)s
References
----------
.. [1] E.W. Stacy, "A Generalization of the Gamma Distribution",
Annals of Mathematical Statistics, Vol 33(3), pp. 1187--1192.
%(example)s
"""
def _argcheck(self, a, c):
return (a > 0) & (c != 0)
def _pdf(self, x, a, c):
return np.exp(self._logpdf(x, a, c))
def _logpdf(self, x, a, c):
return np.log(abs(c)) + sc.xlogy(c*a - 1, x) - x**c - sc.gammaln(a)
def _cdf(self, x, a, c):
xc = x**c
val1 = sc.gammainc(a, xc)
val2 = sc.gammaincc(a, xc)
return np.where(c > 0, val1, val2)
def _rvs(self, a, c, size=None, random_state=None):
r = random_state.standard_gamma(a, size=size)
return r**(1./c)
def _sf(self, x, a, c):
xc = x**c
val1 = sc.gammainc(a, xc)
val2 = sc.gammaincc(a, xc)
return np.where(c > 0, val2, val1)
def _ppf(self, q, a, c):
val1 = sc.gammaincinv(a, q)
val2 = sc.gammainccinv(a, q)
return np.where(c > 0, val1, val2)**(1.0/c)
def _isf(self, q, a, c):
val1 = sc.gammaincinv(a, q)
val2 = sc.gammainccinv(a, q)
return np.where(c > 0, val2, val1)**(1.0/c)
def _munp(self, n, a, c):
# Pochhammer symbol: sc.pocha,n) = gamma(a+n)/gamma(a)
return sc.poch(a, n*1.0/c)
def _entropy(self, a, c):
val = sc.psi(a)
return a*(1-val) + 1.0/c*val + sc.gammaln(a) - np.log(abs(c))
gengamma = gengamma_gen(a=0.0, name='gengamma')
class genhalflogistic_gen(rv_continuous):
r"""A generalized half-logistic continuous random variable.
%(before_notes)s
Notes
-----
The probability density function for `genhalflogistic` is:
.. math::
f(x, c) = \frac{2 (1 - c x)^{1/(c-1)}}{[1 + (1 - c x)^{1/c}]^2}
for :math:`0 \le x \le 1/c`, and :math:`c > 0`.
`genhalflogistic` takes ``c`` as a shape parameter for :math:`c`.
%(after_notes)s
%(example)s
"""
def _argcheck(self, c):
return c > 0
def _get_support(self, c):
return self.a, 1.0/c
def _pdf(self, x, c):
# genhalflogistic.pdf(x, c) =
# 2 * (1-c*x)**(1/c-1) / (1+(1-c*x)**(1/c))**2
limit = 1.0/c
tmp = np.asarray(1-c*x)
tmp0 = tmp**(limit-1)
tmp2 = tmp0*tmp
return 2*tmp0 / (1+tmp2)**2
def _cdf(self, x, c):
limit = 1.0/c
tmp = np.asarray(1-c*x)
tmp2 = tmp**(limit)
return (1.0-tmp2) / (1+tmp2)
def _ppf(self, q, c):
return 1.0/c*(1-((1.0-q)/(1.0+q))**c)
def _entropy(self, c):
return 2 - (2*c+1)*np.log(2)
genhalflogistic = genhalflogistic_gen(a=0.0, name='genhalflogistic')
class genhyperbolic_gen(rv_continuous):
r"""A generalized hyperbolic continuous random variable.
%(before_notes)s
See Also
--------
t, norminvgauss, geninvgauss, laplace, cauchy
Notes
-----
The probability density function for `genhyperbolic` is:
.. math::
f(x, p, a, b) =
\frac{(a^2 - b^2)^{p/2}}
{\sqrt{2\pi}a^{p-0.5}
K_p\Big(\sqrt{a^2 - b^2}\Big)}
e^{bx} \times \frac{K_{p - 1/2}
(a \sqrt{1 + x^2})}
{(\sqrt{1 + x^2})^{1/2 - p}}
for :math:`x, p \in ( - \infty; \infty)`,
:math:`|b| < a` if :math:`p \ge 0`,
:math:`|b| \le a` if :math:`p < 0`.
:math:`K_{p}(.)` denotes the modified Bessel function of the second
kind and order :math:`p` (`scipy.special.kn`)
`genhyperbolic` takes ``p`` as a tail parameter,
``a`` as a shape parameter,
``b`` as a skewness parameter.
%(after_notes)s
The original parameterization of the Generalized Hyperbolic Distribution
is found in [1]_ as follows
.. math::
f(x, \lambda, \alpha, \beta, \delta, \mu) =
\frac{(\gamma/\delta)^\lambda}{\sqrt{2\pi}K_\lambda(\delta \gamma)}
e^{\beta (x - \mu)} \times \frac{K_{\lambda - 1/2}
(\alpha \sqrt{\delta^2 + (x - \mu)^2})}
{(\sqrt{\delta^2 + (x - \mu)^2} / \alpha)^{1/2 - \lambda}}
for :math:`x \in ( - \infty; \infty)`,
:math:`\gamma := \sqrt{\alpha^2 - \beta^2}`,
:math:`\lambda, \mu \in ( - \infty; \infty)`,
:math:`\delta \ge 0, |\beta| < \alpha` if :math:`\lambda \ge 0`,
:math:`\delta > 0, |\beta| \le \alpha` if :math:`\lambda < 0`.
The location-scale-based parameterization implemented in
SciPy is based on [2]_, where :math:`a = \alpha\delta`,
:math:`b = \beta\delta`, :math:`p = \lambda`,
:math:`scale=\delta` and :math:`loc=\mu`
Moments are implemented based on [3]_ and [4]_.
For the distributions that are a special case such as Student's t,
it is not recommended to rely on the implementation of genhyperbolic.
To avoid potential numerical problems and for performance reasons,
the methods of the specific distributions should be used.
References
----------
.. [1] O. Barndorff-Nielsen, "Hyperbolic Distributions and Distributions
on Hyperbolae", Scandinavian Journal of Statistics, Vol. 5(3),
pp. 151-157, 1978. https://www.jstor.org/stable/4615705
.. [2] Eberlein E., Prause K. (2002) The Generalized Hyperbolic Model:
Financial Derivatives and Risk Measures. In: Geman H., Madan D.,
Pliska S.R., Vorst T. (eds) Mathematical Finance - Bachelier
Congress 2000. Springer Finance. Springer, Berlin, Heidelberg.
:doi:`10.1007/978-3-662-12429-1_12`
.. [3] Scott, David J, Würtz, Diethelm, Dong, Christine and Tran,
Thanh Tam, (2009), Moments of the generalized hyperbolic
distribution, MPRA Paper, University Library of Munich, Germany,
https://EconPapers.repec.org/RePEc:pra:mprapa:19081.
.. [4] E. Eberlein and E. A. von Hammerstein. Generalized hyperbolic
and inverse Gaussian distributions: Limiting cases and approximation
of processes. FDM Preprint 80, April 2003. University of Freiburg.
https://freidok.uni-freiburg.de/fedora/objects/freidok:7974/datastreams/FILE1/content
%(example)s
"""
def _argcheck(self, p, a, b):
return (np.logical_and(np.abs(b) < a, p >= 0)
| np.logical_and(np.abs(b) <= a, p < 0))
def _logpdf(self, x, p, a, b):
# kve instead of kv works better for large values of p
# and smaller values of sqrt(a^2 - b^2)
@np.vectorize
def _logpdf_single(x, p, a, b):
return _stats.genhyperbolic_logpdf(x, p, a, b)
return _logpdf_single(x, p, a, b)
def _pdf(self, x, p, a, b):
# kve instead of kv works better for large values of p
# and smaller values of sqrt(a^2 - b^2)
@np.vectorize
def _pdf_single(x, p, a, b):
return _stats.genhyperbolic_pdf(x, p, a, b)
return _pdf_single(x, p, a, b)
def _cdf(self, x, p, a, b):
@np.vectorize
def _cdf_single(x, p, a, b):
user_data = np.array(
[p, a, b], float
).ctypes.data_as(ctypes.c_void_p)
llc = LowLevelCallable.from_cython(
_stats, '_genhyperbolic_pdf', user_data
)
t1 = integrate.quad(llc, -np.inf, x)[0]
if np.isnan(t1):
msg = ("Infinite values encountered in scipy.special.kve. "
"Values replaced by NaN to avoid incorrect results.")
warnings.warn(msg, RuntimeWarning)
return t1
return _cdf_single(x, p, a, b)
def _rvs(self, p, a, b, size=None, random_state=None):
# note: X = b * V + sqrt(V) * X has a
# generalized hyperbolic distribution
# if X is standard normal and V is
# geninvgauss(p = p, b = t2, loc = loc, scale = t3)
t1 = np.float_power(a, 2) - np.float_power(b, 2)
# b in the GIG
t2 = np.float_power(t1, 0.5)
# scale in the GIG
t3 = np.float_power(t1, - 0.5)
gig = geninvgauss.rvs(
p=p,
b=t2,
scale=t3,
size=size,
random_state=random_state
)
normst = norm.rvs(size=size, random_state=random_state)
return b * gig + np.sqrt(gig) * normst
def _stats(self, p, a, b):
# https://mpra.ub.uni-muenchen.de/19081/1/MPRA_paper_19081.pdf
# https://freidok.uni-freiburg.de/fedora/objects/freidok:7974/datastreams/FILE1/content
# standardized moments
p, a, b = np.broadcast_arrays(p, a, b)
t1 = np.float_power(a, 2) - np.float_power(b, 2)
t1 = np.float_power(t1, 0.5)
t2 = np.float_power(1, 2) * np.float_power(t1, - 1)
integers = np.linspace(0, 4, 5)
# make integers perpendicular to existing dimensions
integers = integers.reshape(integers.shape + (1,) * p.ndim)
b0, b1, b2, b3, b4 = sc.kv(p + integers, t1)
r1, r2, r3, r4 = [b / b0 for b in (b1, b2, b3, b4)]
m = b * t2 * r1
v = (
t2 * r1 + np.float_power(b, 2) * np.float_power(t2, 2) *
(r2 - np.float_power(r1, 2))
)
m3e = (
np.float_power(b, 3) * np.float_power(t2, 3) *
(r3 - 3 * b2 * b1 * np.float_power(b0, -2) +
2 * np.float_power(r1, 3)) +
3 * b * np.float_power(t2, 2) *
(r2 - np.float_power(r1, 2))
)
s = m3e * np.float_power(v, - 3 / 2)
m4e = (
np.float_power(b, 4) * np.float_power(t2, 4) *
(r4 - 4 * b3 * b1 * np.float_power(b0, - 2) +
6 * b2 * np.float_power(b1, 2) * np.float_power(b0, - 3) -
3 * np.float_power(r1, 4)) +
np.float_power(b, 2) * np.float_power(t2, 3) *
(6 * r3 - 12 * b2 * b1 * np.float_power(b0, - 2) +
6 * np.float_power(r1, 3)) +
3 * np.float_power(t2, 2) * r2
)
k = m4e * np.float_power(v, -2) - 3
return m, v, s, k
genhyperbolic = genhyperbolic_gen(name='genhyperbolic')
class gompertz_gen(rv_continuous):
r"""A Gompertz (or truncated Gumbel) continuous random variable.
%(before_notes)s
Notes
-----
The probability density function for `gompertz` is:
.. math::
f(x, c) = c \exp(x) \exp(-c (e^x-1))
for :math:`x \ge 0`, :math:`c > 0`.
`gompertz` takes ``c`` as a shape parameter for :math:`c`.
%(after_notes)s
%(example)s
"""
def _pdf(self, x, c):
# gompertz.pdf(x, c) = c * exp(x) * exp(-c*(exp(x)-1))
return np.exp(self._logpdf(x, c))
def _logpdf(self, x, c):
return np.log(c) + x - c * sc.expm1(x)
def _cdf(self, x, c):
return -sc.expm1(-c * sc.expm1(x))
def _ppf(self, q, c):
return sc.log1p(-1.0 / c * sc.log1p(-q))
def _entropy(self, c):
return 1.0 - np.log(c) - np.exp(c)*sc.expn(1, c)
gompertz = gompertz_gen(a=0.0, name='gompertz')
def _average_with_log_weights(x, logweights):
x = np.asarray(x)
logweights = np.asarray(logweights)
maxlogw = logweights.max()
weights = np.exp(logweights - maxlogw)
return np.average(x, weights=weights)
class gumbel_r_gen(rv_continuous):
r"""A right-skewed Gumbel continuous random variable.
%(before_notes)s
See Also
--------
gumbel_l, gompertz, genextreme
Notes
-----
The probability density function for `gumbel_r` is:
.. math::
f(x) = \exp(-(x + e^{-x}))
The Gumbel distribution is sometimes referred to as a type I Fisher-Tippett
distribution. It is also related to the extreme value distribution,
log-Weibull and Gompertz distributions.
%(after_notes)s
%(example)s
"""
def _pdf(self, x):
# gumbel_r.pdf(x) = exp(-(x + exp(-x)))
return np.exp(self._logpdf(x))
def _logpdf(self, x):
return -x - np.exp(-x)
def _cdf(self, x):
return np.exp(-np.exp(-x))
def _logcdf(self, x):
return -np.exp(-x)
def _ppf(self, q):
return -np.log(-np.log(q))
def _sf(self, x):
return -sc.expm1(-np.exp(-x))
def _isf(self, p):
return -np.log(-np.log1p(-p))
def _stats(self):
return _EULER, np.pi*np.pi/6.0, 12*np.sqrt(6)/np.pi**3 * _ZETA3, 12.0/5
def _entropy(self):
# https://en.wikipedia.org/wiki/Gumbel_distribution
return _EULER + 1.
@_call_super_mom
def fit(self, data, *args, **kwds):
data, floc, fscale = _check_fit_input_parameters(self, data,
args, kwds)
# if user has provided `floc` or `fscale`, fall back on super fit
# method. This scenario is not suitable for solving a system of
# equations
if floc is not None or fscale is not None:
return super().fit(data, *args, **kwds)
# rv_continuous provided guesses
loc, scale = self._fitstart(data)
# account for user provided guesses
loc = kwds.pop('loc', loc)
scale = kwds.pop('scale', scale)
# By the method of maximum likelihood, the estimators of the
# location and scale are the roots of the equation defined in
# `func` and the value of the expression for `loc` that follows.
# Source: Statistical Distributions, 3rd Edition. Evans, Hastings,
# and Peacock (2000), Page 101
def func(scale, data):
sdata = -data / scale
wavg = _average_with_log_weights(data, logweights=sdata)
return data.mean() - wavg - scale
soln = optimize.root(func, scale, args=(data,),
options={'xtol': 1e-14})
scale = soln.x[0]
loc = -scale * (sc.logsumexp(-data/scale) - np.log(len(data)))
return loc, scale
gumbel_r = gumbel_r_gen(name='gumbel_r')
class gumbel_l_gen(rv_continuous):
r"""A left-skewed Gumbel continuous random variable.
%(before_notes)s
See Also
--------
gumbel_r, gompertz, genextreme
Notes
-----
The probability density function for `gumbel_l` is:
.. math::
f(x) = \exp(x - e^x)
The Gumbel distribution is sometimes referred to as a type I Fisher-Tippett
distribution. It is also related to the extreme value distribution,
log-Weibull and Gompertz distributions.
%(after_notes)s
%(example)s
"""
def _pdf(self, x):
# gumbel_l.pdf(x) = exp(x - exp(x))
return np.exp(self._logpdf(x))
def _logpdf(self, x):
return x - np.exp(x)
def _cdf(self, x):
return -sc.expm1(-np.exp(x))
def _ppf(self, q):
return np.log(-sc.log1p(-q))
def _logsf(self, x):
return -np.exp(x)
def _sf(self, x):
return np.exp(-np.exp(x))
def _isf(self, x):
return np.log(-np.log(x))
def _stats(self):
return -_EULER, np.pi*np.pi/6.0, \
-12*np.sqrt(6)/np.pi**3 * _ZETA3, 12.0/5
def _entropy(self):
return _EULER + 1.
@_call_super_mom
def fit(self, data, *args, **kwds):
# The fit method of `gumbel_r` can be used for this distribution with
# small modifications. The process to do this is
# 1. pass the sign negated data into `gumbel_r.fit`
# 2. negate the sign of the resulting location, leaving the scale
# unmodified.
# `gumbel_r.fit` holds necessary input checks.
loc_r, scale_r, = gumbel_r.fit(-np.asarray(data), *args, **kwds)
return (-loc_r, scale_r)
gumbel_l = gumbel_l_gen(name='gumbel_l')
class halfcauchy_gen(rv_continuous):
r"""A Half-Cauchy continuous random variable.
%(before_notes)s
Notes
-----
The probability density function for `halfcauchy` is:
.. math::
f(x) = \frac{2}{\pi (1 + x^2)}
for :math:`x \ge 0`.
%(after_notes)s
%(example)s
"""
def _pdf(self, x):
# halfcauchy.pdf(x) = 2 / (pi * (1 + x**2))
return 2.0/np.pi/(1.0+x*x)
def _logpdf(self, x):
return np.log(2.0/np.pi) - sc.log1p(x*x)
def _cdf(self, x):
return 2.0/np.pi*np.arctan(x)
def _ppf(self, q):
return np.tan(np.pi/2*q)
def _stats(self):
return np.inf, np.inf, np.nan, np.nan
def _entropy(self):
return np.log(2*np.pi)
halfcauchy = halfcauchy_gen(a=0.0, name='halfcauchy')
class halflogistic_gen(rv_continuous):
r"""A half-logistic continuous random variable.
%(before_notes)s
Notes
-----
The probability density function for `halflogistic` is:
.. math::
f(x) = \frac{ 2 e^{-x} }{ (1+e^{-x})^2 }
= \frac{1}{2} \text{sech}(x/2)^2
for :math:`x \ge 0`.
%(after_notes)s
%(example)s
"""
def _pdf(self, x):
# halflogistic.pdf(x) = 2 * exp(-x) / (1+exp(-x))**2
# = 1/2 * sech(x/2)**2
return np.exp(self._logpdf(x))
def _logpdf(self, x):
return np.log(2) - x - 2. * sc.log1p(np.exp(-x))
def _cdf(self, x):
return np.tanh(x/2.0)
def _ppf(self, q):
return 2*np.arctanh(q)
def _munp(self, n):
if n == 1:
return 2*np.log(2)
if n == 2:
return np.pi*np.pi/3.0
if n == 3:
return 9*_ZETA3
if n == 4:
return 7*np.pi**4 / 15.0
return 2*(1-pow(2.0, 1-n))*sc.gamma(n+1)*sc.zeta(n, 1)
def _entropy(self):
return 2-np.log(2)
halflogistic = halflogistic_gen(a=0.0, name='halflogistic')
class halfnorm_gen(rv_continuous):
r"""A half-normal continuous random variable.
%(before_notes)s
Notes
-----
The probability density function for `halfnorm` is:
.. math::
f(x) = \sqrt{2/\pi} \exp(-x^2 / 2)
for :math:`x >= 0`.
`halfnorm` is a special case of `chi` with ``df=1``.
%(after_notes)s
%(example)s
"""
def _rvs(self, size=None, random_state=None):
return abs(random_state.standard_normal(size=size))
def _pdf(self, x):
# halfnorm.pdf(x) = sqrt(2/pi) * exp(-x**2/2)
return np.sqrt(2.0/np.pi)*np.exp(-x*x/2.0)
def _logpdf(self, x):
return 0.5 * np.log(2.0/np.pi) - x*x/2.0
def _cdf(self, x):
return _norm_cdf(x)*2-1.0
def _ppf(self, q):
return sc.ndtri((1+q)/2.0)
def _stats(self):
return (np.sqrt(2.0/np.pi),
1-2.0/np.pi,
np.sqrt(2)*(4-np.pi)/(np.pi-2)**1.5,
8*(np.pi-3)/(np.pi-2)**2)
def _entropy(self):
return 0.5*np.log(np.pi/2.0)+0.5
halfnorm = halfnorm_gen(a=0.0, name='halfnorm')
class hypsecant_gen(rv_continuous):
r"""A hyperbolic secant continuous random variable.
%(before_notes)s
Notes
-----
The probability density function for `hypsecant` is:
.. math::
f(x) = \frac{1}{\pi} \text{sech}(x)
for a real number :math:`x`.
%(after_notes)s
%(example)s
"""
def _pdf(self, x):
# hypsecant.pdf(x) = 1/pi * sech(x)
return 1.0/(np.pi*np.cosh(x))
def _cdf(self, x):
return 2.0/np.pi*np.arctan(np.exp(x))
def _ppf(self, q):
return np.log(np.tan(np.pi*q/2.0))
def _stats(self):
return 0, np.pi*np.pi/4, 0, 2
def _entropy(self):
return np.log(2*np.pi)
hypsecant = hypsecant_gen(name='hypsecant')
class gausshyper_gen(rv_continuous):
r"""A Gauss hypergeometric continuous random variable.
%(before_notes)s
Notes
-----
The probability density function for `gausshyper` is:
.. math::
f(x, a, b, c, z) = C x^{a-1} (1-x)^{b-1} (1+zx)^{-c}
for :math:`0 \le x \le 1`, :math:`a > 0`, :math:`b > 0`, :math:`z > -1`,
and :math:`C = \frac{1}{B(a, b) F[2, 1](c, a; a+b; -z)}`.
:math:`F[2, 1]` is the Gauss hypergeometric function
`scipy.special.hyp2f1`.
`gausshyper` takes :math:`a`, :math:`b`, :math:`c` and :math:`z` as shape
parameters.
%(after_notes)s
References
----------
.. [1] Armero, C., and M. J. Bayarri. "Prior Assessments for Prediction in
Queues." *Journal of the Royal Statistical Society*. Series D (The
Statistician) 43, no. 1 (1994): 139-53. doi:10.2307/2348939
%(example)s
"""
def _argcheck(self, a, b, c, z):
# z > -1 per gh-10134
return (a > 0) & (b > 0) & (c == c) & (z > -1)
def _pdf(self, x, a, b, c, z):
# gausshyper.pdf(x, a, b, c, z) =
# C * x**(a-1) * (1-x)**(b-1) * (1+z*x)**(-c)
Cinv = sc.gamma(a)*sc.gamma(b)/sc.gamma(a+b)*sc.hyp2f1(c, a, a+b, -z)
return 1.0/Cinv * x**(a-1.0) * (1.0-x)**(b-1.0) / (1.0+z*x)**c
def _munp(self, n, a, b, c, z):
fac = sc.beta(n+a, b) / sc.beta(a, b)
num = sc.hyp2f1(c, a+n, a+b+n, -z)
den = sc.hyp2f1(c, a, a+b, -z)
return fac*num / den
gausshyper = gausshyper_gen(a=0.0, b=1.0, name='gausshyper')
class invgamma_gen(rv_continuous):
r"""An inverted gamma continuous random variable.
%(before_notes)s
Notes
-----
The probability density function for `invgamma` is:
.. math::
f(x, a) = \frac{x^{-a-1}}{\Gamma(a)} \exp(-\frac{1}{x})
for :math:`x >= 0`, :math:`a > 0`. :math:`\Gamma` is the gamma function
(`scipy.special.gamma`).
`invgamma` takes ``a`` as a shape parameter for :math:`a`.
`invgamma` is a special case of `gengamma` with ``c=-1``, and it is a
different parameterization of the scaled inverse chi-squared distribution.
Specifically, if the scaled inverse chi-squared distribution is
parameterized with degrees of freedom :math:`\nu` and scaling parameter
:math:`\tau^2`, then it can be modeled using `invgamma` with
``a=`` :math:`\nu/2` and ``scale=`` :math:`\nu \tau^2/2`.
%(after_notes)s
%(example)s
"""
_support_mask = rv_continuous._open_support_mask
def _pdf(self, x, a):
# invgamma.pdf(x, a) = x**(-a-1) / gamma(a) * exp(-1/x)
return np.exp(self._logpdf(x, a))
def _logpdf(self, x, a):
return -(a+1) * np.log(x) - sc.gammaln(a) - 1.0/x
def _cdf(self, x, a):
return sc.gammaincc(a, 1.0 / x)
def _ppf(self, q, a):
return 1.0 / sc.gammainccinv(a, q)
def _sf(self, x, a):
return sc.gammainc(a, 1.0 / x)
def _isf(self, q, a):
return 1.0 / sc.gammaincinv(a, q)
def _stats(self, a, moments='mvsk'):
m1 = _lazywhere(a > 1, (a,), lambda x: 1. / (x - 1.), np.inf)
m2 = _lazywhere(a > 2, (a,), lambda x: 1. / (x - 1.)**2 / (x - 2.),
np.inf)
g1, g2 = None, None
if 's' in moments:
g1 = _lazywhere(
a > 3, (a,),
lambda x: 4. * np.sqrt(x - 2.) / (x - 3.), np.nan)
if 'k' in moments:
g2 = _lazywhere(
a > 4, (a,),
lambda x: 6. * (5. * x - 11.) / (x - 3.) / (x - 4.), np.nan)
return m1, m2, g1, g2
def _entropy(self, a):
return a - (a+1.0) * sc.psi(a) + sc.gammaln(a)
invgamma = invgamma_gen(a=0.0, name='invgamma')
class invgauss_gen(rv_continuous):
r"""An inverse Gaussian continuous random variable.
%(before_notes)s
Notes
-----
The probability density function for `invgauss` is:
.. math::
f(x, \mu) = \frac{1}{\sqrt{2 \pi x^3}}
\exp(-\frac{(x-\mu)^2}{2 x \mu^2})
for :math:`x >= 0` and :math:`\mu > 0`.
`invgauss` takes ``mu`` as a shape parameter for :math:`\mu`.
%(after_notes)s
%(example)s
"""
_support_mask = rv_continuous._open_support_mask
def _rvs(self, mu, size=None, random_state=None):
return random_state.wald(mu, 1.0, size=size)
def _pdf(self, x, mu):
# invgauss.pdf(x, mu) =
# 1 / sqrt(2*pi*x**3) * exp(-(x-mu)**2/(2*x*mu**2))
return 1.0/np.sqrt(2*np.pi*x**3.0)*np.exp(-1.0/(2*x)*((x-mu)/mu)**2)
def _logpdf(self, x, mu):
return -0.5*np.log(2*np.pi) - 1.5*np.log(x) - ((x-mu)/mu)**2/(2*x)
# approach adapted from equations in
# https://journal.r-project.org/archive/2016-1/giner-smyth.pdf,
# not R code. see gh-13616
def _logcdf(self, x, mu):
fac = 1 / np.sqrt(x)
a = _norm_logcdf(fac * ((x / mu) - 1))
b = 2 / mu + _norm_logcdf(-fac * ((x / mu) + 1))
return a + np.log1p(np.exp(b - a))
def _logsf(self, x, mu):
fac = 1 / np.sqrt(x)
a = _norm_logsf(fac * ((x / mu) - 1))
b = 2 / mu + _norm_logcdf(-fac * (x + mu) / mu)
return a + np.log1p(-np.exp(b - a))
def _sf(self, x, mu):
return np.exp(self._logsf(x, mu))
def _cdf(self, x, mu):
return np.exp(self._logcdf(x, mu))
def _stats(self, mu):
return mu, mu**3.0, 3*np.sqrt(mu), 15*mu
def fit(self, data, *args, **kwds):
method = kwds.get('method', 'mle')
if type(self) == wald_gen or method.lower() == 'mm':
return super().fit(data, *args, **kwds)
data, fshape_s, floc, fscale = _check_fit_input_parameters(self, data,
args, kwds)
'''
Source: Statistical Distributions, 3rd Edition. Evans, Hastings,
and Peacock (2000), Page 121. Their shape parameter is equivilent to
SciPy's with the conversion `fshape_s = fshape / scale`.
MLE formulas are not used in 3 condtions:
- `loc` is not fixed
- `mu` is fixed
These cases fall back on the superclass fit method.
- `loc` is fixed but translation results in negative data raises
a `FitDataError`.
'''
if floc is None or fshape_s is not None:
return super().fit(data, *args, **kwds)
elif np.any(data - floc < 0):
raise FitDataError("invgauss", lower=0, upper=np.inf)
else:
data = data - floc
fshape_n = np.mean(data)
if fscale is None:
fscale = len(data) / (np.sum(data ** -1 - fshape_n ** -1))
fshape_s = fshape_n / fscale
return fshape_s, floc, fscale
invgauss = invgauss_gen(a=0.0, name='invgauss')
class geninvgauss_gen(rv_continuous):
r"""A Generalized Inverse Gaussian continuous random variable.
%(before_notes)s
Notes
-----
The probability density function for `geninvgauss` is:
.. math::
f(x, p, b) = x^{p-1} \exp(-b (x + 1/x) / 2) / (2 K_p(b))
where `x > 0`, and the parameters `p, b` satisfy `b > 0` ([1]_).
:math:`K_p` is the modified Bessel function of second kind of order `p`
(`scipy.special.kv`).
%(after_notes)s
The inverse Gaussian distribution `stats.invgauss(mu)` is a special case of
`geninvgauss` with `p = -1/2`, `b = 1 / mu` and `scale = mu`.
Generating random variates is challenging for this distribution. The
implementation is based on [2]_.
References
----------
.. [1] O. Barndorff-Nielsen, P. Blaesild, C. Halgreen, "First hitting time
models for the generalized inverse gaussian distribution",
Stochastic Processes and their Applications 7, pp. 49--54, 1978.
.. [2] W. Hoermann and J. Leydold, "Generating generalized inverse Gaussian
random variates", Statistics and Computing, 24(4), p. 547--557, 2014.
%(example)s
"""
def _argcheck(self, p, b):
return (p == p) & (b > 0)
def _logpdf(self, x, p, b):
# kve instead of kv works better for large values of b
# warn if kve produces infinite values and replace by nan
# otherwise c = -inf and the results are often incorrect
@np.vectorize
def logpdf_single(x, p, b):
return _stats.geninvgauss_logpdf(x, p, b)
z = logpdf_single(x, p, b)
if np.isnan(z).any():
msg = ("Infinite values encountered in scipy.special.kve(p, b). "
"Values replaced by NaN to avoid incorrect results.")
warnings.warn(msg, RuntimeWarning)
return z
def _pdf(self, x, p, b):
# relying on logpdf avoids overflow of x**(p-1) for large x and p
return np.exp(self._logpdf(x, p, b))
def _cdf(self, x, *args):
_a, _b = self._get_support(*args)
@np.vectorize
def _cdf_single(x, *args):
p, b = args
user_data = np.array([p, b], float).ctypes.data_as(ctypes.c_void_p)
llc = LowLevelCallable.from_cython(_stats, '_geninvgauss_pdf',
user_data)
return integrate.quad(llc, _a, x)[0]
return _cdf_single(x, *args)
def _logquasipdf(self, x, p, b):
# log of the quasi-density (w/o normalizing constant) used in _rvs
return _lazywhere(x > 0, (x, p, b),
lambda x, p, b: (p - 1)*np.log(x) - b*(x + 1/x)/2,
-np.inf)
def _rvs(self, p, b, size=None, random_state=None):
# if p and b are scalar, use _rvs_scalar, otherwise need to create
# output by iterating over parameters
if np.isscalar(p) and np.isscalar(b):
out = self._rvs_scalar(p, b, size, random_state)
elif p.size == 1 and b.size == 1:
out = self._rvs_scalar(p.item(), b.item(), size, random_state)
else:
# When this method is called, size will be a (possibly empty)
# tuple of integers. It will not be None; if `size=None` is passed
# to `rvs()`, size will be the empty tuple ().
p, b = np.broadcast_arrays(p, b)
# p and b now have the same shape.
# `shp` is the shape of the blocks of random variates that are
# generated for each combination of parameters associated with
# broadcasting p and b.
# bc is a tuple the same lenth as size. The values
# in bc are bools. If bc[j] is True, it means that
# entire axis is filled in for a given combination of the
# broadcast arguments.
shp, bc = _check_shape(p.shape, size)
# `numsamples` is the total number of variates to be generated
# for each combination of the input arguments.
numsamples = int(np.prod(shp))
# `out` is the array to be returned. It is filled in in the
# loop below.
out = np.empty(size)
it = np.nditer([p, b],
flags=['multi_index'],
op_flags=[['readonly'], ['readonly']])
while not it.finished:
# Convert the iterator's multi_index into an index into the
# `out` array where the call to _rvs_scalar() will be stored.
# Where bc is True, we use a full slice; otherwise we use the
# index value from it.multi_index. len(it.multi_index) might
# be less than len(bc), and in that case we want to align these
# two sequences to the right, so the loop variable j runs from
# -len(size) to 0. This doesn't cause an IndexError, as
# bc[j] will be True in those cases where it.multi_index[j]
# would cause an IndexError.
idx = tuple((it.multi_index[j] if not bc[j] else slice(None))
for j in range(-len(size), 0))
out[idx] = self._rvs_scalar(it[0], it[1], numsamples,
random_state).reshape(shp)
it.iternext()
if size == ():
out = out.item()
return out
def _rvs_scalar(self, p, b, numsamples, random_state):
# following [2], the quasi-pdf is used instead of the pdf for the
# generation of rvs
invert_res = False
if not(numsamples):
numsamples = 1
if p < 0:
# note: if X is geninvgauss(p, b), then 1/X is geninvgauss(-p, b)
p = -p
invert_res = True
m = self._mode(p, b)
# determine method to be used following [2]
ratio_unif = True
if p >= 1 or b > 1:
# ratio of uniforms with mode shift below
mode_shift = True
elif b >= min(0.5, 2 * np.sqrt(1 - p) / 3):
# ratio of uniforms without mode shift below
mode_shift = False
else:
# new algorithm in [2]
ratio_unif = False
# prepare sampling of rvs
size1d = tuple(np.atleast_1d(numsamples))
N = np.prod(size1d) # number of rvs needed, reshape upon return
x = np.zeros(N)
simulated = 0
if ratio_unif:
# use ratio of uniforms method
if mode_shift:
a2 = -2 * (p + 1) / b - m
a1 = 2 * m * (p - 1) / b - 1
# find roots of x**3 + a2*x**2 + a1*x + m (Cardano's formula)
p1 = a1 - a2**2 / 3
q1 = 2 * a2**3 / 27 - a2 * a1 / 3 + m
phi = np.arccos(-q1 * np.sqrt(-27 / p1**3) / 2)
s1 = -np.sqrt(-4 * p1 / 3)
root1 = s1 * np.cos(phi / 3 + np.pi / 3) - a2 / 3
root2 = -s1 * np.cos(phi / 3) - a2 / 3
# root3 = s1 * np.cos(phi / 3 - np.pi / 3) - a2 / 3
# if g is the quasipdf, rescale: g(x) / g(m) which we can write
# as exp(log(g(x)) - log(g(m))). This is important
# since for large values of p and b, g cannot be evaluated.
# denote the rescaled quasipdf by h
lm = self._logquasipdf(m, p, b)
d1 = self._logquasipdf(root1, p, b) - lm
d2 = self._logquasipdf(root2, p, b) - lm
# compute the bounding rectangle w.r.t. h. Note that
# np.exp(0.5*d1) = np.sqrt(g(root1)/g(m)) = np.sqrt(h(root1))
vmin = (root1 - m) * np.exp(0.5 * d1)
vmax = (root2 - m) * np.exp(0.5 * d2)
umax = 1 # umax = sqrt(h(m)) = 1
logqpdf = lambda x: self._logquasipdf(x, p, b) - lm
c = m
else:
# ratio of uniforms without mode shift
# compute np.sqrt(quasipdf(m))
umax = np.exp(0.5*self._logquasipdf(m, p, b))
xplus = ((1 + p) + np.sqrt((1 + p)**2 + b**2))/b
vmin = 0
# compute xplus * np.sqrt(quasipdf(xplus))
vmax = xplus * np.exp(0.5 * self._logquasipdf(xplus, p, b))
c = 0
logqpdf = lambda x: self._logquasipdf(x, p, b)
if vmin >= vmax:
raise ValueError("vmin must be smaller than vmax.")
if umax <= 0:
raise ValueError("umax must be positive.")
i = 1
while simulated < N:
k = N - simulated
# simulate uniform rvs on [0, umax] and [vmin, vmax]
u = umax * random_state.uniform(size=k)
v = random_state.uniform(size=k)
v = vmin + (vmax - vmin) * v
rvs = v / u + c
# rewrite acceptance condition u**2 <= pdf(rvs) by taking logs
accept = (2*np.log(u) <= logqpdf(rvs))
num_accept = np.sum(accept)
if num_accept > 0:
x[simulated:(simulated + num_accept)] = rvs[accept]
simulated += num_accept
if (simulated == 0) and (i*N >= 50000):
msg = ("Not a single random variate could be generated "
"in {} attempts. Sampling does not appear to "
"work for the provided parameters.".format(i*N))
raise RuntimeError(msg)
i += 1
else:
# use new algorithm in [2]
x0 = b / (1 - p)
xs = np.max((x0, 2 / b))
k1 = np.exp(self._logquasipdf(m, p, b))
A1 = k1 * x0
if x0 < 2 / b:
k2 = np.exp(-b)
if p > 0:
A2 = k2 * ((2 / b)**p - x0**p) / p
else:
A2 = k2 * np.log(2 / b**2)
else:
k2, A2 = 0, 0
k3 = xs**(p - 1)
A3 = 2 * k3 * np.exp(-xs * b / 2) / b
A = A1 + A2 + A3
# [2]: rejection constant is < 2.73; so expected runtime is finite
while simulated < N:
k = N - simulated
h, rvs = np.zeros(k), np.zeros(k)
# simulate uniform rvs on [x1, x2] and [0, y2]
u = random_state.uniform(size=k)
v = A * random_state.uniform(size=k)
cond1 = v <= A1
cond2 = np.logical_not(cond1) & (v <= A1 + A2)
cond3 = np.logical_not(cond1 | cond2)
# subdomain (0, x0)
rvs[cond1] = x0 * v[cond1] / A1
h[cond1] = k1
# subdomain (x0, 2 / b)
if p > 0:
rvs[cond2] = (x0**p + (v[cond2] - A1) * p / k2)**(1 / p)
else:
rvs[cond2] = b * np.exp((v[cond2] - A1) * np.exp(b))
h[cond2] = k2 * rvs[cond2]**(p - 1)
# subdomain (xs, infinity)
z = np.exp(-xs * b / 2) - b * (v[cond3] - A1 - A2) / (2 * k3)
rvs[cond3] = -2 / b * np.log(z)
h[cond3] = k3 * np.exp(-rvs[cond3] * b / 2)
# apply rejection method
accept = (np.log(u * h) <= self._logquasipdf(rvs, p, b))
num_accept = sum(accept)
if num_accept > 0:
x[simulated:(simulated + num_accept)] = rvs[accept]
simulated += num_accept
rvs = np.reshape(x, size1d)
if invert_res:
rvs = 1 / rvs
return rvs
def _mode(self, p, b):
# distinguish cases to avoid catastrophic cancellation (see [2])
if p < 1:
return b / (np.sqrt((p - 1)**2 + b**2) + 1 - p)
else:
return (np.sqrt((1 - p)**2 + b**2) - (1 - p)) / b
def _munp(self, n, p, b):
num = sc.kve(p + n, b)
denom = sc.kve(p, b)
inf_vals = np.isinf(num) | np.isinf(denom)
if inf_vals.any():
msg = ("Infinite values encountered in the moment calculation "
"involving scipy.special.kve. Values replaced by NaN to "
"avoid incorrect results.")
warnings.warn(msg, RuntimeWarning)
m = np.full_like(num, np.nan, dtype=np.double)
m[~inf_vals] = num[~inf_vals] / denom[~inf_vals]
else:
m = num / denom
return m
geninvgauss = geninvgauss_gen(a=0.0, name="geninvgauss")
class norminvgauss_gen(rv_continuous):
r"""A Normal Inverse Gaussian continuous random variable.
%(before_notes)s
Notes
-----
The probability density function for `norminvgauss` is:
.. math::
f(x, a, b) = \frac{a \, K_1(a \sqrt{1 + x^2})}{\pi \sqrt{1 + x^2}} \,
\exp(\sqrt{a^2 - b^2} + b x)
where :math:`x` is a real number, the parameter :math:`a` is the tail
heaviness and :math:`b` is the asymmetry parameter satisfying
:math:`a > 0` and :math:`|b| <= a`.
:math:`K_1` is the modified Bessel function of second kind
(`scipy.special.k1`).
%(after_notes)s
A normal inverse Gaussian random variable `Y` with parameters `a` and `b`
can be expressed as a normal mean-variance mixture:
`Y = b * V + sqrt(V) * X` where `X` is `norm(0,1)` and `V` is
`invgauss(mu=1/sqrt(a**2 - b**2))`. This representation is used
to generate random variates.
Another common parametrization of the distribution (see Equation 2.1 in
[2]_) is given by the following expression of the pdf:
.. math::
g(x, \alpha, \beta, \delta, \mu) =
\frac{\alpha\delta K_1\left(\alpha\sqrt{\delta^2 + (x - \mu)^2}\right)}
{\pi \sqrt{\delta^2 + (x - \mu)^2}} \,
e^{\delta \sqrt{\alpha^2 - \beta^2} + \beta (x - \mu)}
In SciPy, this corresponds to
`a = alpha * delta, b = beta * delta, loc = mu, scale=delta`.
References
----------
.. [1] O. Barndorff-Nielsen, "Hyperbolic Distributions and Distributions on
Hyperbolae", Scandinavian Journal of Statistics, Vol. 5(3),
pp. 151-157, 1978.
.. [2] O. Barndorff-Nielsen, "Normal Inverse Gaussian Distributions and
Stochastic Volatility Modelling", Scandinavian Journal of
Statistics, Vol. 24, pp. 1-13, 1997.
%(example)s
"""
_support_mask = rv_continuous._open_support_mask
def _argcheck(self, a, b):
return (a > 0) & (np.absolute(b) < a)
def _pdf(self, x, a, b):
gamma = np.sqrt(a**2 - b**2)
fac1 = a / np.pi * np.exp(gamma)
sq = np.hypot(1, x) # reduce overflows
return fac1 * sc.k1e(a * sq) * np.exp(b*x - a*sq) / sq
def _rvs(self, a, b, size=None, random_state=None):
# note: X = b * V + sqrt(V) * X is norminvgaus(a,b) if X is standard
# normal and V is invgauss(mu=1/sqrt(a**2 - b**2))
gamma = np.sqrt(a**2 - b**2)
ig = invgauss.rvs(mu=1/gamma, size=size, random_state=random_state)
return b * ig + np.sqrt(ig) * norm.rvs(size=size,
random_state=random_state)
def _stats(self, a, b):
gamma = np.sqrt(a**2 - b**2)
mean = b / gamma
variance = a**2 / gamma**3
skewness = 3.0 * b / (a * np.sqrt(gamma))
kurtosis = 3.0 * (1 + 4 * b**2 / a**2) / gamma
return mean, variance, skewness, kurtosis
norminvgauss = norminvgauss_gen(name="norminvgauss")
class invweibull_gen(rv_continuous):
u"""An inverted Weibull continuous random variable.
This distribution is also known as the Fréchet distribution or the
type II extreme value distribution.
%(before_notes)s
Notes
-----
The probability density function for `invweibull` is:
.. math::
f(x, c) = c x^{-c-1} \\exp(-x^{-c})
for :math:`x > 0`, :math:`c > 0`.
`invweibull` takes ``c`` as a shape parameter for :math:`c`.
%(after_notes)s
References
----------
F.R.S. de Gusmao, E.M.M Ortega and G.M. Cordeiro, "The generalized inverse
Weibull distribution", Stat. Papers, vol. 52, pp. 591-619, 2011.
%(example)s
"""
_support_mask = rv_continuous._open_support_mask
def _pdf(self, x, c):
# invweibull.pdf(x, c) = c * x**(-c-1) * exp(-x**(-c))
xc1 = np.power(x, -c - 1.0)
xc2 = np.power(x, -c)
xc2 = np.exp(-xc2)
return c * xc1 * xc2
def _cdf(self, x, c):
xc1 = np.power(x, -c)
return np.exp(-xc1)
def _ppf(self, q, c):
return np.power(-np.log(q), -1.0/c)
def _munp(self, n, c):
return sc.gamma(1 - n / c)
def _entropy(self, c):
return 1+_EULER + _EULER / c - np.log(c)
def _fitstart(self, data, args=None):
# invweibull requires c > 1 for the first moment to exist, so use 2.0
args = (2.0,) if args is None else args
return super(invweibull_gen, self)._fitstart(data, args=args)
invweibull = invweibull_gen(a=0, name='invweibull')
class johnsonsb_gen(rv_continuous):
r"""A Johnson SB continuous random variable.
%(before_notes)s
See Also
--------
johnsonsu
Notes
-----
The probability density function for `johnsonsb` is:
.. math::
f(x, a, b) = \frac{b}{x(1-x)} \phi(a + b \log \frac{x}{1-x} )
where :math:`x`, :math:`a`, and :math:`b` are real scalars; :math:`b > 0`
and :math:`x \in [0,1]`. :math:`\phi` is the pdf of the normal
distribution.
`johnsonsb` takes :math:`a` and :math:`b` as shape parameters.
%(after_notes)s
%(example)s
"""
_support_mask = rv_continuous._open_support_mask
def _argcheck(self, a, b):
return (b > 0) & (a == a)
def _pdf(self, x, a, b):
# johnsonsb.pdf(x, a, b) = b / (x*(1-x)) * phi(a + b * log(x/(1-x)))
trm = _norm_pdf(a + b*np.log(x/(1.0-x)))
return b*1.0/(x*(1-x))*trm
def _cdf(self, x, a, b):
return _norm_cdf(a + b*np.log(x/(1.0-x)))
def _ppf(self, q, a, b):
return 1.0 / (1 + np.exp(-1.0 / b * (_norm_ppf(q) - a)))
johnsonsb = johnsonsb_gen(a=0.0, b=1.0, name='johnsonsb')
class johnsonsu_gen(rv_continuous):
r"""A Johnson SU continuous random variable.
%(before_notes)s
See Also
--------
johnsonsb
Notes
-----
The probability density function for `johnsonsu` is:
.. math::
f(x, a, b) = \frac{b}{\sqrt{x^2 + 1}}
\phi(a + b \log(x + \sqrt{x^2 + 1}))
where :math:`x`, :math:`a`, and :math:`b` are real scalars; :math:`b > 0`.
:math:`\phi` is the pdf of the normal distribution.
`johnsonsu` takes :math:`a` and :math:`b` as shape parameters.
%(after_notes)s
%(example)s
"""
def _argcheck(self, a, b):
return (b > 0) & (a == a)
def _pdf(self, x, a, b):
# johnsonsu.pdf(x, a, b) = b / sqrt(x**2 + 1) *
# phi(a + b * log(x + sqrt(x**2 + 1)))
x2 = x*x
trm = _norm_pdf(a + b * np.log(x + np.sqrt(x2+1)))
return b*1.0/np.sqrt(x2+1.0)*trm
def _cdf(self, x, a, b):
return _norm_cdf(a + b * np.log(x + np.sqrt(x*x + 1)))
def _ppf(self, q, a, b):
return np.sinh((_norm_ppf(q) - a) / b)
johnsonsu = johnsonsu_gen(name='johnsonsu')
class laplace_gen(rv_continuous):
r"""A Laplace continuous random variable.
%(before_notes)s
Notes
-----
The probability density function for `laplace` is
.. math::
f(x) = \frac{1}{2} \exp(-|x|)
for a real number :math:`x`.
%(after_notes)s
%(example)s
"""
def _rvs(self, size=None, random_state=None):
return random_state.laplace(0, 1, size=size)
def _pdf(self, x):
# laplace.pdf(x) = 1/2 * exp(-abs(x))
return 0.5*np.exp(-abs(x))
def _cdf(self, x):
with np.errstate(over='ignore'):
return np.where(x > 0, 1.0 - 0.5*np.exp(-x), 0.5*np.exp(x))
def _sf(self, x):
# By symmetry...
return self._cdf(-x)
def _ppf(self, q):
return np.where(q > 0.5, -np.log(2*(1-q)), np.log(2*q))
def _isf(self, q):
# By symmetry...
return -self._ppf(q)
def _stats(self):
return 0, 2, 0, 3
def _entropy(self):
return np.log(2)+1
@_call_super_mom
@replace_notes_in_docstring(rv_continuous, notes="""\
This function uses explicit formulas for the maximum likelihood
estimation of the Laplace distribution parameters, so the keyword
arguments `loc`, `scale`, and `optimizer` are ignored.\n\n""")
def fit(self, data, *args, **kwds):
data, floc, fscale = _check_fit_input_parameters(self, data,
args, kwds)
# Source: Statistical Distributions, 3rd Edition. Evans, Hastings,
# and Peacock (2000), Page 124
if floc is None:
floc = np.median(data)
if fscale is None:
fscale = (np.sum(np.abs(data - floc))) / len(data)
return floc, fscale
laplace = laplace_gen(name='laplace')
class laplace_asymmetric_gen(rv_continuous):
r"""An asymmetric Laplace continuous random variable.
%(before_notes)s
See Also
--------
laplace : Laplace distribution
Notes
-----
The probability density function for `laplace_asymmetric` is
.. math::
f(x, \kappa) &= \frac{1}{\kappa+\kappa^{-1}}\exp(-x\kappa),\quad x\ge0\\
&= \frac{1}{\kappa+\kappa^{-1}}\exp(x/\kappa),\quad x<0\\
for :math:`-\infty < x < \infty`, :math:`\kappa > 0`.
`laplace_asymmetric` takes ``kappa`` as a shape parameter for
:math:`\kappa`. For :math:`\kappa = 1`, it is identical to a
Laplace distribution.
%(after_notes)s
References
----------
.. [1] "Asymmetric Laplace distribution", Wikipedia
https://en.wikipedia.org/wiki/Asymmetric_Laplace_distribution
.. [2] Kozubowski TJ and Podgórski K. A Multivariate and
Asymmetric Generalization of Laplace Distribution,
Computational Statistics 15, 531--540 (2000).
:doi:`10.1007/PL00022717`
%(example)s
"""
def _pdf(self, x, kappa):
return np.exp(self._logpdf(x, kappa))
def _logpdf(self, x, kappa):
kapinv = 1/kappa
lPx = x * np.where(x >= 0, -kappa, kapinv)
lPx -= np.log(kappa+kapinv)
return lPx
def _cdf(self, x, kappa):
kapinv = 1/kappa
kappkapinv = kappa+kapinv
return np.where(x >= 0,
1 - np.exp(-x*kappa)*(kapinv/kappkapinv),
np.exp(x*kapinv)*(kappa/kappkapinv))
def _sf(self, x, kappa):
kapinv = 1/kappa
kappkapinv = kappa+kapinv
return np.where(x >= 0,
np.exp(-x*kappa)*(kapinv/kappkapinv),
1 - np.exp(x*kapinv)*(kappa/kappkapinv))
def _ppf(self, q, kappa):
kapinv = 1/kappa
kappkapinv = kappa+kapinv
return np.where(q >= kappa/kappkapinv,
-np.log((1 - q)*kappkapinv*kappa)*kapinv,
np.log(q*kappkapinv/kappa)*kappa)
def _isf(self, q, kappa):
kapinv = 1/kappa
kappkapinv = kappa+kapinv
return np.where(q <= kapinv/kappkapinv,
-np.log(q*kappkapinv*kappa)*kapinv,
np.log((1 - q)*kappkapinv/kappa)*kappa)
def _stats(self, kappa):
kapinv = 1/kappa
mn = kapinv - kappa
var = kapinv*kapinv + kappa*kappa
g1 = 2.0*(1-np.power(kappa, 6))/np.power(1+np.power(kappa, 4), 1.5)
g2 = 6.0*(1+np.power(kappa, 8))/np.power(1+np.power(kappa, 4), 2)
return mn, var, g1, g2
def _entropy(self, kappa):
return 1 + np.log(kappa+1/kappa)
laplace_asymmetric = laplace_asymmetric_gen(name='laplace_asymmetric')
def _check_fit_input_parameters(dist, data, args, kwds):
data = np.asarray(data)
floc = kwds.get('floc', None)
fscale = kwds.get('fscale', None)
num_shapes = len(dist.shapes.split(",")) if dist.shapes else 0
fshape_keys = []
fshapes = []
# user has many options for fixing the shape, so here we standardize it
# into 'f' + the number of the shape.
# Adapted from `_reduce_func` in `_distn_infrastructure.py`:
if dist.shapes:
shapes = dist.shapes.replace(',', ' ').split()
for j, s in enumerate(shapes):
key = 'f' + str(j)
names = [key, 'f' + s, 'fix_' + s]
val = _get_fixed_fit_value(kwds, names)
fshape_keys.append(key)
fshapes.append(val)
if val is not None:
kwds[key] = val
# determine if there are any unknown arguments in kwds
known_keys = {'loc', 'scale', 'optimizer', 'method',
'floc', 'fscale', *fshape_keys}
unknown_keys = set(kwds).difference(known_keys)
if unknown_keys:
raise TypeError(f"Unknown keyword arguments: {unknown_keys}.")
if len(args) > num_shapes:
raise TypeError("Too many positional arguments.")
if None not in {floc, fscale, *fshapes}:
# This check is for consistency with `rv_continuous.fit`.
# Without this check, this function would just return the
# parameters that were given.
raise RuntimeError("All parameters fixed. There is nothing to "
"optimize.")
if not np.isfinite(data).all():
raise RuntimeError("The data contains non-finite values.")
return (data, *fshapes, floc, fscale)
class levy_gen(rv_continuous):
r"""A Levy continuous random variable.
%(before_notes)s
See Also
--------
levy_stable, levy_l
Notes
-----
The probability density function for `levy` is:
.. math::
f(x) = \frac{1}{\sqrt{2\pi x^3}} \exp\left(-\frac{1}{2x}\right)
for :math:`x >= 0`.
This is the same as the Levy-stable distribution with :math:`a=1/2` and
:math:`b=1`.
%(after_notes)s
%(example)s
"""
_support_mask = rv_continuous._open_support_mask
def _pdf(self, x):
# levy.pdf(x) = 1 / (x * sqrt(2*pi*x)) * exp(-1/(2*x))
return 1 / np.sqrt(2*np.pi*x) / x * np.exp(-1/(2*x))
def _cdf(self, x):
# Equivalent to 2*norm.sf(np.sqrt(1/x))
return sc.erfc(np.sqrt(0.5 / x))
def _sf(self, x):
return sc.erf(np.sqrt(0.5 / x))
def _ppf(self, q):
# Equivalent to 1.0/(norm.isf(q/2)**2) or 0.5/(erfcinv(q)**2)
val = -sc.ndtri(q/2)
return 1.0 / (val * val)
def _stats(self):
return np.inf, np.inf, np.nan, np.nan
levy = levy_gen(a=0.0, name="levy")
class levy_l_gen(rv_continuous):
r"""A left-skewed Levy continuous random variable.
%(before_notes)s
See Also
--------
levy, levy_stable
Notes
-----
The probability density function for `levy_l` is:
.. math::
f(x) = \frac{1}{|x| \sqrt{2\pi |x|}} \exp{ \left(-\frac{1}{2|x|} \right)}
for :math:`x <= 0`.
This is the same as the Levy-stable distribution with :math:`a=1/2` and
:math:`b=-1`.
%(after_notes)s
%(example)s
"""
_support_mask = rv_continuous._open_support_mask
def _pdf(self, x):
# levy_l.pdf(x) = 1 / (abs(x) * sqrt(2*pi*abs(x))) * exp(-1/(2*abs(x)))
ax = abs(x)
return 1/np.sqrt(2*np.pi*ax)/ax*np.exp(-1/(2*ax))
def _cdf(self, x):
ax = abs(x)
return 2 * _norm_cdf(1 / np.sqrt(ax)) - 1
def _sf(self, x):
ax = abs(x)
return 2 * _norm_sf(1 / np.sqrt(ax))
def _ppf(self, q):
val = _norm_ppf((q + 1.0) / 2)
return -1.0 / (val * val)
def _isf(self, p):
return -1/_norm_isf(p/2)**2
def _stats(self):
return np.inf, np.inf, np.nan, np.nan
levy_l = levy_l_gen(b=0.0, name="levy_l")
class levy_stable_gen(rv_continuous):
r"""A Levy-stable continuous random variable.
%(before_notes)s
See Also
--------
levy, levy_l
Notes
-----
The distribution for `levy_stable` has characteristic function:
.. math::
\varphi(t, \alpha, \beta, c, \mu) =
e^{it\mu -|ct|^{\alpha}(1-i\beta \operatorname{sign}(t)\Phi(\alpha, t))}
where:
.. math::
\Phi = \begin{cases}
\tan \left({\frac {\pi \alpha }{2}}\right)&\alpha \neq 1\\
-{\frac {2}{\pi }}\log |t|&\alpha =1
\end{cases}
The probability density function for `levy_stable` is:
.. math::
f(x) = \frac{1}{2\pi}\int_{-\infty}^\infty \varphi(t)e^{-ixt}\,dt
where :math:`-\infty < t < \infty`. This integral does not have a known closed form.
For evaluation of pdf we use either Zolotarev :math:`S_0` parameterization with integration,
direct integration of standard parameterization of characteristic function or FFT of
characteristic function. If set to other than None and if number of points is greater than
``levy_stable.pdf_fft_min_points_threshold`` (defaults to None) we use FFT otherwise we use one
of the other methods.
The default method is 'best' which uses Zolotarev's method if alpha = 1 and integration of
characteristic function otherwise. The default method can be changed by setting
``levy_stable.pdf_default_method`` to either 'zolotarev', 'quadrature' or 'best'.
To increase accuracy of FFT calculation one can specify ``levy_stable.pdf_fft_grid_spacing``
(defaults to 0.001) and ``pdf_fft_n_points_two_power`` (defaults to a value that covers the
input range * 4). Setting ``pdf_fft_n_points_two_power`` to 16 should be sufficiently accurate
in most cases at the expense of CPU time.
For evaluation of cdf we use Zolatarev :math:`S_0` parameterization with integration or integral of
the pdf FFT interpolated spline. The settings affecting FFT calculation are the same as
for pdf calculation. Setting the threshold to ``None`` (default) will disable FFT. For cdf
calculations the Zolatarev method is superior in accuracy, so FFT is disabled by default.
Fitting estimate uses quantile estimation method in [MC]. MLE estimation of parameters in
fit method uses this quantile estimate initially. Note that MLE doesn't always converge if
using FFT for pdf calculations; so it's best that ``pdf_fft_min_points_threshold`` is left unset.
.. warning::
For pdf calculations implementation of Zolatarev is unstable for values where alpha = 1 and
beta != 0. In this case the quadrature method is recommended. FFT calculation is also
considered experimental.
For cdf calculations FFT calculation is considered experimental. Use Zolatarev's method
instead (default).
%(after_notes)s
References
----------
.. [MC] McCulloch, J., 1986. Simple consistent estimators of stable distribution parameters.
Communications in Statistics - Simulation and Computation 15, 11091136.
.. [MS] Mittnik, S.T. Rachev, T. Doganoglu, D. Chenyao, 1999. Maximum likelihood estimation
of stable Paretian models, Mathematical and Computer Modelling, Volume 29, Issue 10,
1999, Pages 275-293.
.. [BS] Borak, S., Hardle, W., Rafal, W. 2005. Stable distributions, Economic Risk.
%(example)s
"""
def _rvs(self, alpha, beta, size=None, random_state=None):
def alpha1func(alpha, beta, TH, aTH, bTH, cosTH, tanTH, W):
return 2/np.pi*((np.pi/2 + bTH)*tanTH
- beta*np.log((np.pi/2*W*cosTH)/(np.pi/2 + bTH)))
def beta0func(alpha, beta, TH, aTH, bTH, cosTH, tanTH, W):
return (W/(cosTH/np.tan(aTH) + np.sin(TH)) *
((np.cos(aTH) + np.sin(aTH)*tanTH)/W)**(1/alpha))
def otherwise(alpha, beta, TH, aTH, bTH, cosTH, tanTH, W):
# alpha is not 1 and beta is not 0
val0 = beta*np.tan(np.pi*alpha/2)
th0 = np.arctan(val0)/alpha
val3 = W/(cosTH/np.tan(alpha*(th0 + TH)) + np.sin(TH))
res3 = val3*((np.cos(aTH) + np.sin(aTH)*tanTH -
val0*(np.sin(aTH) - np.cos(aTH)*tanTH))/W)**(1/alpha)
return res3
def alphanot1func(alpha, beta, TH, aTH, bTH, cosTH, tanTH, W):
res = _lazywhere(beta == 0,
(alpha, beta, TH, aTH, bTH, cosTH, tanTH, W),
beta0func, f2=otherwise)
return res
alpha = np.broadcast_to(alpha, size)
beta = np.broadcast_to(beta, size)
TH = uniform.rvs(loc=-np.pi/2.0, scale=np.pi, size=size,
random_state=random_state)
W = expon.rvs(size=size, random_state=random_state)
aTH = alpha*TH
bTH = beta*TH
cosTH = np.cos(TH)
tanTH = np.tan(TH)
res = _lazywhere(alpha == 1,
(alpha, beta, TH, aTH, bTH, cosTH, tanTH, W),
alpha1func, f2=alphanot1func)
return res
def _argcheck(self, alpha, beta):
return (alpha > 0) & (alpha <= 2) & (beta <= 1) & (beta >= -1)
@staticmethod
def _cf(t, alpha, beta):
Phi = lambda alpha, t: np.tan(np.pi*alpha/2) if alpha != 1 else -2.0*np.log(np.abs(t))/np.pi
return np.exp(-(np.abs(t)**alpha)*(1-1j*beta*np.sign(t)*Phi(alpha, t)))
@staticmethod
def _pdf_from_cf_with_fft(cf, h=0.01, q=9):
"""Calculates pdf from cf using fft. Using region around 0 with N=2**q points
separated by distance h. As suggested by [MS].
"""
N = 2**q
n = np.arange(1,N+1)
density = ((-1)**(n-1-N/2))*np.fft.fft(((-1)**(n-1))*cf(2*np.pi*(n-1-N/2)/h/N))/h/N
x = (n-1-N/2)*h
return (x, density)
@staticmethod
def _pdf_single_value_best(x, alpha, beta):
if alpha != 1. or (alpha == 1. and beta == 0.):
return levy_stable_gen._pdf_single_value_zolotarev(x, alpha, beta)
else:
return levy_stable_gen._pdf_single_value_cf_integrate(x, alpha, beta)
@staticmethod
def _pdf_single_value_cf_integrate(x, alpha, beta):
cf = lambda t: levy_stable_gen._cf(t, alpha, beta)
return integrate.quad(lambda t: np.real(np.exp(-1j*t*x)*cf(t)), -np.inf, np.inf, limit=1000)[0]/np.pi/2
@staticmethod
def _pdf_single_value_zolotarev(x, alpha, beta):
"""Calculate pdf using Zolotarev's methods as detailed in [BS].
"""
zeta = -beta*np.tan(np.pi*alpha/2.)
if alpha != 1:
x0 = x + zeta # convert to S_0 parameterization
xi = np.arctan(-zeta)/alpha
def V(theta):
return np.cos(alpha*xi)**(1/(alpha-1)) * \
(np.cos(theta)/np.sin(alpha*(xi+theta)))**(alpha/(alpha-1)) * \
(np.cos(alpha*xi+(alpha-1)*theta)/np.cos(theta))
if x0 > zeta:
def g(theta):
return (V(theta) *
np.real(np.complex128(x0-zeta)**(alpha/(alpha-1))))
def f(theta):
return g(theta) * np.exp(-g(theta))
# spare calculating integral on null set
# use isclose as macos has fp differences
if np.isclose(-xi, np.pi/2, rtol=1e-014, atol=1e-014):
return 0.
with np.errstate(all="ignore"):
intg_max = optimize.minimize_scalar(lambda theta: -f(theta), bounds=[-xi, np.pi/2])
intg_kwargs = {}
# windows quadpack less forgiving with points out of bounds
if intg_max.success and not np.isnan(intg_max.fun)\
and intg_max.x > -xi and intg_max.x < np.pi/2:
intg_kwargs["points"] = [intg_max.x]
intg = integrate.quad(f, -xi, np.pi/2, **intg_kwargs)[0]
return alpha * intg / np.pi / np.abs(alpha-1) / (x0-zeta)
elif x0 == zeta:
return sc.gamma(1+1/alpha)*np.cos(xi)/np.pi/((1+zeta**2)**(1/alpha/2))
else:
return levy_stable_gen._pdf_single_value_zolotarev(-x, alpha, -beta)
else:
# since location zero, no need to reposition x for S_0 parameterization
xi = np.pi/2
if beta != 0:
warnings.warn('Density calculation unstable for alpha=1 and beta!=0.' +
' Use quadrature method instead.', RuntimeWarning)
def V(theta):
expr_1 = np.pi/2+beta*theta
return 2. * expr_1 * np.exp(expr_1*np.tan(theta)/beta) / np.cos(theta) / np.pi
def g(theta):
return np.exp(-np.pi * x / 2. / beta) * V(theta)
def f(theta):
return g(theta) * np.exp(-g(theta))
with np.errstate(all="ignore"):
intg_max = optimize.minimize_scalar(lambda theta: -f(theta), bounds=[-np.pi/2, np.pi/2])
intg = integrate.fixed_quad(f, -np.pi/2, intg_max.x)[0] + integrate.fixed_quad(f, intg_max.x, np.pi/2)[0]
return intg / np.abs(beta) / 2.
else:
return 1/(1+x**2)/np.pi
@staticmethod
def _cdf_single_value_zolotarev(x, alpha, beta):
"""Calculate cdf using Zolotarev's methods as detailed in [BS].
"""
zeta = -beta*np.tan(np.pi*alpha/2.)
if alpha != 1:
x0 = x + zeta # convert to S_0 parameterization
xi = np.arctan(-zeta)/alpha
def V(theta):
return np.cos(alpha*xi)**(1/(alpha-1)) * \
(np.cos(theta)/np.sin(alpha*(xi+theta)))**(alpha/(alpha-1)) * \
(np.cos(alpha*xi+(alpha-1)*theta)/np.cos(theta))
if x0 > zeta:
c_1 = 1 if alpha > 1 else .5 - xi/np.pi
def f(theta):
z = np.complex128(x0 - zeta)
return np.exp(-V(theta) * np.real(z**(alpha/(alpha-1))))
with np.errstate(all="ignore"):
# spare calculating integral on null set
# use isclose as macos has fp differences
if np.isclose(-xi, np.pi/2, rtol=1e-014, atol=1e-014):
intg = 0
else:
intg = integrate.quad(f, -xi, np.pi/2)[0]
return c_1 + np.sign(1-alpha) * intg / np.pi
elif x0 == zeta:
return .5 - xi/np.pi
else:
return 1 - levy_stable_gen._cdf_single_value_zolotarev(-x, alpha, -beta)
else:
# since location zero, no need to reposition x for S_0 parameterization
xi = np.pi/2
if beta > 0:
def V(theta):
expr_1 = np.pi/2+beta*theta
return 2. * expr_1 * np.exp(expr_1*np.tan(theta)/beta) / np.cos(theta) / np.pi
with np.errstate(all="ignore"):
expr_1 = np.exp(-np.pi*x/beta/2.)
int_1 = integrate.quad(lambda theta: np.exp(-expr_1 * V(theta)), -np.pi/2, np.pi/2)[0]
return int_1 / np.pi
elif beta == 0:
return .5 + np.arctan(x)/np.pi
else:
return 1 - levy_stable_gen._cdf_single_value_zolotarev(-x, 1, -beta)
def _pdf(self, x, alpha, beta):
x = np.asarray(x).reshape(1, -1)[0,:]
x, alpha, beta = np.broadcast_arrays(x, alpha, beta)
data_in = np.dstack((x, alpha, beta))[0]
data_out = np.empty(shape=(len(data_in),1))
pdf_default_method_name = getattr(self, 'pdf_default_method', 'best')
if pdf_default_method_name == 'best':
pdf_single_value_method = levy_stable_gen._pdf_single_value_best
elif pdf_default_method_name == 'zolotarev':
pdf_single_value_method = levy_stable_gen._pdf_single_value_zolotarev
else:
pdf_single_value_method = levy_stable_gen._pdf_single_value_cf_integrate
fft_min_points_threshold = getattr(self, 'pdf_fft_min_points_threshold', None)
fft_grid_spacing = getattr(self, 'pdf_fft_grid_spacing', 0.001)
fft_n_points_two_power = getattr(self, 'pdf_fft_n_points_two_power', None)
# group data in unique arrays of alpha, beta pairs
uniq_param_pairs = np.vstack(list({tuple(row) for row in
data_in[:, 1:]}))
for pair in uniq_param_pairs:
data_mask = np.all(data_in[:,1:] == pair, axis=-1)
data_subset = data_in[data_mask]
if fft_min_points_threshold is None or len(data_subset) < fft_min_points_threshold:
data_out[data_mask] = np.array([pdf_single_value_method(_x, _alpha, _beta)
for _x, _alpha, _beta in data_subset]).reshape(len(data_subset), 1)
else:
warnings.warn('Density calculations experimental for FFT method.' +
' Use combination of zolatarev and quadrature methods instead.', RuntimeWarning)
_alpha, _beta = pair
_x = data_subset[:,(0,)]
# need enough points to "cover" _x for interpolation
h = fft_grid_spacing
q = np.ceil(np.log(2*np.max(np.abs(_x))/h)/np.log(2)) + 2 if fft_n_points_two_power is None else int(fft_n_points_two_power)
density_x, density = levy_stable_gen._pdf_from_cf_with_fft(lambda t: levy_stable_gen._cf(t, _alpha, _beta), h=h, q=q)
f = interpolate.interp1d(density_x, np.real(density))
data_out[data_mask] = f(_x)
return data_out.T[0]
def _cdf(self, x, alpha, beta):
x = np.asarray(x).reshape(1, -1)[0,:]
x, alpha, beta = np.broadcast_arrays(x, alpha, beta)
data_in = np.dstack((x, alpha, beta))[0]
data_out = np.empty(shape=(len(data_in),1))
fft_min_points_threshold = getattr(self, 'pdf_fft_min_points_threshold', None)
fft_grid_spacing = getattr(self, 'pdf_fft_grid_spacing', 0.001)
fft_n_points_two_power = getattr(self, 'pdf_fft_n_points_two_power', None)
# group data in unique arrays of alpha, beta pairs
uniq_param_pairs = np.vstack(
list({tuple(row) for row in data_in[:,1:]}))
for pair in uniq_param_pairs:
data_mask = np.all(data_in[:,1:] == pair, axis=-1)
data_subset = data_in[data_mask]
if fft_min_points_threshold is None or len(data_subset) < fft_min_points_threshold:
data_out[data_mask] = np.array([levy_stable._cdf_single_value_zolotarev(_x, _alpha, _beta)
for _x, _alpha, _beta in data_subset]).reshape(len(data_subset), 1)
else:
warnings.warn("FFT method is considered experimental for "
"cumulative distribution function "
"evaluations. Use Zolotarev's method instead.",
RuntimeWarning)
_alpha, _beta = pair
_x = data_subset[:,(0,)]
# need enough points to "cover" _x for interpolation
h = fft_grid_spacing
q = 16 if fft_n_points_two_power is None else int(fft_n_points_two_power)
density_x, density = levy_stable_gen._pdf_from_cf_with_fft(lambda t: levy_stable_gen._cf(t, _alpha, _beta), h=h, q=q)
f = interpolate.InterpolatedUnivariateSpline(density_x, np.real(density))
data_out[data_mask] = np.array([f.integral(self.a, x_1) for x_1 in _x]).reshape(data_out[data_mask].shape)
return data_out.T[0]
def _fitstart(self, data):
# We follow McCullock 1986 method - Simple Consistent Estimators
# of Stable Distribution Parameters
# Table III and IV
nu_alpha_range = [2.439, 2.5, 2.6, 2.7, 2.8, 3, 3.2, 3.5, 4, 5, 6, 8, 10, 15, 25]
nu_beta_range = [0, 0.1, 0.2, 0.3, 0.5, 0.7, 1]
# table III - alpha = psi_1(nu_alpha, nu_beta)
alpha_table = [
[2.000, 2.000, 2.000, 2.000, 2.000, 2.000, 2.000],
[1.916, 1.924, 1.924, 1.924, 1.924, 1.924, 1.924],
[1.808, 1.813, 1.829, 1.829, 1.829, 1.829, 1.829],
[1.729, 1.730, 1.737, 1.745, 1.745, 1.745, 1.745],
[1.664, 1.663, 1.663, 1.668, 1.676, 1.676, 1.676],
[1.563, 1.560, 1.553, 1.548, 1.547, 1.547, 1.547],
[1.484, 1.480, 1.471, 1.460, 1.448, 1.438, 1.438],
[1.391, 1.386, 1.378, 1.364, 1.337, 1.318, 1.318],
[1.279, 1.273, 1.266, 1.250, 1.210, 1.184, 1.150],
[1.128, 1.121, 1.114, 1.101, 1.067, 1.027, 0.973],
[1.029, 1.021, 1.014, 1.004, 0.974, 0.935, 0.874],
[0.896, 0.892, 0.884, 0.883, 0.855, 0.823, 0.769],
[0.818, 0.812, 0.806, 0.801, 0.780, 0.756, 0.691],
[0.698, 0.695, 0.692, 0.689, 0.676, 0.656, 0.597],
[0.593, 0.590, 0.588, 0.586, 0.579, 0.563, 0.513]]
# table IV - beta = psi_2(nu_alpha, nu_beta)
beta_table = [
[0, 2.160, 1.000, 1.000, 1.000, 1.000, 1.000],
[0, 1.592, 3.390, 1.000, 1.000, 1.000, 1.000],
[0, 0.759, 1.800, 1.000, 1.000, 1.000, 1.000],
[0, 0.482, 1.048, 1.694, 1.000, 1.000, 1.000],
[0, 0.360, 0.760, 1.232, 2.229, 1.000, 1.000],
[0, 0.253, 0.518, 0.823, 1.575, 1.000, 1.000],
[0, 0.203, 0.410, 0.632, 1.244, 1.906, 1.000],
[0, 0.165, 0.332, 0.499, 0.943, 1.560, 1.000],
[0, 0.136, 0.271, 0.404, 0.689, 1.230, 2.195],
[0, 0.109, 0.216, 0.323, 0.539, 0.827, 1.917],
[0, 0.096, 0.190, 0.284, 0.472, 0.693, 1.759],
[0, 0.082, 0.163, 0.243, 0.412, 0.601, 1.596],
[0, 0.074, 0.147, 0.220, 0.377, 0.546, 1.482],
[0, 0.064, 0.128, 0.191, 0.330, 0.478, 1.362],
[0, 0.056, 0.112, 0.167, 0.285, 0.428, 1.274]]
# Table V and VII
alpha_range = [2, 1.9, 1.8, 1.7, 1.6, 1.5, 1.4, 1.3, 1.2, 1.1, 1, 0.9, 0.8, 0.7, 0.6, 0.5]
beta_range = [0, 0.25, 0.5, 0.75, 1]
# Table V - nu_c = psi_3(alpha, beta)
nu_c_table = [
[1.908, 1.908, 1.908, 1.908, 1.908],
[1.914, 1.915, 1.916, 1.918, 1.921],
[1.921, 1.922, 1.927, 1.936, 1.947],
[1.927, 1.930, 1.943, 1.961, 1.987],
[1.933, 1.940, 1.962, 1.997, 2.043],
[1.939, 1.952, 1.988, 2.045, 2.116],
[1.946, 1.967, 2.022, 2.106, 2.211],
[1.955, 1.984, 2.067, 2.188, 2.333],
[1.965, 2.007, 2.125, 2.294, 2.491],
[1.980, 2.040, 2.205, 2.435, 2.696],
[2.000, 2.085, 2.311, 2.624, 2.973],
[2.040, 2.149, 2.461, 2.886, 3.356],
[2.098, 2.244, 2.676, 3.265, 3.912],
[2.189, 2.392, 3.004, 3.844, 4.775],
[2.337, 2.634, 3.542, 4.808, 6.247],
[2.588, 3.073, 4.534, 6.636, 9.144]]
# Table VII - nu_zeta = psi_5(alpha, beta)
nu_zeta_table = [
[0, 0.000, 0.000, 0.000, 0.000],
[0, -0.017, -0.032, -0.049, -0.064],
[0, -0.030, -0.061, -0.092, -0.123],
[0, -0.043, -0.088, -0.132, -0.179],
[0, -0.056, -0.111, -0.170, -0.232],
[0, -0.066, -0.134, -0.206, -0.283],
[0, -0.075, -0.154, -0.241, -0.335],
[0, -0.084, -0.173, -0.276, -0.390],
[0, -0.090, -0.192, -0.310, -0.447],
[0, -0.095, -0.208, -0.346, -0.508],
[0, -0.098, -0.223, -0.380, -0.576],
[0, -0.099, -0.237, -0.424, -0.652],
[0, -0.096, -0.250, -0.469, -0.742],
[0, -0.089, -0.262, -0.520, -0.853],
[0, -0.078, -0.272, -0.581, -0.997],
[0, -0.061, -0.279, -0.659, -1.198]]
psi_1 = interpolate.interp2d(nu_beta_range, nu_alpha_range, alpha_table, kind='linear')
psi_2 = interpolate.interp2d(nu_beta_range, nu_alpha_range, beta_table, kind='linear')
psi_2_1 = lambda nu_beta, nu_alpha: psi_2(nu_beta, nu_alpha) if nu_beta > 0 else -psi_2(-nu_beta, nu_alpha)
phi_3 = interpolate.interp2d(beta_range, alpha_range, nu_c_table, kind='linear')
phi_3_1 = lambda beta, alpha: phi_3(beta, alpha) if beta > 0 else phi_3(-beta, alpha)
phi_5 = interpolate.interp2d(beta_range, alpha_range, nu_zeta_table, kind='linear')
phi_5_1 = lambda beta, alpha: phi_5(beta, alpha) if beta > 0 else -phi_5(-beta, alpha)
# quantiles
p05 = np.percentile(data, 5)
p50 = np.percentile(data, 50)
p95 = np.percentile(data, 95)
p25 = np.percentile(data, 25)
p75 = np.percentile(data, 75)
nu_alpha = (p95 - p05)/(p75 - p25)
nu_beta = (p95 + p05 - 2*p50)/(p95 - p05)
if nu_alpha >= 2.439:
alpha = np.clip(psi_1(nu_beta, nu_alpha)[0], np.finfo(float).eps, 2.)
beta = np.clip(psi_2_1(nu_beta, nu_alpha)[0], -1., 1.)
else:
alpha = 2.0
beta = np.sign(nu_beta)
c = (p75 - p25) / phi_3_1(beta, alpha)[0]
zeta = p50 + c*phi_5_1(beta, alpha)[0]
delta = np.clip(zeta-beta*c*np.tan(np.pi*alpha/2.) if alpha == 1. else zeta, np.finfo(float).eps, np.inf)
return (alpha, beta, delta, c)
def _stats(self, alpha, beta):
mu = 0 if alpha > 1 else np.nan
mu2 = 2 if alpha == 2 else np.inf
g1 = 0. if alpha == 2. else np.NaN
g2 = 0. if alpha == 2. else np.NaN
return mu, mu2, g1, g2
levy_stable = levy_stable_gen(name='levy_stable')
class logistic_gen(rv_continuous):
r"""A logistic (or Sech-squared) continuous random variable.
%(before_notes)s
Notes
-----
The probability density function for `logistic` is:
.. math::
f(x) = \frac{\exp(-x)}
{(1+\exp(-x))^2}
`logistic` is a special case of `genlogistic` with ``c=1``.
Remark that the survival function (``logistic.sf``) is equal to the
Fermi-Dirac distribution describing fermionic statistics.
%(after_notes)s
%(example)s
"""
def _rvs(self, size=None, random_state=None):
return random_state.logistic(size=size)
def _pdf(self, x):
# logistic.pdf(x) = exp(-x) / (1+exp(-x))**2
return np.exp(self._logpdf(x))
def _logpdf(self, x):
y = -np.abs(x)
return y - 2. * sc.log1p(np.exp(y))
def _cdf(self, x):
return sc.expit(x)
def _logcdf(self, x):
return sc.log_expit(x)
def _ppf(self, q):
return sc.logit(q)
def _sf(self, x):
return sc.expit(-x)
def _logsf(self, x):
return sc.log_expit(-x)
def _isf(self, q):
return -sc.logit(q)
def _stats(self):
return 0, np.pi*np.pi/3.0, 0, 6.0/5.0
def _entropy(self):
# https://en.wikipedia.org/wiki/Logistic_distribution
return 2.0
@_call_super_mom
def fit(self, data, *args, **kwds):
data, floc, fscale = _check_fit_input_parameters(self, data,
args, kwds)
# if user has provided `floc` or `fscale`, fall back on super fit
# method. This scenario is not suitable for solving a system of
# equations
if floc is not None or fscale is not None:
return super().fit(data, *args, **kwds)
# rv_continuous provided guesses
loc, scale = self._fitstart(data)
# account for user provided guesses
loc = kwds.pop('loc', loc)
scale = kwds.pop('scale', scale)
# the maximum likelihood estimators `a` and `b` of the location and
# scale parameters are roots of the two equations described in `func`.
# Source: Statistical Distributions, 3rd Edition. Evans, Hastings, and
# Peacock (2000), Page 130
def func(params, data):
a, b = params
n = len(data)
c = (data - a) / b
x1 = np.sum(sc.expit(c)) - n/2
x2 = np.sum(c*np.tanh(c/2)) - n
return x1, x2
return tuple(optimize.root(func, (loc, scale), args=(data,)).x)
logistic = logistic_gen(name='logistic')
class loggamma_gen(rv_continuous):
r"""A log gamma continuous random variable.
%(before_notes)s
Notes
-----
The probability density function for `loggamma` is:
.. math::
f(x, c) = \frac{\exp(c x - \exp(x))}
{\Gamma(c)}
for all :math:`x, c > 0`. Here, :math:`\Gamma` is the
gamma function (`scipy.special.gamma`).
`loggamma` takes ``c`` as a shape parameter for :math:`c`.
%(after_notes)s
%(example)s
"""
def _rvs(self, c, size=None, random_state=None):
return np.log(random_state.gamma(c, size=size))
def _pdf(self, x, c):
# loggamma.pdf(x, c) = exp(c*x-exp(x)) / gamma(c)
return np.exp(c*x-np.exp(x)-sc.gammaln(c))
def _logpdf(self, x, c):
return c*x - np.exp(x) - sc.gammaln(c)
def _cdf(self, x, c):
return sc.gammainc(c, np.exp(x))
def _ppf(self, q, c):
return np.log(sc.gammaincinv(c, q))
def _sf(self, x, c):
return sc.gammaincc(c, np.exp(x))
def _isf(self, q, c):
return np.log(sc.gammainccinv(c, q))
def _stats(self, c):
# See, for example, "A Statistical Study of Log-Gamma Distribution", by
# Ping Shing Chan (thesis, McMaster University, 1993).
mean = sc.digamma(c)
var = sc.polygamma(1, c)
skewness = sc.polygamma(2, c) / np.power(var, 1.5)
excess_kurtosis = sc.polygamma(3, c) / (var*var)
return mean, var, skewness, excess_kurtosis
loggamma = loggamma_gen(name='loggamma')
class loglaplace_gen(rv_continuous):
r"""A log-Laplace continuous random variable.
%(before_notes)s
Notes
-----
The probability density function for `loglaplace` is:
.. math::
f(x, c) = \begin{cases}\frac{c}{2} x^{ c-1} &\text{for } 0 < x < 1\\
\frac{c}{2} x^{-c-1} &\text{for } x \ge 1
\end{cases}
for :math:`c > 0`.
`loglaplace` takes ``c`` as a shape parameter for :math:`c`.
%(after_notes)s
References
----------
T.J. Kozubowski and K. Podgorski, "A log-Laplace growth rate model",
The Mathematical Scientist, vol. 28, pp. 49-60, 2003.
%(example)s
"""
def _pdf(self, x, c):
# loglaplace.pdf(x, c) = c / 2 * x**(c-1), for 0 < x < 1
# = c / 2 * x**(-c-1), for x >= 1
cd2 = c/2.0
c = np.where(x < 1, c, -c)
return cd2*x**(c-1)
def _cdf(self, x, c):
return np.where(x < 1, 0.5*x**c, 1-0.5*x**(-c))
def _ppf(self, q, c):
return np.where(q < 0.5, (2.0*q)**(1.0/c), (2*(1.0-q))**(-1.0/c))
def _munp(self, n, c):
return c**2 / (c**2 - n**2)
def _entropy(self, c):
return np.log(2.0/c) + 1.0
loglaplace = loglaplace_gen(a=0.0, name='loglaplace')
def _lognorm_logpdf(x, s):
return _lazywhere(x != 0, (x, s),
lambda x, s: -np.log(x)**2 / (2*s**2) - np.log(s*x*np.sqrt(2*np.pi)),
-np.inf)
class lognorm_gen(rv_continuous):
r"""A lognormal continuous random variable.
%(before_notes)s
Notes
-----
The probability density function for `lognorm` is:
.. math::
f(x, s) = \frac{1}{s x \sqrt{2\pi}}
\exp\left(-\frac{\log^2(x)}{2s^2}\right)
for :math:`x > 0`, :math:`s > 0`.
`lognorm` takes ``s`` as a shape parameter for :math:`s`.
%(after_notes)s
A common parametrization for a lognormal random variable ``Y`` is in
terms of the mean, ``mu``, and standard deviation, ``sigma``, of the
unique normally distributed random variable ``X`` such that exp(X) = Y.
This parametrization corresponds to setting ``s = sigma`` and ``scale =
exp(mu)``.
%(example)s
"""
_support_mask = rv_continuous._open_support_mask
def _rvs(self, s, size=None, random_state=None):
return np.exp(s * random_state.standard_normal(size))
def _pdf(self, x, s):
# lognorm.pdf(x, s) = 1 / (s*x*sqrt(2*pi)) * exp(-1/2*(log(x)/s)**2)
return np.exp(self._logpdf(x, s))
def _logpdf(self, x, s):
return _lognorm_logpdf(x, s)
def _cdf(self, x, s):
return _norm_cdf(np.log(x) / s)
def _logcdf(self, x, s):
return _norm_logcdf(np.log(x) / s)
def _ppf(self, q, s):
return np.exp(s * _norm_ppf(q))
def _sf(self, x, s):
return _norm_sf(np.log(x) / s)
def _logsf(self, x, s):
return _norm_logsf(np.log(x) / s)
def _stats(self, s):
p = np.exp(s*s)
mu = np.sqrt(p)
mu2 = p*(p-1)
g1 = np.sqrt((p-1))*(2+p)
g2 = np.polyval([1, 2, 3, 0, -6.0], p)
return mu, mu2, g1, g2
def _entropy(self, s):
return 0.5 * (1 + np.log(2*np.pi) + 2 * np.log(s))
@_call_super_mom
@extend_notes_in_docstring(rv_continuous, notes="""\
When `method='MLE'` and
the location parameter is fixed by using the `floc` argument,
this function uses explicit formulas for the maximum likelihood
estimation of the log-normal shape and scale parameters, so the
`optimizer`, `loc` and `scale` keyword arguments are ignored.
\n\n""")
def fit(self, data, *args, **kwds):
floc = kwds.get('floc', None)
if floc is None:
# fall back on the default fit method.
return super().fit(data, *args, **kwds)
f0 = (kwds.get('f0', None) or kwds.get('fs', None) or
kwds.get('fix_s', None))
fscale = kwds.get('fscale', None)
if len(args) > 1:
raise TypeError("Too many input arguments.")
for name in ['f0', 'fs', 'fix_s', 'floc', 'fscale', 'loc', 'scale',
'optimizer', 'method']:
kwds.pop(name, None)
if kwds:
raise TypeError("Unknown arguments: %s." % kwds)
# Special case: loc is fixed. Use the maximum likelihood formulas
# instead of the numerical solver.
if f0 is not None and fscale is not None:
# This check is for consistency with `rv_continuous.fit`.
raise ValueError("All parameters fixed. There is nothing to "
"optimize.")
data = np.asarray(data)
if not np.isfinite(data).all():
raise RuntimeError("The data contains non-finite values.")
floc = float(floc)
if floc != 0:
# Shifting the data by floc. Don't do the subtraction in-place,
# because `data` might be a view of the input array.
data = data - floc
if np.any(data <= 0):
raise FitDataError("lognorm", lower=floc, upper=np.inf)
lndata = np.log(data)
# Three cases to handle:
# * shape and scale both free
# * shape fixed, scale free
# * shape free, scale fixed
if fscale is None:
# scale is free.
scale = np.exp(lndata.mean())
if f0 is None:
# shape is free.
shape = lndata.std()
else:
# shape is fixed.
shape = float(f0)
else:
# scale is fixed, shape is free
scale = float(fscale)
shape = np.sqrt(((lndata - np.log(scale))**2).mean())
return shape, floc, scale
lognorm = lognorm_gen(a=0.0, name='lognorm')
class gilbrat_gen(rv_continuous):
r"""A Gilbrat continuous random variable.
%(before_notes)s
Notes
-----
The probability density function for `gilbrat` is:
.. math::
f(x) = \frac{1}{x \sqrt{2\pi}} \exp(-\frac{1}{2} (\log(x))^2)
`gilbrat` is a special case of `lognorm` with ``s=1``.
%(after_notes)s
%(example)s
"""
_support_mask = rv_continuous._open_support_mask
def _rvs(self, size=None, random_state=None):
return np.exp(random_state.standard_normal(size))
def _pdf(self, x):
# gilbrat.pdf(x) = 1/(x*sqrt(2*pi)) * exp(-1/2*(log(x))**2)
return np.exp(self._logpdf(x))
def _logpdf(self, x):
return _lognorm_logpdf(x, 1.0)
def _cdf(self, x):
return _norm_cdf(np.log(x))
def _ppf(self, q):
return np.exp(_norm_ppf(q))
def _stats(self):
p = np.e
mu = np.sqrt(p)
mu2 = p * (p - 1)
g1 = np.sqrt((p - 1)) * (2 + p)
g2 = np.polyval([1, 2, 3, 0, -6.0], p)
return mu, mu2, g1, g2
def _entropy(self):
return 0.5 * np.log(2 * np.pi) + 0.5
gilbrat = gilbrat_gen(a=0.0, name='gilbrat')
class maxwell_gen(rv_continuous):
r"""A Maxwell continuous random variable.
%(before_notes)s
Notes
-----
A special case of a `chi` distribution, with ``df=3``, ``loc=0.0``,
and given ``scale = a``, where ``a`` is the parameter used in the
Mathworld description [1]_.
The probability density function for `maxwell` is:
.. math::
f(x) = \sqrt{2/\pi}x^2 \exp(-x^2/2)
for :math:`x >= 0`.
%(after_notes)s
References
----------
.. [1] http://mathworld.wolfram.com/MaxwellDistribution.html
%(example)s
"""
def _rvs(self, size=None, random_state=None):
return chi.rvs(3.0, size=size, random_state=random_state)
def _pdf(self, x):
# maxwell.pdf(x) = sqrt(2/pi)x**2 * exp(-x**2/2)
return _SQRT_2_OVER_PI*x*x*np.exp(-x*x/2.0)
def _logpdf(self, x):
return _LOG_SQRT_2_OVER_PI + 2*np.log(x) - 0.5*x*x
def _cdf(self, x):
return sc.gammainc(1.5, x*x/2.0)
def _ppf(self, q):
return np.sqrt(2*sc.gammaincinv(1.5, q))
def _stats(self):
val = 3*np.pi-8
return (2*np.sqrt(2.0/np.pi),
3-8/np.pi,
np.sqrt(2)*(32-10*np.pi)/val**1.5,
(-12*np.pi*np.pi + 160*np.pi - 384) / val**2.0)
def _entropy(self):
return _EULER + 0.5*np.log(2*np.pi)-0.5
maxwell = maxwell_gen(a=0.0, name='maxwell')
class mielke_gen(rv_continuous):
r"""A Mielke Beta-Kappa / Dagum continuous random variable.
%(before_notes)s
Notes
-----
The probability density function for `mielke` is:
.. math::
f(x, k, s) = \frac{k x^{k-1}}{(1+x^s)^{1+k/s}}
for :math:`x > 0` and :math:`k, s > 0`. The distribution is sometimes
called Dagum distribution ([2]_). It was already defined in [3]_, called
a Burr Type III distribution (`burr` with parameters ``c=s`` and
``d=k/s``).
`mielke` takes ``k`` and ``s`` as shape parameters.
%(after_notes)s
References
----------
.. [1] Mielke, P.W., 1973 "Another Family of Distributions for Describing
and Analyzing Precipitation Data." J. Appl. Meteor., 12, 275-280
.. [2] Dagum, C., 1977 "A new model for personal income distribution."
Economie Appliquee, 33, 327-367.
.. [3] Burr, I. W. "Cumulative frequency functions", Annals of
Mathematical Statistics, 13(2), pp 215-232 (1942).
%(example)s
"""
def _argcheck(self, k, s):
return (k > 0) & (s > 0)
def _pdf(self, x, k, s):
return k*x**(k-1.0) / (1.0+x**s)**(1.0+k*1.0/s)
def _logpdf(self, x, k, s):
return np.log(k) + np.log(x)*(k-1.0) - np.log1p(x**s)*(1.0+k*1.0/s)
def _cdf(self, x, k, s):
return x**k / (1.0+x**s)**(k*1.0/s)
def _ppf(self, q, k, s):
qsk = pow(q, s*1.0/k)
return pow(qsk/(1.0-qsk), 1.0/s)
def _munp(self, n, k, s):
def nth_moment(n, k, s):
# n-th moment is defined for -k < n < s
return sc.gamma((k+n)/s)*sc.gamma(1-n/s)/sc.gamma(k/s)
return _lazywhere(n < s, (n, k, s), nth_moment, np.inf)
mielke = mielke_gen(a=0.0, name='mielke')
class kappa4_gen(rv_continuous):
r"""Kappa 4 parameter distribution.
%(before_notes)s
Notes
-----
The probability density function for kappa4 is:
.. math::
f(x, h, k) = (1 - k x)^{1/k - 1} (1 - h (1 - k x)^{1/k})^{1/h-1}
if :math:`h` and :math:`k` are not equal to 0.
If :math:`h` or :math:`k` are zero then the pdf can be simplified:
h = 0 and k != 0::
kappa4.pdf(x, h, k) = (1.0 - k*x)**(1.0/k - 1.0)*
exp(-(1.0 - k*x)**(1.0/k))
h != 0 and k = 0::
kappa4.pdf(x, h, k) = exp(-x)*(1.0 - h*exp(-x))**(1.0/h - 1.0)
h = 0 and k = 0::
kappa4.pdf(x, h, k) = exp(-x)*exp(-exp(-x))
kappa4 takes :math:`h` and :math:`k` as shape parameters.
The kappa4 distribution returns other distributions when certain
:math:`h` and :math:`k` values are used.
+------+-------------+----------------+------------------+
| h | k=0.0 | k=1.0 | -inf<=k<=inf |
+======+=============+================+==================+
| -1.0 | Logistic | | Generalized |
| | | | Logistic(1) |
| | | | |
| | logistic(x) | | |
+------+-------------+----------------+------------------+
| 0.0 | Gumbel | Reverse | Generalized |
| | | Exponential(2) | Extreme Value |
| | | | |
| | gumbel_r(x) | | genextreme(x, k) |
+------+-------------+----------------+------------------+
| 1.0 | Exponential | Uniform | Generalized |
| | | | Pareto |
| | | | |
| | expon(x) | uniform(x) | genpareto(x, -k) |
+------+-------------+----------------+------------------+
(1) There are at least five generalized logistic distributions.
Four are described here:
https://en.wikipedia.org/wiki/Generalized_logistic_distribution
The "fifth" one is the one kappa4 should match which currently
isn't implemented in scipy:
https://en.wikipedia.org/wiki/Talk:Generalized_logistic_distribution
https://www.mathwave.com/help/easyfit/html/analyses/distributions/gen_logistic.html
(2) This distribution is currently not in scipy.
References
----------
J.C. Finney, "Optimization of a Skewed Logistic Distribution With Respect
to the Kolmogorov-Smirnov Test", A Dissertation Submitted to the Graduate
Faculty of the Louisiana State University and Agricultural and Mechanical
College, (August, 2004),
https://digitalcommons.lsu.edu/gradschool_dissertations/3672
J.R.M. Hosking, "The four-parameter kappa distribution". IBM J. Res.
Develop. 38 (3), 25 1-258 (1994).
B. Kumphon, A. Kaew-Man, P. Seenoi, "A Rainfall Distribution for the Lampao
Site in the Chi River Basin, Thailand", Journal of Water Resource and
Protection, vol. 4, 866-869, (2012).
:doi:`10.4236/jwarp.2012.410101`
C. Winchester, "On Estimation of the Four-Parameter Kappa Distribution", A
Thesis Submitted to Dalhousie University, Halifax, Nova Scotia, (March
2000).
http://www.nlc-bnc.ca/obj/s4/f2/dsk2/ftp01/MQ57336.pdf
%(after_notes)s
%(example)s
"""
def _argcheck(self, h, k):
return h == h
def _get_support(self, h, k):
condlist = [np.logical_and(h > 0, k > 0),
np.logical_and(h > 0, k == 0),
np.logical_and(h > 0, k < 0),
np.logical_and(h <= 0, k > 0),
np.logical_and(h <= 0, k == 0),
np.logical_and(h <= 0, k < 0)]
def f0(h, k):
return (1.0 - np.float_power(h, -k))/k
def f1(h, k):
return np.log(h)
def f3(h, k):
a = np.empty(np.shape(h))
a[:] = -np.inf
return a
def f5(h, k):
return 1.0/k
_a = _lazyselect(condlist,
[f0, f1, f0, f3, f3, f5],
[h, k],
default=np.nan)
def f0(h, k):
return 1.0/k
def f1(h, k):
a = np.empty(np.shape(h))
a[:] = np.inf
return a
_b = _lazyselect(condlist,
[f0, f1, f1, f0, f1, f1],
[h, k],
default=np.nan)
return _a, _b
def _pdf(self, x, h, k):
# kappa4.pdf(x, h, k) = (1.0 - k*x)**(1.0/k - 1.0)*
# (1.0 - h*(1.0 - k*x)**(1.0/k))**(1.0/h-1)
return np.exp(self._logpdf(x, h, k))
def _logpdf(self, x, h, k):
condlist = [np.logical_and(h != 0, k != 0),
np.logical_and(h == 0, k != 0),
np.logical_and(h != 0, k == 0),
np.logical_and(h == 0, k == 0)]
def f0(x, h, k):
'''pdf = (1.0 - k*x)**(1.0/k - 1.0)*(
1.0 - h*(1.0 - k*x)**(1.0/k))**(1.0/h-1.0)
logpdf = ...
'''
return (sc.xlog1py(1.0/k - 1.0, -k*x) +
sc.xlog1py(1.0/h - 1.0, -h*(1.0 - k*x)**(1.0/k)))
def f1(x, h, k):
'''pdf = (1.0 - k*x)**(1.0/k - 1.0)*np.exp(-(
1.0 - k*x)**(1.0/k))
logpdf = ...
'''
return sc.xlog1py(1.0/k - 1.0, -k*x) - (1.0 - k*x)**(1.0/k)
def f2(x, h, k):
'''pdf = np.exp(-x)*(1.0 - h*np.exp(-x))**(1.0/h - 1.0)
logpdf = ...
'''
return -x + sc.xlog1py(1.0/h - 1.0, -h*np.exp(-x))
def f3(x, h, k):
'''pdf = np.exp(-x-np.exp(-x))
logpdf = ...
'''
return -x - np.exp(-x)
return _lazyselect(condlist,
[f0, f1, f2, f3],
[x, h, k],
default=np.nan)
def _cdf(self, x, h, k):
return np.exp(self._logcdf(x, h, k))
def _logcdf(self, x, h, k):
condlist = [np.logical_and(h != 0, k != 0),
np.logical_and(h == 0, k != 0),
np.logical_and(h != 0, k == 0),
np.logical_and(h == 0, k == 0)]
def f0(x, h, k):
'''cdf = (1.0 - h*(1.0 - k*x)**(1.0/k))**(1.0/h)
logcdf = ...
'''
return (1.0/h)*sc.log1p(-h*(1.0 - k*x)**(1.0/k))
def f1(x, h, k):
'''cdf = np.exp(-(1.0 - k*x)**(1.0/k))
logcdf = ...
'''
return -(1.0 - k*x)**(1.0/k)
def f2(x, h, k):
'''cdf = (1.0 - h*np.exp(-x))**(1.0/h)
logcdf = ...
'''
return (1.0/h)*sc.log1p(-h*np.exp(-x))
def f3(x, h, k):
'''cdf = np.exp(-np.exp(-x))
logcdf = ...
'''
return -np.exp(-x)
return _lazyselect(condlist,
[f0, f1, f2, f3],
[x, h, k],
default=np.nan)
def _ppf(self, q, h, k):
condlist = [np.logical_and(h != 0, k != 0),
np.logical_and(h == 0, k != 0),
np.logical_and(h != 0, k == 0),
np.logical_and(h == 0, k == 0)]
def f0(q, h, k):
return 1.0/k*(1.0 - ((1.0 - (q**h))/h)**k)
def f1(q, h, k):
return 1.0/k*(1.0 - (-np.log(q))**k)
def f2(q, h, k):
'''ppf = -np.log((1.0 - (q**h))/h)
'''
return -sc.log1p(-(q**h)) + np.log(h)
def f3(q, h, k):
return -np.log(-np.log(q))
return _lazyselect(condlist,
[f0, f1, f2, f3],
[q, h, k],
default=np.nan)
def _stats(self, h, k):
if h >= 0 and k >= 0:
maxr = 5
elif h < 0 and k >= 0:
maxr = int(-1.0/h*k)
elif k < 0:
maxr = int(-1.0/k)
else:
maxr = 5
outputs = [None if r < maxr else np.nan for r in range(1, 5)]
return outputs[:]
kappa4 = kappa4_gen(name='kappa4')
class kappa3_gen(rv_continuous):
r"""Kappa 3 parameter distribution.
%(before_notes)s
Notes
-----
The probability density function for `kappa3` is:
.. math::
f(x, a) = a (a + x^a)^{-(a + 1)/a}
for :math:`x > 0` and :math:`a > 0`.
`kappa3` takes ``a`` as a shape parameter for :math:`a`.
References
----------
P.W. Mielke and E.S. Johnson, "Three-Parameter Kappa Distribution Maximum
Likelihood and Likelihood Ratio Tests", Methods in Weather Research,
701-707, (September, 1973),
:doi:`10.1175/1520-0493(1973)101<0701:TKDMLE>2.3.CO;2`
B. Kumphon, "Maximum Entropy and Maximum Likelihood Estimation for the
Three-Parameter Kappa Distribution", Open Journal of Statistics, vol 2,
415-419 (2012), :doi:`10.4236/ojs.2012.24050`
%(after_notes)s
%(example)s
"""
def _argcheck(self, a):
return a > 0
def _pdf(self, x, a):
# kappa3.pdf(x, a) = a*(a + x**a)**(-(a + 1)/a), for x > 0
return a*(a + x**a)**(-1.0/a-1)
def _cdf(self, x, a):
return x*(a + x**a)**(-1.0/a)
def _ppf(self, q, a):
return (a/(q**-a - 1.0))**(1.0/a)
def _stats(self, a):
outputs = [None if i < a else np.nan for i in range(1, 5)]
return outputs[:]
kappa3 = kappa3_gen(a=0.0, name='kappa3')
class moyal_gen(rv_continuous):
r"""A Moyal continuous random variable.
%(before_notes)s
Notes
-----
The probability density function for `moyal` is:
.. math::
f(x) = \exp(-(x + \exp(-x))/2) / \sqrt{2\pi}
for a real number :math:`x`.
%(after_notes)s
This distribution has utility in high-energy physics and radiation
detection. It describes the energy loss of a charged relativistic
particle due to ionization of the medium [1]_. It also provides an
approximation for the Landau distribution. For an in depth description
see [2]_. For additional description, see [3]_.
References
----------
.. [1] J.E. Moyal, "XXX. Theory of ionization fluctuations",
The London, Edinburgh, and Dublin Philosophical Magazine
and Journal of Science, vol 46, 263-280, (1955).
:doi:`10.1080/14786440308521076` (gated)
.. [2] G. Cordeiro et al., "The beta Moyal: a useful skew distribution",
International Journal of Research and Reviews in Applied Sciences,
vol 10, 171-192, (2012).
http://www.arpapress.com/Volumes/Vol10Issue2/IJRRAS_10_2_02.pdf
.. [3] C. Walck, "Handbook on Statistical Distributions for
Experimentalists; International Report SUF-PFY/96-01", Chapter 26,
University of Stockholm: Stockholm, Sweden, (2007).
http://www.stat.rice.edu/~dobelman/textfiles/DistributionsHandbook.pdf
.. versionadded:: 1.1.0
%(example)s
"""
def _rvs(self, size=None, random_state=None):
u1 = gamma.rvs(a=0.5, scale=2, size=size,
random_state=random_state)
return -np.log(u1)
def _pdf(self, x):
return np.exp(-0.5 * (x + np.exp(-x))) / np.sqrt(2*np.pi)
def _cdf(self, x):
return sc.erfc(np.exp(-0.5 * x) / np.sqrt(2))
def _sf(self, x):
return sc.erf(np.exp(-0.5 * x) / np.sqrt(2))
def _ppf(self, x):
return -np.log(2 * sc.erfcinv(x)**2)
def _stats(self):
mu = np.log(2) + np.euler_gamma
mu2 = np.pi**2 / 2
g1 = 28 * np.sqrt(2) * sc.zeta(3) / np.pi**3
g2 = 4.
return mu, mu2, g1, g2
def _munp(self, n):
if n == 1.0:
return np.log(2) + np.euler_gamma
elif n == 2.0:
return np.pi**2 / 2 + (np.log(2) + np.euler_gamma)**2
elif n == 3.0:
tmp1 = 1.5 * np.pi**2 * (np.log(2)+np.euler_gamma)
tmp2 = (np.log(2)+np.euler_gamma)**3
tmp3 = 14 * sc.zeta(3)
return tmp1 + tmp2 + tmp3
elif n == 4.0:
tmp1 = 4 * 14 * sc.zeta(3) * (np.log(2) + np.euler_gamma)
tmp2 = 3 * np.pi**2 * (np.log(2) + np.euler_gamma)**2
tmp3 = (np.log(2) + np.euler_gamma)**4
tmp4 = 7 * np.pi**4 / 4
return tmp1 + tmp2 + tmp3 + tmp4
else:
# return generic for higher moments
# return rv_continuous._mom1_sc(self, n, b)
return self._mom1_sc(n)
moyal = moyal_gen(name="moyal")
class nakagami_gen(rv_continuous):
r"""A Nakagami continuous random variable.
%(before_notes)s
Notes
-----
The probability density function for `nakagami` is:
.. math::
f(x, \nu) = \frac{2 \nu^\nu}{\Gamma(\nu)} x^{2\nu-1} \exp(-\nu x^2)
for :math:`x >= 0`, :math:`\nu > 0`.
`nakagami` takes ``nu`` as a shape parameter for :math:`\nu`.
%(after_notes)s
%(example)s
"""
def _pdf(self, x, nu):
return np.exp(self._logpdf(x, nu))
def _logpdf(self, x, nu):
# nakagami.pdf(x, nu) = 2 * nu**nu / gamma(nu) *
# x**(2*nu-1) * exp(-nu*x**2)
return (np.log(2) + sc.xlogy(nu, nu) - sc.gammaln(nu) +
sc.xlogy(2*nu - 1, x) - nu*x**2)
def _cdf(self, x, nu):
return sc.gammainc(nu, nu*x*x)
def _ppf(self, q, nu):
return np.sqrt(1.0/nu*sc.gammaincinv(nu, q))
def _sf(self, x, nu):
return sc.gammaincc(nu, nu*x*x)
def _isf(self, p, nu):
return np.sqrt(1/nu * sc.gammainccinv(nu, p))
def _stats(self, nu):
mu = sc.gamma(nu+0.5)/sc.gamma(nu)/np.sqrt(nu)
mu2 = 1.0-mu*mu
g1 = mu * (1 - 4*nu*mu2) / 2.0 / nu / np.power(mu2, 1.5)
g2 = -6*mu**4*nu + (8*nu-2)*mu**2-2*nu + 1
g2 /= nu*mu2**2.0
return mu, mu2, g1, g2
def _fitstart(self, data, args=None):
if args is None:
args = (1.0,) * self.numargs
# Analytical justified estimates
# see: https://docs.scipy.org/doc/scipy/reference/tutorial/stats/continuous_nakagami.html
loc = np.min(data)
scale = np.sqrt(np.sum((data - loc)**2) / len(data))
return args + (loc, scale)
nakagami = nakagami_gen(a=0.0, name="nakagami")
class ncx2_gen(rv_continuous):
r"""A non-central chi-squared continuous random variable.
%(before_notes)s
Notes
-----
The probability density function for `ncx2` is:
.. math::
f(x, k, \lambda) = \frac{1}{2} \exp(-(\lambda+x)/2)
(x/\lambda)^{(k-2)/4} I_{(k-2)/2}(\sqrt{\lambda x})
for :math:`x >= 0` and :math:`k, \lambda > 0`. :math:`k` specifies the
degrees of freedom (denoted ``df`` in the implementation) and
:math:`\lambda` is the non-centrality parameter (denoted ``nc`` in the
implementation). :math:`I_\nu` denotes the modified Bessel function of
first order of degree :math:`\nu` (`scipy.special.iv`).
`ncx2` takes ``df`` and ``nc`` as shape parameters.
%(after_notes)s
%(example)s
"""
def _argcheck(self, df, nc):
return (df > 0) & (nc >= 0)
def _rvs(self, df, nc, size=None, random_state=None):
return random_state.noncentral_chisquare(df, nc, size)
def _logpdf(self, x, df, nc):
cond = np.ones_like(x, dtype=bool) & (nc != 0)
return _lazywhere(cond, (x, df, nc), f=_ncx2_log_pdf, f2=chi2.logpdf)
def _pdf(self, x, df, nc):
# ncx2.pdf(x, df, nc) = exp(-(nc+x)/2) * 1/2 * (x/nc)**((df-2)/4)
# * I[(df-2)/2](sqrt(nc*x))
cond = np.ones_like(x, dtype=bool) & (nc != 0)
return _lazywhere(cond, (x, df, nc), f=_ncx2_pdf, f2=chi2.pdf)
def _cdf(self, x, df, nc):
cond = np.ones_like(x, dtype=bool) & (nc != 0)
return _lazywhere(cond, (x, df, nc), f=_ncx2_cdf, f2=chi2.cdf)
def _ppf(self, q, df, nc):
cond = np.ones_like(q, dtype=bool) & (nc != 0)
return _lazywhere(cond, (q, df, nc), f=sc.chndtrix, f2=chi2.ppf)
def _stats(self, df, nc):
val = df + 2.0*nc
return (df + nc,
2*val,
np.sqrt(8)*(val+nc)/val**1.5,
12.0*(val+2*nc)/val**2.0)
ncx2 = ncx2_gen(a=0.0, name='ncx2')
class ncf_gen(rv_continuous):
r"""A non-central F distribution continuous random variable.
%(before_notes)s
See Also
--------
scipy.stats.f : Fisher distribution
Notes
-----
The probability density function for `ncf` is:
.. math::
f(x, n_1, n_2, \lambda) =
\exp\left(\frac{\lambda}{2} +
\lambda n_1 \frac{x}{2(n_1 x + n_2)}
\right)
n_1^{n_1/2} n_2^{n_2/2} x^{n_1/2 - 1} \\
(n_2 + n_1 x)^{-(n_1 + n_2)/2}
\gamma(n_1/2) \gamma(1 + n_2/2) \\
\frac{L^{\frac{n_1}{2}-1}_{n_2/2}
\left(-\lambda n_1 \frac{x}{2(n_1 x + n_2)}\right)}
{B(n_1/2, n_2/2)
\gamma\left(\frac{n_1 + n_2}{2}\right)}
for :math:`n_1, n_2 > 0`, :math:`\lambda \ge 0`. Here :math:`n_1` is the
degrees of freedom in the numerator, :math:`n_2` the degrees of freedom in
the denominator, :math:`\lambda` the non-centrality parameter,
:math:`\gamma` is the logarithm of the Gamma function, :math:`L_n^k` is a
generalized Laguerre polynomial and :math:`B` is the beta function.
`ncf` takes ``df1``, ``df2`` and ``nc`` as shape parameters. If ``nc=0``,
the distribution becomes equivalent to the Fisher distribution.
%(after_notes)s
%(example)s
"""
def _argcheck(self, df1, df2, nc):
return (df1 > 0) & (df2 > 0) & (nc >= 0)
def _rvs(self, dfn, dfd, nc, size=None, random_state=None):
return random_state.noncentral_f(dfn, dfd, nc, size)
def _pdf_skip(self, x, dfn, dfd, nc):
# ncf.pdf(x, df1, df2, nc) = exp(nc/2 + nc*df1*x/(2*(df1*x+df2))) *
# df1**(df1/2) * df2**(df2/2) * x**(df1/2-1) *
# (df2+df1*x)**(-(df1+df2)/2) *
# gamma(df1/2)*gamma(1+df2/2) *
# L^{v1/2-1}^{v2/2}(-nc*v1*x/(2*(v1*x+v2))) /
# (B(v1/2, v2/2) * gamma((v1+v2)/2))
n1, n2 = dfn, dfd
term = -nc/2+nc*n1*x/(2*(n2+n1*x)) + sc.gammaln(n1/2.)+sc.gammaln(1+n2/2.)
term -= sc.gammaln((n1+n2)/2.0)
Px = np.exp(term)
Px *= n1**(n1/2) * n2**(n2/2) * x**(n1/2-1)
Px *= (n2+n1*x)**(-(n1+n2)/2)
Px *= sc.assoc_laguerre(-nc*n1*x/(2.0*(n2+n1*x)), n2/2, n1/2-1)
Px /= sc.beta(n1/2, n2/2)
# This function does not have a return. Drop it for now, the generic
# function seems to work OK.
def _cdf(self, x, dfn, dfd, nc):
return sc.ncfdtr(dfn, dfd, nc, x)
def _ppf(self, q, dfn, dfd, nc):
return sc.ncfdtri(dfn, dfd, nc, q)
def _munp(self, n, dfn, dfd, nc):
val = (dfn * 1.0/dfd)**n
term = sc.gammaln(n+0.5*dfn) + sc.gammaln(0.5*dfd-n) - sc.gammaln(dfd*0.5)
val *= np.exp(-nc / 2.0+term)
val *= sc.hyp1f1(n+0.5*dfn, 0.5*dfn, 0.5*nc)
return val
def _stats(self, dfn, dfd, nc):
# Note: the rv_continuous class ensures that dfn > 0 when this function
# is called, so we don't have to check for division by zero with dfn
# in the following.
mu_num = dfd * (dfn + nc)
mu_den = dfn * (dfd - 2)
mu = np.full_like(mu_num, dtype=np.float64, fill_value=np.inf)
np.true_divide(mu_num, mu_den, where=dfd > 2, out=mu)
mu2_num = 2*((dfn + nc)**2 + (dfn + 2*nc)*(dfd - 2))*(dfd/dfn)**2
mu2_den = (dfd - 2)**2 * (dfd - 4)
mu2 = np.full_like(mu2_num, dtype=np.float64, fill_value=np.inf)
np.true_divide(mu2_num, mu2_den, where=dfd > 4, out=mu2)
return mu, mu2, None, None
ncf = ncf_gen(a=0.0, name='ncf')
class t_gen(rv_continuous):
r"""A Student's t continuous random variable.
For the noncentral t distribution, see `nct`.
%(before_notes)s
See Also
--------
nct
Notes
-----
The probability density function for `t` is:
.. math::
f(x, \nu) = \frac{\Gamma((\nu+1)/2)}
{\sqrt{\pi \nu} \Gamma(\nu/2)}
(1+x^2/\nu)^{-(\nu+1)/2}
where :math:`x` is a real number and the degrees of freedom parameter
:math:`\nu` (denoted ``df`` in the implementation) satisfies
:math:`\nu > 0`. :math:`\Gamma` is the gamma function
(`scipy.special.gamma`).
%(after_notes)s
%(example)s
"""
def _argcheck(self, df):
return df > 0
def _rvs(self, df, size=None, random_state=None):
return random_state.standard_t(df, size=size)
def _pdf(self, x, df):
# gamma((df+1)/2)
# t.pdf(x, df) = ---------------------------------------------------
# sqrt(pi*df) * gamma(df/2) * (1+x**2/df)**((df+1)/2)
r = np.asarray(df*1.0)
Px = (np.exp(sc.gammaln((r+1)/2)-sc.gammaln(r/2))
/ (np.sqrt(r*np.pi)*(1+(x**2)/r)**((r+1)/2)))
return Px
def _logpdf(self, x, df):
r = df*1.0
lPx = (sc.gammaln((r+1)/2) - sc.gammaln(r/2)
- (0.5*np.log(r*np.pi) + (r+1)/2*np.log(1+(x**2)/r)))
return lPx
def _cdf(self, x, df):
return sc.stdtr(df, x)
def _sf(self, x, df):
return sc.stdtr(df, -x)
def _ppf(self, q, df):
return sc.stdtrit(df, q)
def _isf(self, q, df):
return -sc.stdtrit(df, q)
def _stats(self, df):
mu = np.where(df > 1, 0.0, np.inf)
mu2 = _lazywhere(df > 2, (df,),
lambda df: df / (df-2.0),
np.inf)
mu2 = np.where(df <= 1, np.nan, mu2)
g1 = np.where(df > 3, 0.0, np.nan)
g2 = _lazywhere(df > 4, (df,),
lambda df: 6.0 / (df-4.0),
np.inf)
g2 = np.where(df <= 2, np.nan, g2)
return mu, mu2, g1, g2
def _entropy(self, df):
half = df/2
half1 = (df + 1)/2
return (half1*(sc.digamma(half1) - sc.digamma(half))
+ np.log(np.sqrt(df)*sc.beta(half, 0.5)))
t = t_gen(name='t')
class nct_gen(rv_continuous):
r"""A non-central Student's t continuous random variable.
%(before_notes)s
Notes
-----
If :math:`Y` is a standard normal random variable and :math:`V` is
an independent chi-square random variable (`chi2`) with :math:`k` degrees
of freedom, then
.. math::
X = \frac{Y + c}{\sqrt{V/k}}
has a non-central Student's t distribution on the real line.
The degrees of freedom parameter :math:`k` (denoted ``df`` in the
implementation) satisfies :math:`k > 0` and the noncentrality parameter
:math:`c` (denoted ``nc`` in the implementation) is a real number.
%(after_notes)s
%(example)s
"""
def _argcheck(self, df, nc):
return (df > 0) & (nc == nc)
def _rvs(self, df, nc, size=None, random_state=None):
n = norm.rvs(loc=nc, size=size, random_state=random_state)
c2 = chi2.rvs(df, size=size, random_state=random_state)
return n * np.sqrt(df) / np.sqrt(c2)
def _pdf(self, x, df, nc):
n = df*1.0
nc = nc*1.0
x2 = x*x
ncx2 = nc*nc*x2
fac1 = n + x2
trm1 = (n/2.*np.log(n) + sc.gammaln(n+1)
- (n*np.log(2) + nc*nc/2 + (n/2)*np.log(fac1)
+ sc.gammaln(n/2)))
Px = np.exp(trm1)
valF = ncx2 / (2*fac1)
trm1 = (np.sqrt(2)*nc*x*sc.hyp1f1(n/2+1, 1.5, valF)
/ np.asarray(fac1*sc.gamma((n+1)/2)))
trm2 = (sc.hyp1f1((n+1)/2, 0.5, valF)
/ np.asarray(np.sqrt(fac1)*sc.gamma(n/2+1)))
Px *= trm1+trm2
return Px
def _cdf(self, x, df, nc):
return sc.nctdtr(df, nc, x)
def _ppf(self, q, df, nc):
return sc.nctdtrit(df, nc, q)
def _stats(self, df, nc, moments='mv'):
#
# See D. Hogben, R.S. Pinkham, and M.B. Wilk,
# 'The moments of the non-central t-distribution'
# Biometrika 48, p. 465 (2961).
# e.g. https://www.jstor.org/stable/2332772 (gated)
#
mu, mu2, g1, g2 = None, None, None, None
gfac = np.exp(sc.betaln(df/2-0.5, 0.5) - sc.gammaln(0.5))
c11 = np.sqrt(df/2.) * gfac
c20 = np.where(df > 2., df / (df-2.), np.nan)
c22 = c20 - c11*c11
mu = np.where(df > 1, nc*c11, np.nan)
mu2 = np.where(df > 2, c22*nc*nc + c20, np.nan)
if 's' in moments:
c33t = df * (7.-2.*df) / (df-2.) / (df-3.) + 2.*c11*c11
c31t = 3.*df / (df-2.) / (df-3.)
mu3 = (c33t*nc*nc + c31t) * c11*nc
g1 = np.where(df > 3, mu3 / np.power(mu2, 1.5), np.nan)
# kurtosis
if 'k' in moments:
c44 = df*df / (df-2.) / (df-4.)
c44 -= c11*c11 * 2.*df*(5.-df) / (df-2.) / (df-3.)
c44 -= 3.*c11**4
c42 = df / (df-4.) - c11*c11 * (df-1.) / (df-3.)
c42 *= 6.*df / (df-2.)
c40 = 3.*df*df / (df-2.) / (df-4.)
mu4 = c44 * nc**4 + c42*nc**2 + c40
g2 = np.where(df > 4, mu4/mu2**2 - 3., np.nan)
return mu, mu2, g1, g2
nct = nct_gen(name="nct")
class pareto_gen(rv_continuous):
r"""A Pareto continuous random variable.
%(before_notes)s
Notes
-----
The probability density function for `pareto` is:
.. math::
f(x, b) = \frac{b}{x^{b+1}}
for :math:`x \ge 1`, :math:`b > 0`.
`pareto` takes ``b`` as a shape parameter for :math:`b`.
%(after_notes)s
%(example)s
"""
def _pdf(self, x, b):
# pareto.pdf(x, b) = b / x**(b+1)
return b * x**(-b-1)
def _cdf(self, x, b):
return 1 - x**(-b)
def _ppf(self, q, b):
return pow(1-q, -1.0/b)
def _sf(self, x, b):
return x**(-b)
def _stats(self, b, moments='mv'):
mu, mu2, g1, g2 = None, None, None, None
if 'm' in moments:
mask = b > 1
bt = np.extract(mask, b)
mu = np.full(np.shape(b), fill_value=np.inf)
np.place(mu, mask, bt / (bt-1.0))
if 'v' in moments:
mask = b > 2
bt = np.extract(mask, b)
mu2 = np.full(np.shape(b), fill_value=np.inf)
np.place(mu2, mask, bt / (bt-2.0) / (bt-1.0)**2)
if 's' in moments:
mask = b > 3
bt = np.extract(mask, b)
g1 = np.full(np.shape(b), fill_value=np.nan)
vals = 2 * (bt + 1.0) * np.sqrt(bt - 2.0) / ((bt - 3.0) * np.sqrt(bt))
np.place(g1, mask, vals)
if 'k' in moments:
mask = b > 4
bt = np.extract(mask, b)
g2 = np.full(np.shape(b), fill_value=np.nan)
vals = (6.0*np.polyval([1.0, 1.0, -6, -2], bt) /
np.polyval([1.0, -7.0, 12.0, 0.0], bt))
np.place(g2, mask, vals)
return mu, mu2, g1, g2
def _entropy(self, c):
return 1 + 1.0/c - np.log(c)
@_call_super_mom
def fit(self, data, *args, **kwds):
parameters = _check_fit_input_parameters(self, data, args, kwds)
data, fshape, floc, fscale = parameters
if floc is None:
return super().fit(data, **kwds)
if np.any(data - floc < (fscale if fscale else 0)):
raise FitDataError("pareto", lower=1, upper=np.inf)
data = data - floc
# Source: Evans, Hastings, and Peacock (2000), Statistical
# Distributions, 3rd. Ed., John Wiley and Sons. Page 149.
if fscale is None:
fscale = np.min(data)
if fshape is None:
fshape = 1/((1/len(data)) * np.sum(np.log(data/fscale)))
return fshape, floc, fscale
pareto = pareto_gen(a=1.0, name="pareto")
class lomax_gen(rv_continuous):
r"""A Lomax (Pareto of the second kind) continuous random variable.
%(before_notes)s
Notes
-----
The probability density function for `lomax` is:
.. math::
f(x, c) = \frac{c}{(1+x)^{c+1}}
for :math:`x \ge 0`, :math:`c > 0`.
`lomax` takes ``c`` as a shape parameter for :math:`c`.
`lomax` is a special case of `pareto` with ``loc=-1.0``.
%(after_notes)s
%(example)s
"""
def _pdf(self, x, c):
# lomax.pdf(x, c) = c / (1+x)**(c+1)
return c*1.0/(1.0+x)**(c+1.0)
def _logpdf(self, x, c):
return np.log(c) - (c+1)*sc.log1p(x)
def _cdf(self, x, c):
return -sc.expm1(-c*sc.log1p(x))
def _sf(self, x, c):
return np.exp(-c*sc.log1p(x))
def _logsf(self, x, c):
return -c*sc.log1p(x)
def _ppf(self, q, c):
return sc.expm1(-sc.log1p(-q)/c)
def _stats(self, c):
mu, mu2, g1, g2 = pareto.stats(c, loc=-1.0, moments='mvsk')
return mu, mu2, g1, g2
def _entropy(self, c):
return 1+1.0/c-np.log(c)
lomax = lomax_gen(a=0.0, name="lomax")
class pearson3_gen(rv_continuous):
r"""A pearson type III continuous random variable.
%(before_notes)s
Notes
-----
The probability density function for `pearson3` is:
.. math::
f(x, \kappa) = \frac{|\beta|}{\Gamma(\alpha)}
(\beta (x - \zeta))^{\alpha - 1}
\exp(-\beta (x - \zeta))
where:
.. math::
\beta = \frac{2}{\kappa}
\alpha = \beta^2 = \frac{4}{\kappa^2}
\zeta = -\frac{\alpha}{\beta} = -\beta
:math:`\Gamma` is the gamma function (`scipy.special.gamma`).
Pass the skew :math:`\kappa` into `pearson3` as the shape parameter
``skew``.
%(after_notes)s
%(example)s
References
----------
R.W. Vogel and D.E. McMartin, "Probability Plot Goodness-of-Fit and
Skewness Estimation Procedures for the Pearson Type 3 Distribution", Water
Resources Research, Vol.27, 3149-3158 (1991).
L.R. Salvosa, "Tables of Pearson's Type III Function", Ann. Math. Statist.,
Vol.1, 191-198 (1930).
"Using Modern Computing Tools to Fit the Pearson Type III Distribution to
Aviation Loads Data", Office of Aviation Research (2003).
"""
def _preprocess(self, x, skew):
# The real 'loc' and 'scale' are handled in the calling pdf(...). The
# local variables 'loc' and 'scale' within pearson3._pdf are set to
# the defaults just to keep them as part of the equations for
# documentation.
loc = 0.0
scale = 1.0
# If skew is small, return _norm_pdf. The divide between pearson3
# and norm was found by brute force and is approximately a skew of
# 0.000016. No one, I hope, would actually use a skew value even
# close to this small.
norm2pearson_transition = 0.000016
ans, x, skew = np.broadcast_arrays(1.0, x, skew)
ans = ans.copy()
# mask is True where skew is small enough to use the normal approx.
mask = np.absolute(skew) < norm2pearson_transition
invmask = ~mask
beta = 2.0 / (skew[invmask] * scale)
alpha = (scale * beta)**2
zeta = loc - alpha / beta
transx = beta * (x[invmask] - zeta)
return ans, x, transx, mask, invmask, beta, alpha, zeta
def _argcheck(self, skew):
# The _argcheck function in rv_continuous only allows positive
# arguments. The skew argument for pearson3 can be zero (which I want
# to handle inside pearson3._pdf) or negative. So just return True
# for all skew args.
return np.ones(np.shape(skew), dtype=bool)
def _stats(self, skew):
m = 0.0
v = 1.0
s = skew
k = 1.5*skew**2
return m, v, s, k
def _pdf(self, x, skew):
# pearson3.pdf(x, skew) = abs(beta) / gamma(alpha) *
# (beta * (x - zeta))**(alpha - 1) * exp(-beta*(x - zeta))
# Do the calculation in _logpdf since helps to limit
# overflow/underflow problems
ans = np.exp(self._logpdf(x, skew))
if ans.ndim == 0:
if np.isnan(ans):
return 0.0
return ans
ans[np.isnan(ans)] = 0.0
return ans
def _logpdf(self, x, skew):
# PEARSON3 logpdf GAMMA logpdf
# np.log(abs(beta))
# + (alpha - 1)*np.log(beta*(x - zeta)) + (a - 1)*np.log(x)
# - beta*(x - zeta) - x
# - sc.gammalnalpha) - sc.gammalna)
ans, x, transx, mask, invmask, beta, alpha, _ = (
self._preprocess(x, skew))
ans[mask] = np.log(_norm_pdf(x[mask]))
# use logpdf instead of _logpdf to fix issue mentioned in gh-12640
# (_logpdf does not return correct result for alpha = 1)
ans[invmask] = np.log(abs(beta)) + gamma.logpdf(transx, alpha)
return ans
def _cdf(self, x, skew):
ans, x, transx, mask, invmask, _, alpha, _ = (
self._preprocess(x, skew))
ans[mask] = _norm_cdf(x[mask])
skew = np.broadcast_to(skew, invmask.shape)
invmask1a = np.logical_and(invmask, skew > 0)
invmask1b = skew[invmask] > 0
# use cdf instead of _cdf to fix issue mentioned in gh-12640
# (_cdf produces NaNs for inputs outside support)
ans[invmask1a] = gamma.cdf(transx[invmask1b], alpha[invmask1b])
# The gamma._cdf approach wasn't working with negative skew.
# Note that multiplying the skew by -1 reflects about x=0.
# So instead of evaluating the CDF with negative skew at x,
# evaluate the SF with positive skew at -x.
invmask2a = np.logical_and(invmask, skew < 0)
invmask2b = skew[invmask] < 0
# gamma._sf produces NaNs when transx < 0, so use gamma.sf
ans[invmask2a] = gamma.sf(transx[invmask2b], alpha[invmask2b])
return ans
def _rvs(self, skew, size=None, random_state=None):
skew = np.broadcast_to(skew, size)
ans, _, _, mask, invmask, beta, alpha, zeta = (
self._preprocess([0], skew))
nsmall = mask.sum()
nbig = mask.size - nsmall
ans[mask] = random_state.standard_normal(nsmall)
ans[invmask] = random_state.standard_gamma(alpha, nbig)/beta + zeta
if size == ():
ans = ans[0]
return ans
def _ppf(self, q, skew):
ans, q, _, mask, invmask, beta, alpha, zeta = (
self._preprocess(q, skew))
ans[mask] = _norm_ppf(q[mask])
ans[invmask] = sc.gammaincinv(alpha, q[invmask])/beta + zeta
return ans
@_call_super_mom
@extend_notes_in_docstring(rv_continuous, notes="""\
Note that method of moments (`method='MM'`) is not
available for this distribution.\n\n""")
def fit(self, data, *args, **kwds):
if kwds.get("method", None) == 'MM':
raise NotImplementedError("Fit `method='MM'` is not available for "
"the Pearson3 distribution. Please try "
"the default `method='MLE'`.")
else:
return super(type(self), self).fit(data, *args, **kwds)
pearson3 = pearson3_gen(name="pearson3")
class powerlaw_gen(rv_continuous):
r"""A power-function continuous random variable.
%(before_notes)s
Notes
-----
The probability density function for `powerlaw` is:
.. math::
f(x, a) = a x^{a-1}
for :math:`0 \le x \le 1`, :math:`a > 0`.
`powerlaw` takes ``a`` as a shape parameter for :math:`a`.
%(after_notes)s
`powerlaw` is a special case of `beta` with ``b=1``.
%(example)s
"""
def _pdf(self, x, a):
# powerlaw.pdf(x, a) = a * x**(a-1)
return a*x**(a-1.0)
def _logpdf(self, x, a):
return np.log(a) + sc.xlogy(a - 1, x)
def _cdf(self, x, a):
return x**(a*1.0)
def _logcdf(self, x, a):
return a*np.log(x)
def _ppf(self, q, a):
return pow(q, 1.0/a)
def _stats(self, a):
return (a / (a + 1.0),
a / (a + 2.0) / (a + 1.0) ** 2,
-2.0 * ((a - 1.0) / (a + 3.0)) * np.sqrt((a + 2.0) / a),
6 * np.polyval([1, -1, -6, 2], a) / (a * (a + 3.0) * (a + 4)))
def _entropy(self, a):
return 1 - 1.0/a - np.log(a)
powerlaw = powerlaw_gen(a=0.0, b=1.0, name="powerlaw")
class powerlognorm_gen(rv_continuous):
r"""A power log-normal continuous random variable.
%(before_notes)s
Notes
-----
The probability density function for `powerlognorm` is:
.. math::
f(x, c, s) = \frac{c}{x s} \phi(\log(x)/s)
(\Phi(-\log(x)/s))^{c-1}
where :math:`\phi` is the normal pdf, and :math:`\Phi` is the normal cdf,
and :math:`x > 0`, :math:`s, c > 0`.
`powerlognorm` takes :math:`c` and :math:`s` as shape parameters.
%(after_notes)s
%(example)s
"""
_support_mask = rv_continuous._open_support_mask
def _pdf(self, x, c, s):
# powerlognorm.pdf(x, c, s) = c / (x*s) * phi(log(x)/s) *
# (Phi(-log(x)/s))**(c-1),
return (c/(x*s) * _norm_pdf(np.log(x)/s) *
pow(_norm_cdf(-np.log(x)/s), c*1.0-1.0))
def _cdf(self, x, c, s):
return 1.0 - pow(_norm_cdf(-np.log(x)/s), c*1.0)
def _ppf(self, q, c, s):
return np.exp(-s * _norm_ppf(pow(1.0 - q, 1.0 / c)))
powerlognorm = powerlognorm_gen(a=0.0, name="powerlognorm")
class powernorm_gen(rv_continuous):
r"""A power normal continuous random variable.
%(before_notes)s
Notes
-----
The probability density function for `powernorm` is:
.. math::
f(x, c) = c \phi(x) (\Phi(-x))^{c-1}
where :math:`\phi` is the normal pdf, and :math:`\Phi` is the normal cdf,
and :math:`x >= 0`, :math:`c > 0`.
`powernorm` takes ``c`` as a shape parameter for :math:`c`.
%(after_notes)s
%(example)s
"""
def _pdf(self, x, c):
# powernorm.pdf(x, c) = c * phi(x) * (Phi(-x))**(c-1)
return c*_norm_pdf(x) * (_norm_cdf(-x)**(c-1.0))
def _logpdf(self, x, c):
return np.log(c) + _norm_logpdf(x) + (c-1)*_norm_logcdf(-x)
def _cdf(self, x, c):
return 1.0-_norm_cdf(-x)**(c*1.0)
def _ppf(self, q, c):
return -_norm_ppf(pow(1.0 - q, 1.0 / c))
powernorm = powernorm_gen(name='powernorm')
class rdist_gen(rv_continuous):
r"""An R-distributed (symmetric beta) continuous random variable.
%(before_notes)s
Notes
-----
The probability density function for `rdist` is:
.. math::
f(x, c) = \frac{(1-x^2)^{c/2-1}}{B(1/2, c/2)}
for :math:`-1 \le x \le 1`, :math:`c > 0`. `rdist` is also called the
symmetric beta distribution: if B has a `beta` distribution with
parameters (c/2, c/2), then X = 2*B - 1 follows a R-distribution with
parameter c.
`rdist` takes ``c`` as a shape parameter for :math:`c`.
This distribution includes the following distribution kernels as
special cases::
c = 2: uniform
c = 3: `semicircular`
c = 4: Epanechnikov (parabolic)
c = 6: quartic (biweight)
c = 8: triweight
%(after_notes)s
%(example)s
"""
# use relation to the beta distribution for pdf, cdf, etc
def _pdf(self, x, c):
return np.exp(self._logpdf(x, c))
def _logpdf(self, x, c):
return -np.log(2) + beta._logpdf((x + 1)/2, c/2, c/2)
def _cdf(self, x, c):
return beta._cdf((x + 1)/2, c/2, c/2)
def _ppf(self, q, c):
return 2*beta._ppf(q, c/2, c/2) - 1
def _rvs(self, c, size=None, random_state=None):
return 2 * random_state.beta(c/2, c/2, size) - 1
def _munp(self, n, c):
numerator = (1 - (n % 2)) * sc.beta((n + 1.0) / 2, c / 2.0)
return numerator / sc.beta(1. / 2, c / 2.)
rdist = rdist_gen(a=-1.0, b=1.0, name="rdist")
def _rayleigh_fit_check_error(ier, msg):
if ier != 1:
raise RuntimeError('rayleigh.fit: fsolve failed to find the root of '
'the first-order conditions of the log-likelihood '
f'function: {msg} (ier={ier})')
class rayleigh_gen(rv_continuous):
r"""A Rayleigh continuous random variable.
%(before_notes)s
Notes
-----
The probability density function for `rayleigh` is:
.. math::
f(x) = x \exp(-x^2/2)
for :math:`x \ge 0`.
`rayleigh` is a special case of `chi` with ``df=2``.
%(after_notes)s
%(example)s
"""
_support_mask = rv_continuous._open_support_mask
def _rvs(self, size=None, random_state=None):
return chi.rvs(2, size=size, random_state=random_state)
def _pdf(self, r):
# rayleigh.pdf(r) = r * exp(-r**2/2)
return np.exp(self._logpdf(r))
def _logpdf(self, r):
return np.log(r) - 0.5 * r * r
def _cdf(self, r):
return -sc.expm1(-0.5 * r**2)
def _ppf(self, q):
return np.sqrt(-2 * sc.log1p(-q))
def _sf(self, r):
return np.exp(self._logsf(r))
def _logsf(self, r):
return -0.5 * r * r
def _isf(self, q):
return np.sqrt(-2 * np.log(q))
def _stats(self):
val = 4 - np.pi
return (np.sqrt(np.pi/2),
val/2,
2*(np.pi-3)*np.sqrt(np.pi)/val**1.5,
6*np.pi/val-16/val**2)
def _entropy(self):
return _EULER/2.0 + 1 - 0.5*np.log(2)
@_call_super_mom
@extend_notes_in_docstring(rv_continuous, notes="""\
Notes specifically for ``rayleigh.fit``: If the location is fixed with
the `floc` parameter, this method uses an analytical formula to find
the scale. Otherwise, this function uses a numerical root finder on
the first order conditions of the log-likelihood function to find the
MLE. Only the (optional) `loc` parameter is used as the initial guess
for the root finder; the `scale` parameter and any other parameters
for the optimizer are ignored.\n\n""")
def fit(self, data, *args, **kwds):
data, floc, fscale = _check_fit_input_parameters(self, data,
args, kwds)
def scale_mle(loc, data):
# Source: Statistical Distributions, 3rd Edition. Evans, Hastings,
# and Peacock (2000), Page 175
return (np.sum((data - loc) ** 2) / (2 * len(data))) ** .5
def loc_mle(loc, data):
# This implicit equation for `loc` is used when
# both `loc` and `scale` are free.
xm = data - loc
s1 = xm.sum()
s2 = (xm**2).sum()
s3 = (1/xm).sum()
return s1 - s2/(2*len(data))*s3
def loc_mle_scale_fixed(loc, scale, data):
# This implicit equation for `loc` is used when
# `scale` is fixed but `loc` is not.
xm = data - loc
return xm.sum() - scale**2 * (1/xm).sum()
if floc is not None:
# `loc` is fixed, analytically determine `scale`.
if np.any(data - floc <= 0):
raise FitDataError("rayleigh", lower=1, upper=np.inf)
else:
return floc, scale_mle(floc, data)
# Account for user provided guess of `loc`.
loc0 = kwds.get('loc')
if loc0 is None:
# Use _fitstart to estimate loc; ignore the returned scale.
loc0 = self._fitstart(data)[0]
if fscale is not None:
# `scale` is fixed
x, info, ier, msg = optimize.fsolve(loc_mle_scale_fixed, x0=loc0,
args=(fscale, data,),
xtol=1e-10, full_output=True)
_rayleigh_fit_check_error(ier, msg)
return x[0], fscale
else:
# Neither `loc` nor `scale` are fixed.
x, info, ier, msg = optimize.fsolve(loc_mle, x0=loc0, args=(data,),
xtol=1e-10, full_output=True)
_rayleigh_fit_check_error(ier, msg)
return x[0], scale_mle(x[0], data)
rayleigh = rayleigh_gen(a=0.0, name="rayleigh")
class reciprocal_gen(rv_continuous):
r"""A loguniform or reciprocal continuous random variable.
%(before_notes)s
Notes
-----
The probability density function for this class is:
.. math::
f(x, a, b) = \frac{1}{x \log(b/a)}
for :math:`a \le x \le b`, :math:`b > a > 0`. This class takes
:math:`a` and :math:`b` as shape parameters.
%(after_notes)s
%(example)s
This doesn't show the equal probability of ``0.01``, ``0.1`` and
``1``. This is best when the x-axis is log-scaled:
>>> import numpy as np
>>> fig, ax = plt.subplots(1, 1)
>>> ax.hist(np.log10(r))
>>> ax.set_ylabel("Frequency")
>>> ax.set_xlabel("Value of random variable")
>>> ax.xaxis.set_major_locator(plt.FixedLocator([-2, -1, 0]))
>>> ticks = ["$10^{{ {} }}$".format(i) for i in [-2, -1, 0]]
>>> ax.set_xticklabels(ticks) # doctest: +SKIP
>>> plt.show()
This random variable will be log-uniform regardless of the base chosen for
``a`` and ``b``. Let's specify with base ``2`` instead:
>>> rvs = %(name)s(2**-2, 2**0).rvs(size=1000)
Values of ``1/4``, ``1/2`` and ``1`` are equally likely with this random
variable. Here's the histogram:
>>> fig, ax = plt.subplots(1, 1)
>>> ax.hist(np.log2(rvs))
>>> ax.set_ylabel("Frequency")
>>> ax.set_xlabel("Value of random variable")
>>> ax.xaxis.set_major_locator(plt.FixedLocator([-2, -1, 0]))
>>> ticks = ["$2^{{ {} }}$".format(i) for i in [-2, -1, 0]]
>>> ax.set_xticklabels(ticks) # doctest: +SKIP
>>> plt.show()
"""
def _argcheck(self, a, b):
return (a > 0) & (b > a)
def _get_support(self, a, b):
return a, b
def _pdf(self, x, a, b):
# reciprocal.pdf(x, a, b) = 1 / (x*log(b/a))
return 1.0 / (x * np.log(b * 1.0 / a))
def _logpdf(self, x, a, b):
return -np.log(x) - np.log(np.log(b * 1.0 / a))
def _cdf(self, x, a, b):
return (np.log(x)-np.log(a)) / np.log(b * 1.0 / a)
def _ppf(self, q, a, b):
return a*pow(b*1.0/a, q)
def _munp(self, n, a, b):
return 1.0/np.log(b*1.0/a) / n * (pow(b*1.0, n) - pow(a*1.0, n))
def _entropy(self, a, b):
return 0.5*np.log(a*b)+np.log(np.log(b*1.0/a))
loguniform = reciprocal_gen(name="loguniform")
reciprocal = reciprocal_gen(name="reciprocal")
class rice_gen(rv_continuous):
r"""A Rice continuous random variable.
%(before_notes)s
Notes
-----
The probability density function for `rice` is:
.. math::
f(x, b) = x \exp(- \frac{x^2 + b^2}{2}) I_0(x b)
for :math:`x >= 0`, :math:`b > 0`. :math:`I_0` is the modified Bessel
function of order zero (`scipy.special.i0`).
`rice` takes ``b`` as a shape parameter for :math:`b`.
%(after_notes)s
The Rice distribution describes the length, :math:`r`, of a 2-D vector with
components :math:`(U+u, V+v)`, where :math:`U, V` are constant, :math:`u,
v` are independent Gaussian random variables with standard deviation
:math:`s`. Let :math:`R = \sqrt{U^2 + V^2}`. Then the pdf of :math:`r` is
``rice.pdf(x, R/s, scale=s)``.
%(example)s
"""
def _argcheck(self, b):
return b >= 0
def _rvs(self, b, size=None, random_state=None):
# https://en.wikipedia.org/wiki/Rice_distribution
t = b/np.sqrt(2) + random_state.standard_normal(size=(2,) + size)
return np.sqrt((t*t).sum(axis=0))
def _cdf(self, x, b):
return sc.chndtr(np.square(x), 2, np.square(b))
def _ppf(self, q, b):
return np.sqrt(sc.chndtrix(q, 2, np.square(b)))
def _pdf(self, x, b):
# rice.pdf(x, b) = x * exp(-(x**2+b**2)/2) * I[0](x*b)
#
# We use (x**2 + b**2)/2 = ((x-b)**2)/2 + xb.
# The factor of np.exp(-xb) is then included in the i0e function
# in place of the modified Bessel function, i0, improving
# numerical stability for large values of xb.
return x * np.exp(-(x-b)*(x-b)/2.0) * sc.i0e(x*b)
def _munp(self, n, b):
nd2 = n/2.0
n1 = 1 + nd2
b2 = b*b/2.0
return (2.0**(nd2) * np.exp(-b2) * sc.gamma(n1) *
sc.hyp1f1(n1, 1, b2))
rice = rice_gen(a=0.0, name="rice")
class recipinvgauss_gen(rv_continuous):
r"""A reciprocal inverse Gaussian continuous random variable.
%(before_notes)s
Notes
-----
The probability density function for `recipinvgauss` is:
.. math::
f(x, \mu) = \frac{1}{\sqrt{2\pi x}}
\exp\left(\frac{-(1-\mu x)^2}{2\mu^2x}\right)
for :math:`x \ge 0`.
`recipinvgauss` takes ``mu`` as a shape parameter for :math:`\mu`.
%(after_notes)s
%(example)s
"""
def _pdf(self, x, mu):
# recipinvgauss.pdf(x, mu) =
# 1/sqrt(2*pi*x) * exp(-(1-mu*x)**2/(2*x*mu**2))
return np.exp(self._logpdf(x, mu))
def _logpdf(self, x, mu):
return _lazywhere(x > 0, (x, mu),
lambda x, mu: (-(1 - mu*x)**2.0 / (2*x*mu**2.0)
- 0.5*np.log(2*np.pi*x)),
fillvalue=-np.inf)
def _cdf(self, x, mu):
trm1 = 1.0/mu - x
trm2 = 1.0/mu + x
isqx = 1.0/np.sqrt(x)
return _norm_cdf(-isqx*trm1) - np.exp(2.0/mu)*_norm_cdf(-isqx*trm2)
def _sf(self, x, mu):
trm1 = 1.0/mu - x
trm2 = 1.0/mu + x
isqx = 1.0/np.sqrt(x)
return _norm_cdf(isqx*trm1) + np.exp(2.0/mu)*_norm_cdf(-isqx*trm2)
def _rvs(self, mu, size=None, random_state=None):
return 1.0/random_state.wald(mu, 1.0, size=size)
recipinvgauss = recipinvgauss_gen(a=0.0, name='recipinvgauss')
class semicircular_gen(rv_continuous):
r"""A semicircular continuous random variable.
%(before_notes)s
See Also
--------
rdist
Notes
-----
The probability density function for `semicircular` is:
.. math::
f(x) = \frac{2}{\pi} \sqrt{1-x^2}
for :math:`-1 \le x \le 1`.
The distribution is a special case of `rdist` with `c = 3`.
%(after_notes)s
References
----------
.. [1] "Wigner semicircle distribution",
https://en.wikipedia.org/wiki/Wigner_semicircle_distribution
%(example)s
"""
def _pdf(self, x):
return 2.0/np.pi*np.sqrt(1-x*x)
def _logpdf(self, x):
return np.log(2/np.pi) + 0.5*np.log1p(-x*x)
def _cdf(self, x):
return 0.5+1.0/np.pi*(x*np.sqrt(1-x*x) + np.arcsin(x))
def _ppf(self, q):
return rdist._ppf(q, 3)
def _rvs(self, size=None, random_state=None):
# generate values uniformly distributed on the area under the pdf
# (semi-circle) by randomly generating the radius and angle
r = np.sqrt(random_state.uniform(size=size))
a = np.cos(np.pi * random_state.uniform(size=size))
return r * a
def _stats(self):
return 0, 0.25, 0, -1.0
def _entropy(self):
return 0.64472988584940017414
semicircular = semicircular_gen(a=-1.0, b=1.0, name="semicircular")
class skewcauchy_gen(rv_continuous):
r"""A skewed Cauchy random variable.
%(before_notes)s
See Also
--------
cauchy : Cauchy distribution
Notes
-----
The probability density function for `skewcauchy` is:
.. math::
f(x) = \frac{1}{\pi \left(\frac{x^2}{\left(a\, \text{sign}(x) + 1
\right)^2} + 1 \right)}
for a real number :math:`x` and skewness parameter :math:`-1 < a < 1`.
When :math:`a=0`, the distribution reduces to the usual Cauchy
distribution.
%(after_notes)s
References
----------
.. [1] "Skewed generalized *t* distribution", Wikipedia
https://en.wikipedia.org/wiki/Skewed_generalized_t_distribution#Skewed_Cauchy_distribution
%(example)s
"""
def _argcheck(self, a):
return np.abs(a) < 1
def _pdf(self, x, a):
return 1 / (np.pi * (x**2 / (a * np.sign(x) + 1)**2 + 1))
def _cdf(self, x, a):
return np.where(x <= 0,
(1 - a) / 2 + (1 - a) / np.pi * np.arctan(x / (1 - a)),
(1 - a) / 2 + (1 + a) / np.pi * np.arctan(x / (1 + a)))
def _ppf(self, x, a):
i = x < self._cdf(0, a)
return np.where(i,
np.tan(np.pi / (1 - a) * (x - (1 - a) / 2)) * (1 - a),
np.tan(np.pi / (1 + a) * (x - (1 - a) / 2)) * (1 + a))
def _stats(self, a, moments='mvsk'):
return np.nan, np.nan, np.nan, np.nan
def _fitstart(self, data):
# Use 0 as the initial guess of the skewness shape parameter.
# For the location and scale, estimate using the median and
# quartiles.
p25, p50, p75 = np.percentile(data, [25, 50, 75])
return 0.0, p50, (p75 - p25)/2
skewcauchy = skewcauchy_gen(name='skewcauchy')
class skew_norm_gen(rv_continuous):
r"""A skew-normal random variable.
%(before_notes)s
Notes
-----
The pdf is::
skewnorm.pdf(x, a) = 2 * norm.pdf(x) * norm.cdf(a*x)
`skewnorm` takes a real number :math:`a` as a skewness parameter
When ``a = 0`` the distribution is identical to a normal distribution
(`norm`). `rvs` implements the method of [1]_.
%(after_notes)s
%(example)s
References
----------
.. [1] A. Azzalini and A. Capitanio (1999). Statistical applications of the
multivariate skew-normal distribution. J. Roy. Statist. Soc., B 61, 579-602.
:arxiv:`0911.2093`
"""
def _argcheck(self, a):
return np.isfinite(a)
def _pdf(self, x, a):
return 2.*_norm_pdf(x)*_norm_cdf(a*x)
def _cdf_single(self, x, *args):
_a, _b = self._get_support(*args)
if x <= 0:
cdf = integrate.quad(self._pdf, _a, x, args=args)[0]
else:
t1 = integrate.quad(self._pdf, _a, 0, args=args)[0]
t2 = integrate.quad(self._pdf, 0, x, args=args)[0]
cdf = t1 + t2
if cdf > 1:
# Presumably numerical noise, e.g. 1.0000000000000002
cdf = 1.0
return cdf
def _sf(self, x, a):
return self._cdf(-x, -a)
def _rvs(self, a, size=None, random_state=None):
u0 = random_state.normal(size=size)
v = random_state.normal(size=size)
d = a/np.sqrt(1 + a**2)
u1 = d*u0 + v*np.sqrt(1 - d**2)
return np.where(u0 >= 0, u1, -u1)
def _stats(self, a, moments='mvsk'):
output = [None, None, None, None]
const = np.sqrt(2/np.pi) * a/np.sqrt(1 + a**2)
if 'm' in moments:
output[0] = const
if 'v' in moments:
output[1] = 1 - const**2
if 's' in moments:
output[2] = ((4 - np.pi)/2) * (const/np.sqrt(1 - const**2))**3
if 'k' in moments:
output[3] = (2*(np.pi - 3)) * (const**4/(1 - const**2)**2)
return output
skewnorm = skew_norm_gen(name='skewnorm')
class trapezoid_gen(rv_continuous):
r"""A trapezoidal continuous random variable.
%(before_notes)s
Notes
-----
The trapezoidal distribution can be represented with an up-sloping line
from ``loc`` to ``(loc + c*scale)``, then constant to ``(loc + d*scale)``
and then downsloping from ``(loc + d*scale)`` to ``(loc+scale)``. This
defines the trapezoid base from ``loc`` to ``(loc+scale)`` and the flat
top from ``c`` to ``d`` proportional to the position along the base
with ``0 <= c <= d <= 1``. When ``c=d``, this is equivalent to `triang`
with the same values for `loc`, `scale` and `c`.
The method of [1]_ is used for computing moments.
`trapezoid` takes :math:`c` and :math:`d` as shape parameters.
%(after_notes)s
The standard form is in the range [0, 1] with c the mode.
The location parameter shifts the start to `loc`.
The scale parameter changes the width from 1 to `scale`.
%(example)s
References
----------
.. [1] Kacker, R.N. and Lawrence, J.F. (2007). Trapezoidal and triangular
distributions for Type B evaluation of standard uncertainty.
Metrologia 44, 117-127. :doi:`10.1088/0026-1394/44/2/003`
"""
def _argcheck(self, c, d):
return (c >= 0) & (c <= 1) & (d >= 0) & (d <= 1) & (d >= c)
def _pdf(self, x, c, d):
u = 2 / (d-c+1)
return _lazyselect([x < c,
(c <= x) & (x <= d),
x > d],
[lambda x, c, d, u: u * x / c,
lambda x, c, d, u: u,
lambda x, c, d, u: u * (1-x) / (1-d)],
(x, c, d, u))
def _cdf(self, x, c, d):
return _lazyselect([x < c,
(c <= x) & (x <= d),
x > d],
[lambda x, c, d: x**2 / c / (d-c+1),
lambda x, c, d: (c + 2 * (x-c)) / (d-c+1),
lambda x, c, d: 1-((1-x) ** 2
/ (d-c+1) / (1-d))],
(x, c, d))
def _ppf(self, q, c, d):
qc, qd = self._cdf(c, c, d), self._cdf(d, c, d)
condlist = [q < qc, q <= qd, q > qd]
choicelist = [np.sqrt(q * c * (1 + d - c)),
0.5 * q * (1 + d - c) + 0.5 * c,
1 - np.sqrt((1 - q) * (d - c + 1) * (1 - d))]
return np.select(condlist, choicelist)
def _munp(self, n, c, d):
# Using the parameterization from Kacker, 2007, with
# a=bottom left, c=top left, d=top right, b=bottom right, then
# E[X^n] = h/(n+1)/(n+2) [(b^{n+2}-d^{n+2})/(b-d)
# - ((c^{n+2} - a^{n+2})/(c-a)]
# with h = 2/((b-a) - (d-c)). The corresponding parameterization
# in scipy, has a'=loc, c'=loc+c*scale, d'=loc+d*scale, b'=loc+scale,
# which for standard form reduces to a'=0, b'=1, c'=c, d'=d.
# Substituting into E[X^n] gives the bd' term as (1 - d^{n+2})/(1 - d)
# and the ac' term as c^{n-1} for the standard form. The bd' term has
# numerical difficulties near d=1, so replace (1 - d^{n+2})/(1-d)
# with expm1((n+2)*log(d))/(d-1).
# Testing with n=18 for c=(1e-30,1-eps) shows that this is stable.
# We still require an explicit test for d=1 to prevent divide by zero,
# and now a test for d=0 to prevent log(0).
ab_term = c**(n+1)
dc_term = _lazyselect(
[d == 0.0, (0.0 < d) & (d < 1.0), d == 1.0],
[lambda d: 1.0,
lambda d: np.expm1((n+2) * np.log(d)) / (d-1.0),
lambda d: n+2],
[d])
val = 2.0 / (1.0+d-c) * (dc_term - ab_term) / ((n+1) * (n+2))
return val
def _entropy(self, c, d):
# Using the parameterization from Wikipedia (van Dorp, 2003)
# with a=bottom left, c=top left, d=top right, b=bottom right
# gives a'=loc, b'=loc+c*scale, c'=loc+d*scale, d'=loc+scale,
# which for loc=0, scale=1 is a'=0, b'=c, c'=d, d'=1.
# Substituting into the entropy formula from Wikipedia gives
# the following result.
return 0.5 * (1.0-d+c) / (1.0+d-c) + np.log(0.5 * (1.0+d-c))
trapezoid = trapezoid_gen(a=0.0, b=1.0, name="trapezoid")
# Note: alias kept for backwards compatibility. Rename was done
# because trapz is a slur in colloquial English (see gh-12924).
trapz = trapezoid_gen(a=0.0, b=1.0, name="trapz")
if trapz.__doc__:
trapz.__doc__ = "trapz is an alias for `trapezoid`"
class triang_gen(rv_continuous):
r"""A triangular continuous random variable.
%(before_notes)s
Notes
-----
The triangular distribution can be represented with an up-sloping line from
``loc`` to ``(loc + c*scale)`` and then downsloping for ``(loc + c*scale)``
to ``(loc + scale)``.
`triang` takes ``c`` as a shape parameter for :math:`c`.
%(after_notes)s
The standard form is in the range [0, 1] with c the mode.
The location parameter shifts the start to `loc`.
The scale parameter changes the width from 1 to `scale`.
%(example)s
"""
def _rvs(self, c, size=None, random_state=None):
return random_state.triangular(0, c, 1, size)
def _argcheck(self, c):
return (c >= 0) & (c <= 1)
def _pdf(self, x, c):
# 0: edge case where c=0
# 1: generalised case for x < c, don't use x <= c, as it doesn't cope
# with c = 0.
# 2: generalised case for x >= c, but doesn't cope with c = 1
# 3: edge case where c=1
r = _lazyselect([c == 0,
x < c,
(x >= c) & (c != 1),
c == 1],
[lambda x, c: 2 - 2 * x,
lambda x, c: 2 * x / c,
lambda x, c: 2 * (1 - x) / (1 - c),
lambda x, c: 2 * x],
(x, c))
return r
def _cdf(self, x, c):
r = _lazyselect([c == 0,
x < c,
(x >= c) & (c != 1),
c == 1],
[lambda x, c: 2*x - x*x,
lambda x, c: x * x / c,
lambda x, c: (x*x - 2*x + c) / (c-1),
lambda x, c: x * x],
(x, c))
return r
def _ppf(self, q, c):
return np.where(q < c, np.sqrt(c * q), 1-np.sqrt((1-c) * (1-q)))
def _stats(self, c):
return ((c+1.0)/3.0,
(1.0-c+c*c)/18,
np.sqrt(2)*(2*c-1)*(c+1)*(c-2) / (5*np.power((1.0-c+c*c), 1.5)),
-3.0/5.0)
def _entropy(self, c):
return 0.5-np.log(2)
triang = triang_gen(a=0.0, b=1.0, name="triang")
class truncexpon_gen(rv_continuous):
r"""A truncated exponential continuous random variable.
%(before_notes)s
Notes
-----
The probability density function for `truncexpon` is:
.. math::
f(x, b) = \frac{\exp(-x)}{1 - \exp(-b)}
for :math:`0 <= x <= b`.
`truncexpon` takes ``b`` as a shape parameter for :math:`b`.
%(after_notes)s
%(example)s
"""
def _argcheck(self, b):
return b > 0
def _get_support(self, b):
return self.a, b
def _pdf(self, x, b):
# truncexpon.pdf(x, b) = exp(-x) / (1-exp(-b))
return np.exp(-x)/(-sc.expm1(-b))
def _logpdf(self, x, b):
return -x - np.log(-sc.expm1(-b))
def _cdf(self, x, b):
return sc.expm1(-x)/sc.expm1(-b)
def _ppf(self, q, b):
return -sc.log1p(q*sc.expm1(-b))
def _munp(self, n, b):
# wrong answer with formula, same as in continuous.pdf
# return sc.gamman+1)-sc.gammainc1+n, b)
if n == 1:
return (1-(b+1)*np.exp(-b))/(-sc.expm1(-b))
elif n == 2:
return 2*(1-0.5*(b*b+2*b+2)*np.exp(-b))/(-sc.expm1(-b))
else:
# return generic for higher moments
# return rv_continuous._mom1_sc(self, n, b)
return self._mom1_sc(n, b)
def _entropy(self, b):
eB = np.exp(b)
return np.log(eB-1)+(1+eB*(b-1.0))/(1.0-eB)
truncexpon = truncexpon_gen(a=0.0, name='truncexpon')
TRUNCNORM_TAIL_X = 30
TRUNCNORM_MAX_BRENT_ITERS = 40
def _truncnorm_get_delta_scalar(a, b):
if (a > TRUNCNORM_TAIL_X) or (b < -TRUNCNORM_TAIL_X):
return 0
if a > 0:
delta = _norm_sf(a) - _norm_sf(b)
else:
delta = _norm_cdf(b) - _norm_cdf(a)
delta = max(delta, 0)
return delta
def _truncnorm_get_delta(a, b):
if np.isscalar(a) and np.isscalar(b):
return _truncnorm_get_delta_scalar(a, b)
a, b = np.atleast_1d(a), np.atleast_1d(b)
if a.size == 1 and b.size == 1:
return _truncnorm_get_delta_scalar(a.item(), b.item())
delta = np.zeros(np.shape(a))
condinner = (a <= TRUNCNORM_TAIL_X) & (b >= -TRUNCNORM_TAIL_X)
conda = (a > 0) & condinner
condb = (a <= 0) & condinner
if np.any(conda):
np.place(delta, conda, _norm_sf(a[conda]) - _norm_sf(b[conda]))
if np.any(condb):
np.place(delta, condb, _norm_cdf(b[condb]) - _norm_cdf(a[condb]))
delta[delta < 0] = 0
return delta
def _truncnorm_get_logdelta_scalar(a, b):
if (a <= TRUNCNORM_TAIL_X) and (b >= -TRUNCNORM_TAIL_X):
if a > 0:
delta = _norm_sf(a) - _norm_sf(b)
else:
delta = _norm_cdf(b) - _norm_cdf(a)
delta = max(delta, 0)
if delta > 0:
return np.log(delta)
if b < 0 or (np.abs(a) >= np.abs(b)):
nla, nlb = _norm_logcdf(a), _norm_logcdf(b)
logdelta = nlb + np.log1p(-np.exp(nla - nlb))
else:
sla, slb = _norm_logsf(a), _norm_logsf(b)
logdelta = sla + np.log1p(-np.exp(slb - sla))
return logdelta
def _truncnorm_logpdf_scalar(x, a, b):
with np.errstate(invalid='ignore'):
if np.isscalar(x):
if x < a:
return -np.inf
if x > b:
return -np.inf
shp = np.shape(x)
x = np.atleast_1d(x)
out = np.full_like(x, np.nan, dtype=np.double)
condlta, condgtb = (x < a), (x > b)
if np.any(condlta):
np.place(out, condlta, -np.inf)
if np.any(condgtb):
np.place(out, condgtb, -np.inf)
cond_inner = ~condlta & ~condgtb
if np.any(cond_inner):
_logdelta = _truncnorm_get_logdelta_scalar(a, b)
np.place(out, cond_inner, _norm_logpdf(x[cond_inner]) - _logdelta)
return (out[0] if (shp == ()) else out)
def _truncnorm_pdf_scalar(x, a, b):
with np.errstate(invalid='ignore'):
if np.isscalar(x):
if x < a:
return 0.0
if x > b:
return 0.0
shp = np.shape(x)
x = np.atleast_1d(x)
out = np.full_like(x, np.nan, dtype=np.double)
condlta, condgtb = (x < a), (x > b)
if np.any(condlta):
np.place(out, condlta, 0.0)
if np.any(condgtb):
np.place(out, condgtb, 0.0)
cond_inner = ~condlta & ~condgtb
if np.any(cond_inner):
delta = _truncnorm_get_delta_scalar(a, b)
if delta > 0:
np.place(out, cond_inner, _norm_pdf(x[cond_inner]) / delta)
else:
np.place(out, cond_inner,
np.exp(_truncnorm_logpdf_scalar(x[cond_inner], a, b)))
return (out[0] if (shp == ()) else out)
def _truncnorm_logcdf_scalar(x, a, b):
with np.errstate(invalid='ignore'):
if np.isscalar(x):
if x <= a:
return -np.inf
if x >= b:
return 0
shp = np.shape(x)
x = np.atleast_1d(x)
out = np.full_like(x, np.nan, dtype=np.double)
condlea, condgeb = (x <= a), (x >= b)
if np.any(condlea):
np.place(out, condlea, -np.inf)
if np.any(condgeb):
np.place(out, condgeb, 0.0)
cond_inner = ~condlea & ~condgeb
if np.any(cond_inner):
delta = _truncnorm_get_delta_scalar(a, b)
if delta > 0:
np.place(out, cond_inner,
np.log((_norm_cdf(x[cond_inner]) - _norm_cdf(a))
/ delta))
else:
with np.errstate(divide='ignore'):
if a < 0:
nla, nlb = _norm_logcdf(a), _norm_logcdf(b)
tab = np.log1p(-np.exp(nla - nlb))
nlx = _norm_logcdf(x[cond_inner])
tax = np.log1p(-np.exp(nla - nlx))
np.place(out, cond_inner, nlx + tax - (nlb + tab))
else:
sla = _norm_logsf(a)
slb = _norm_logsf(b)
np.place(out, cond_inner,
np.log1p(-np.exp(_norm_logsf(x[cond_inner])
- sla))
- np.log1p(-np.exp(slb - sla)))
return (out[0] if (shp == ()) else out)
def _truncnorm_cdf_scalar(x, a, b):
with np.errstate(invalid='ignore'):
if np.isscalar(x):
if x <= a:
return -0
if x >= b:
return 1
shp = np.shape(x)
x = np.atleast_1d(x)
out = np.full_like(x, np.nan, dtype=np.double)
condlea, condgeb = (x <= a), (x >= b)
if np.any(condlea):
np.place(out, condlea, 0)
if np.any(condgeb):
np.place(out, condgeb, 1.0)
cond_inner = ~condlea & ~condgeb
if np.any(cond_inner):
delta = _truncnorm_get_delta_scalar(a, b)
if delta > 0:
np.place(out, cond_inner,
(_norm_cdf(x[cond_inner]) - _norm_cdf(a)) / delta)
else:
with np.errstate(divide='ignore'):
np.place(out, cond_inner,
np.exp(_truncnorm_logcdf_scalar(x[cond_inner],
a, b)))
return (out[0] if (shp == ()) else out)
def _truncnorm_logsf_scalar(x, a, b):
with np.errstate(invalid='ignore'):
if np.isscalar(x):
if x <= a:
return 0.0
if x >= b:
return -np.inf
shp = np.shape(x)
x = np.atleast_1d(x)
out = np.full_like(x, np.nan, dtype=np.double)
condlea, condgeb = (x <= a), (x >= b)
if np.any(condlea):
np.place(out, condlea, 0)
if np.any(condgeb):
np.place(out, condgeb, -np.inf)
cond_inner = ~condlea & ~condgeb
if np.any(cond_inner):
delta = _truncnorm_get_delta_scalar(a, b)
if delta > 0:
np.place(out, cond_inner,
np.log((_norm_sf(x[cond_inner]) - _norm_sf(b))
/ delta))
else:
with np.errstate(divide='ignore'):
if b < 0:
nla, nlb = _norm_logcdf(a), _norm_logcdf(b)
np.place(out, cond_inner,
np.log1p(-np.exp(_norm_logcdf(x[cond_inner])
- nlb))
- np.log1p(-np.exp(nla - nlb)))
else:
sla, slb = _norm_logsf(a), _norm_logsf(b)
tab = np.log1p(-np.exp(slb - sla))
slx = _norm_logsf(x[cond_inner])
tax = np.log1p(-np.exp(slb - slx))
np.place(out, cond_inner, slx + tax - (sla + tab))
return (out[0] if (shp == ()) else out)
def _truncnorm_sf_scalar(x, a, b):
with np.errstate(invalid='ignore'):
if np.isscalar(x):
if x <= a:
return 1.0
if x >= b:
return 0.0
shp = np.shape(x)
x = np.atleast_1d(x)
out = np.full_like(x, np.nan, dtype=np.double)
condlea, condgeb = (x <= a), (x >= b)
if np.any(condlea):
np.place(out, condlea, 1.0)
if np.any(condgeb):
np.place(out, condgeb, 0.0)
cond_inner = ~condlea & ~condgeb
if np.any(cond_inner):
delta = _truncnorm_get_delta_scalar(a, b)
if delta > 0:
np.place(out, cond_inner,
(_norm_sf(x[cond_inner]) - _norm_sf(b)) / delta)
else:
np.place(out, cond_inner,
np.exp(_truncnorm_logsf_scalar(x[cond_inner], a, b)))
return (out[0] if (shp == ()) else out)
def _norm_logcdfprime(z):
# derivative of special.log_ndtr (See special/cephes/ndtr.c)
# Differentiate formula for log Phi(z)_truncnorm_ppf
# log Phi(z) = -z^2/2 - log(-z) - log(2pi)/2
# + log(1 + sum (-1)^n (2n-1)!! / z^(2n))
# Convergence of series is slow for |z| < 10, but can use
# d(log Phi(z))/dz = dPhi(z)/dz / Phi(z)
# Just take the first 10 terms because that is sufficient for use
# in _norm_ilogcdf
assert np.all(z <= -10)
lhs = -z - 1/z
denom_cons = 1/z**2
numerator = 1
pwr = 1.0
denom_total, numerator_total = 0, 0
sign = -1
for i in range(1, 11):
pwr *= denom_cons
numerator *= 2 * i - 1
term = sign * numerator * pwr
denom_total += term
numerator_total += term * (2 * i) / z
sign = -sign
return lhs - numerator_total / (1 + denom_total)
def _norm_ilogcdf(y):
"""Inverse function to _norm_logcdf==sc.log_ndtr."""
# Apply approximate Newton-Raphson
# Only use for very negative values of y.
# At minimum requires y <= -(log(2pi)+2^2)/2 ~= -2.9
# Much better convergence for y <= -10
z = -np.sqrt(-2 * (y + np.log(2*np.pi)/2))
for _ in range(4):
z = z - (_norm_logcdf(z) - y) / _norm_logcdfprime(z)
return z
def _truncnorm_ppf_scalar(q, a, b):
shp = np.shape(q)
q = np.atleast_1d(q)
out = np.zeros(np.shape(q))
condle0, condge1 = (q <= 0), (q >= 1)
if np.any(condle0):
out[condle0] = a
if np.any(condge1):
out[condge1] = b
delta = _truncnorm_get_delta_scalar(a, b)
cond_inner = ~condle0 & ~condge1
if np.any(cond_inner):
qinner = q[cond_inner]
if delta > 0:
if a > 0:
sa, sb = _norm_sf(a), _norm_sf(b)
np.place(out, cond_inner,
_norm_isf(qinner * sb + sa * (1.0 - qinner)))
else:
na, nb = _norm_cdf(a), _norm_cdf(b)
np.place(out, cond_inner,
_norm_ppf(qinner * nb + na * (1.0 - qinner)))
elif np.isinf(b):
np.place(out, cond_inner,
-_norm_ilogcdf(np.log1p(-qinner) + _norm_logsf(a)))
elif np.isinf(a):
np.place(out, cond_inner,
_norm_ilogcdf(np.log(q) + _norm_logcdf(b)))
else:
if b < 0:
# Solve
# norm_logcdf(x)
# = norm_logcdf(a) + log1p(q * (expm1(norm_logcdf(b)
# - norm_logcdf(a)))
# = nla + log1p(q * expm1(nlb - nla))
# = nlb + log(q) + log1p((1-q) * exp(nla - nlb)/q)
def _f_cdf(x, c):
return _norm_logcdf(x) - c
nla, nlb = _norm_logcdf(a), _norm_logcdf(b)
values = nlb + np.log(q[cond_inner])
C = np.exp(nla - nlb)
if C:
one_minus_q = (1 - q)[cond_inner]
values += np.log1p(one_minus_q * C / q[cond_inner])
x = [optimize._zeros_py.brentq(_f_cdf, a, b, args=(c,),
maxiter=TRUNCNORM_MAX_BRENT_ITERS)
for c in values]
np.place(out, cond_inner, x)
else:
# Solve
# norm_logsf(x)
# = norm_logsf(b) + log1p((1-q) * (expm1(norm_logsf(a)
# - norm_logsf(b)))
# = slb + log1p((1-q)[cond_inner] * expm1(sla - slb))
# = sla + log(1-q) + log1p(q * np.exp(slb - sla)/(1-q))
def _f_sf(x, c):
return _norm_logsf(x) - c
sla, slb = _norm_logsf(a), _norm_logsf(b)
one_minus_q = (1-q)[cond_inner]
values = sla + np.log(one_minus_q)
C = np.exp(slb - sla)
if C:
values += np.log1p(q[cond_inner] * C / one_minus_q)
x = [optimize._zeros_py.brentq(_f_sf, a, b, args=(c,),
maxiter=TRUNCNORM_MAX_BRENT_ITERS)
for c in values]
np.place(out, cond_inner, x)
out[out < a] = a
out[out > b] = b
return (out[0] if (shp == ()) else out)
class truncnorm_gen(rv_continuous):
r"""A truncated normal continuous random variable.
%(before_notes)s
Notes
-----
The standard form of this distribution is a standard normal truncated to
the range [a, b] --- notice that a and b are defined over the domain of the
standard normal. To convert clip values for a specific mean and standard
deviation, use::
a, b = (myclip_a - my_mean) / my_std, (myclip_b - my_mean) / my_std
`truncnorm` takes :math:`a` and :math:`b` as shape parameters.
%(after_notes)s
%(example)s
"""
def _argcheck(self, a, b):
return a < b
def _get_support(self, a, b):
return a, b
def _pdf(self, x, a, b):
if np.isscalar(a) and np.isscalar(b):
return _truncnorm_pdf_scalar(x, a, b)
a, b = np.atleast_1d(a), np.atleast_1d(b)
if a.size == 1 and b.size == 1:
return _truncnorm_pdf_scalar(x, a.item(), b.item())
it = np.nditer([x, a, b, None], [],
[['readonly'], ['readonly'], ['readonly'],
['writeonly', 'allocate']])
for (_x, _a, _b, _ld) in it:
_ld[...] = _truncnorm_pdf_scalar(_x, _a, _b)
return it.operands[3]
def _logpdf(self, x, a, b):
if np.isscalar(a) and np.isscalar(b):
return _truncnorm_logpdf_scalar(x, a, b)
a, b = np.atleast_1d(a), np.atleast_1d(b)
if a.size == 1 and b.size == 1:
return _truncnorm_logpdf_scalar(x, a.item(), b.item())
it = np.nditer([x, a, b, None], [],
[['readonly'], ['readonly'], ['readonly'],
['writeonly', 'allocate']])
for (_x, _a, _b, _ld) in it:
_ld[...] = _truncnorm_logpdf_scalar(_x, _a, _b)
return it.operands[3]
def _cdf(self, x, a, b):
if np.isscalar(a) and np.isscalar(b):
return _truncnorm_cdf_scalar(x, a, b)
a, b = np.atleast_1d(a), np.atleast_1d(b)
if a.size == 1 and b.size == 1:
return _truncnorm_cdf_scalar(x, a.item(), b.item())
out = None
it = np.nditer([x, a, b, out], [],
[['readonly'], ['readonly'], ['readonly'],
['writeonly', 'allocate']])
for (_x, _a, _b, _p) in it:
_p[...] = _truncnorm_cdf_scalar(_x, _a, _b)
return it.operands[3]
def _logcdf(self, x, a, b):
if np.isscalar(a) and np.isscalar(b):
return _truncnorm_logcdf_scalar(x, a, b)
a, b = np.atleast_1d(a), np.atleast_1d(b)
if a.size == 1 and b.size == 1:
return _truncnorm_logcdf_scalar(x, a.item(), b.item())
it = np.nditer([x, a, b, None], [],
[['readonly'], ['readonly'], ['readonly'],
['writeonly', 'allocate']])
for (_x, _a, _b, _p) in it:
_p[...] = _truncnorm_logcdf_scalar(_x, _a, _b)
return it.operands[3]
def _sf(self, x, a, b):
if np.isscalar(a) and np.isscalar(b):
return _truncnorm_sf_scalar(x, a, b)
a, b = np.atleast_1d(a), np.atleast_1d(b)
if a.size == 1 and b.size == 1:
return _truncnorm_sf_scalar(x, a.item(), b.item())
out = None
it = np.nditer([x, a, b, out], [],
[['readonly'], ['readonly'], ['readonly'],
['writeonly', 'allocate']])
for (_x, _a, _b, _p) in it:
_p[...] = _truncnorm_sf_scalar(_x, _a, _b)
return it.operands[3]
def _logsf(self, x, a, b):
if np.isscalar(a) and np.isscalar(b):
return _truncnorm_logsf_scalar(x, a, b)
a, b = np.atleast_1d(a), np.atleast_1d(b)
if a.size == 1 and b.size == 1:
return _truncnorm_logsf_scalar(x, a.item(), b.item())
out = None
it = np.nditer([x, a, b, out], [],
[['readonly'], ['readonly'], ['readonly'],
['writeonly', 'allocate']])
for (_x, _a, _b, _p) in it:
_p[...] = _truncnorm_logsf_scalar(_x, _a, _b)
return it.operands[3]
def _ppf(self, q, a, b):
if np.isscalar(a) and np.isscalar(b):
return _truncnorm_ppf_scalar(q, a, b)
a, b = np.atleast_1d(a), np.atleast_1d(b)
if a.size == 1 and b.size == 1:
return _truncnorm_ppf_scalar(q, a.item(), b.item())
out = None
it = np.nditer([q, a, b, out], [],
[['readonly'], ['readonly'], ['readonly'],
['writeonly', 'allocate']])
for (_q, _a, _b, _x) in it:
_x[...] = _truncnorm_ppf_scalar(_q, _a, _b)
return it.operands[3]
def _munp(self, n, a, b):
def n_th_moment(n, a, b):
"""
Returns n-th moment. Defined only if n >= 0.
Function cannot broadcast due to the loop over n
"""
pA, pB = self._pdf([a, b], a, b)
probs = [pA, -pB]
moments = [0, 1]
for k in range(1, n+1):
# a or b might be infinite, and the corresponding pdf value
# is 0 in that case, but nan is returned for the
# multiplication. However, as b->infinity, pdf(b)*b**k -> 0.
# So it is safe to use _lazywhere to avoid the nan.
vals = _lazywhere(probs, [probs, [a, b]],
lambda x, y: x * y**(k-1), fillvalue=0)
mk = np.sum(vals) + (k-1) * moments[-2]
moments.append(mk)
return moments[-1]
return _lazywhere((n >= 0) & (a == a) & (b == b), (n, a, b),
np.vectorize(n_th_moment, otypes=[np.float64]),
np.nan)
def _stats(self, a, b, moments='mv'):
pA, pB = self.pdf(np.array([a, b]), a, b)
def _truncnorm_stats_scalar(a, b, pA, pB, moments):
m1 = pA - pB
mu = m1
# use _lazywhere to avoid nan (See detailed comment in _munp)
probs = [pA, -pB]
vals = _lazywhere(probs, [probs, [a, b]], lambda x, y: x*y,
fillvalue=0)
m2 = 1 + np.sum(vals)
vals = _lazywhere(probs, [probs, [a-mu, b-mu]], lambda x, y: x*y,
fillvalue=0)
# mu2 = m2 - mu**2, but not as numerically stable as:
# mu2 = (a-mu)*pA - (b-mu)*pB + 1
mu2 = 1 + np.sum(vals)
vals = _lazywhere(probs, [probs, [a, b]], lambda x, y: x*y**2,
fillvalue=0)
m3 = 2*m1 + np.sum(vals)
vals = _lazywhere(probs, [probs, [a, b]], lambda x, y: x*y**3,
fillvalue=0)
m4 = 3*m2 + np.sum(vals)
mu3 = m3 + m1 * (-3*m2 + 2*m1**2)
g1 = mu3 / np.power(mu2, 1.5)
mu4 = m4 + m1*(-4*m3 + 3*m1*(2*m2 - m1**2))
g2 = mu4 / mu2**2 - 3
return mu, mu2, g1, g2
_truncnorm_stats = np.vectorize(_truncnorm_stats_scalar,
excluded=('moments',))
return _truncnorm_stats(a, b, pA, pB, moments)
def _rvs(self, a, b, size=None, random_state=None):
# if a and b are scalar, use _rvs_scalar, otherwise need to create
# output by iterating over parameters
if np.isscalar(a) and np.isscalar(b):
out = self._rvs_scalar(a, b, size, random_state=random_state)
elif a.size == 1 and b.size == 1:
out = self._rvs_scalar(a.item(), b.item(), size,
random_state=random_state)
else:
# When this method is called, size will be a (possibly empty)
# tuple of integers. It will not be None; if `size=None` is passed
# to `rvs()`, size will be the empty tuple ().
a, b = np.broadcast_arrays(a, b)
# a and b now have the same shape.
# `shp` is the shape of the blocks of random variates that are
# generated for each combination of parameters associated with
# broadcasting a and b.
# bc is a tuple the same length as size. The values
# in bc are bools. If bc[j] is True, it means that
# entire axis is filled in for a given combination of the
# broadcast arguments.
shp, bc = _check_shape(a.shape, size)
# `numsamples` is the total number of variates to be generated
# for each combination of the input arguments.
numsamples = int(np.prod(shp))
# `out` is the array to be returned. It is filled in in the
# loop below.
out = np.empty(size)
it = np.nditer([a, b],
flags=['multi_index'],
op_flags=[['readonly'], ['readonly']])
while not it.finished:
# Convert the iterator's multi_index into an index into the
# `out` array where the call to _rvs_scalar() will be stored.
# Where bc is True, we use a full slice; otherwise we use the
# index value from it.multi_index. len(it.multi_index) might
# be less than len(bc), and in that case we want to align these
# two sequences to the right, so the loop variable j runs from
# -len(size) to 0. This doesn't cause an IndexError, as
# bc[j] will be True in those cases where it.multi_index[j]
# would cause an IndexError.
idx = tuple((it.multi_index[j] if not bc[j] else slice(None))
for j in range(-len(size), 0))
out[idx] = self._rvs_scalar(it[0], it[1], numsamples,
random_state).reshape(shp)
it.iternext()
if size == ():
out = out.item()
return out
def _rvs_scalar(self, a, b, numsamples=None, random_state=None):
if not numsamples:
numsamples = 1
# prepare sampling of rvs
size1d = tuple(np.atleast_1d(numsamples))
N = np.prod(size1d) # number of rvs needed, reshape upon return
# Calculate some rvs
U = random_state.uniform(low=0, high=1, size=N)
x = self._ppf(U, a, b)
rvs = np.reshape(x, size1d)
return rvs
truncnorm = truncnorm_gen(name='truncnorm', momtype=1)
class tukeylambda_gen(rv_continuous):
r"""A Tukey-Lamdba continuous random variable.
%(before_notes)s
Notes
-----
A flexible distribution, able to represent and interpolate between the
following distributions:
- Cauchy (:math:`lambda = -1`)
- logistic (:math:`lambda = 0`)
- approx Normal (:math:`lambda = 0.14`)
- uniform from -1 to 1 (:math:`lambda = 1`)
`tukeylambda` takes a real number :math:`lambda` (denoted ``lam``
in the implementation) as a shape parameter.
%(after_notes)s
%(example)s
"""
def _argcheck(self, lam):
return np.ones(np.shape(lam), dtype=bool)
def _pdf(self, x, lam):
Fx = np.asarray(sc.tklmbda(x, lam))
Px = Fx**(lam-1.0) + (np.asarray(1-Fx))**(lam-1.0)
Px = 1.0/np.asarray(Px)
return np.where((lam <= 0) | (abs(x) < 1.0/np.asarray(lam)), Px, 0.0)
def _cdf(self, x, lam):
return sc.tklmbda(x, lam)
def _ppf(self, q, lam):
return sc.boxcox(q, lam) - sc.boxcox1p(-q, lam)
def _stats(self, lam):
return 0, _tlvar(lam), 0, _tlkurt(lam)
def _entropy(self, lam):
def integ(p):
return np.log(pow(p, lam-1)+pow(1-p, lam-1))
return integrate.quad(integ, 0, 1)[0]
tukeylambda = tukeylambda_gen(name='tukeylambda')
class FitUniformFixedScaleDataError(FitDataError):
def __init__(self, ptp, fscale):
self.args = (
"Invalid values in `data`. Maximum likelihood estimation with "
"the uniform distribution and fixed scale requires that "
"data.ptp() <= fscale, but data.ptp() = %r and fscale = %r." %
(ptp, fscale),
)
class uniform_gen(rv_continuous):
r"""A uniform continuous random variable.
In the standard form, the distribution is uniform on ``[0, 1]``. Using
the parameters ``loc`` and ``scale``, one obtains the uniform distribution
on ``[loc, loc + scale]``.
%(before_notes)s
%(example)s
"""
def _rvs(self, size=None, random_state=None):
return random_state.uniform(0.0, 1.0, size)
def _pdf(self, x):
return 1.0*(x == x)
def _cdf(self, x):
return x
def _ppf(self, q):
return q
def _stats(self):
return 0.5, 1.0/12, 0, -1.2
def _entropy(self):
return 0.0
@_call_super_mom
def fit(self, data, *args, **kwds):
"""
Maximum likelihood estimate for the location and scale parameters.
`uniform.fit` uses only the following parameters. Because exact
formulas are used, the parameters related to optimization that are
available in the `fit` method of other distributions are ignored
here. The only positional argument accepted is `data`.
Parameters
----------
data : array_like
Data to use in calculating the maximum likelihood estimate.
floc : float, optional
Hold the location parameter fixed to the specified value.
fscale : float, optional
Hold the scale parameter fixed to the specified value.
Returns
-------
loc, scale : float
Maximum likelihood estimates for the location and scale.
Notes
-----
An error is raised if `floc` is given and any values in `data` are
less than `floc`, or if `fscale` is given and `fscale` is less
than ``data.max() - data.min()``. An error is also raised if both
`floc` and `fscale` are given.
Examples
--------
>>> from scipy.stats import uniform
We'll fit the uniform distribution to `x`:
>>> x = np.array([2, 2.5, 3.1, 9.5, 13.0])
For a uniform distribution MLE, the location is the minimum of the
data, and the scale is the maximum minus the minimum.
>>> loc, scale = uniform.fit(x)
>>> loc
2.0
>>> scale
11.0
If we know the data comes from a uniform distribution where the support
starts at 0, we can use `floc=0`:
>>> loc, scale = uniform.fit(x, floc=0)
>>> loc
0.0
>>> scale
13.0
Alternatively, if we know the length of the support is 12, we can use
`fscale=12`:
>>> loc, scale = uniform.fit(x, fscale=12)
>>> loc
1.5
>>> scale
12.0
In that last example, the support interval is [1.5, 13.5]. This
solution is not unique. For example, the distribution with ``loc=2``
and ``scale=12`` has the same likelihood as the one above. When
`fscale` is given and it is larger than ``data.max() - data.min()``,
the parameters returned by the `fit` method center the support over
the interval ``[data.min(), data.max()]``.
"""
if len(args) > 0:
raise TypeError("Too many arguments.")
floc = kwds.pop('floc', None)
fscale = kwds.pop('fscale', None)
_remove_optimizer_parameters(kwds)
if floc is not None and fscale is not None:
# This check is for consistency with `rv_continuous.fit`.
raise ValueError("All parameters fixed. There is nothing to "
"optimize.")
data = np.asarray(data)
if not np.isfinite(data).all():
raise RuntimeError("The data contains non-finite values.")
# MLE for the uniform distribution
# --------------------------------
# The PDF is
#
# f(x, loc, scale) = {1/scale for loc <= x <= loc + scale
# {0 otherwise}
#
# The likelihood function is
# L(x, loc, scale) = (1/scale)**n
# where n is len(x), assuming loc <= x <= loc + scale for all x.
# The log-likelihood is
# l(x, loc, scale) = -n*log(scale)
# The log-likelihood is maximized by making scale as small as possible,
# while keeping loc <= x <= loc + scale. So if neither loc nor scale
# are fixed, the log-likelihood is maximized by choosing
# loc = x.min()
# scale = x.ptp()
# If loc is fixed, it must be less than or equal to x.min(), and then
# the scale is
# scale = x.max() - loc
# If scale is fixed, it must not be less than x.ptp(). If scale is
# greater than x.ptp(), the solution is not unique. Note that the
# likelihood does not depend on loc, except for the requirement that
# loc <= x <= loc + scale. All choices of loc for which
# x.max() - scale <= loc <= x.min()
# have the same log-likelihood. In this case, we choose loc such that
# the support is centered over the interval [data.min(), data.max()]:
# loc = x.min() = 0.5*(scale - x.ptp())
if fscale is None:
# scale is not fixed.
if floc is None:
# loc is not fixed, scale is not fixed.
loc = data.min()
scale = data.ptp()
else:
# loc is fixed, scale is not fixed.
loc = floc
scale = data.max() - loc
if data.min() < loc:
raise FitDataError("uniform", lower=loc, upper=loc + scale)
else:
# loc is not fixed, scale is fixed.
ptp = data.ptp()
if ptp > fscale:
raise FitUniformFixedScaleDataError(ptp=ptp, fscale=fscale)
# If ptp < fscale, the ML estimate is not unique; see the comments
# above. We choose the distribution for which the support is
# centered over the interval [data.min(), data.max()].
loc = data.min() - 0.5*(fscale - ptp)
scale = fscale
# We expect the return values to be floating point, so ensure it
# by explicitly converting to float.
return float(loc), float(scale)
uniform = uniform_gen(a=0.0, b=1.0, name='uniform')
class vonmises_gen(rv_continuous):
r"""A Von Mises continuous random variable.
%(before_notes)s
Notes
-----
The probability density function for `vonmises` and `vonmises_line` is:
.. math::
f(x, \kappa) = \frac{ \exp(\kappa \cos(x)) }{ 2 \pi I_0(\kappa) }
for :math:`-\pi \le x \le \pi`, :math:`\kappa > 0`. :math:`I_0` is the
modified Bessel function of order zero (`scipy.special.i0`).
`vonmises` is a circular distribution which does not restrict the
distribution to a fixed interval. Currently, there is no circular
distribution framework in scipy. The ``cdf`` is implemented such that
``cdf(x + 2*np.pi) == cdf(x) + 1``.
`vonmises_line` is the same distribution, defined on :math:`[-\pi, \pi]`
on the real line. This is a regular (i.e. non-circular) distribution.
`vonmises` and `vonmises_line` take ``kappa`` as a shape parameter.
%(after_notes)s
%(example)s
"""
def _rvs(self, kappa, size=None, random_state=None):
return random_state.vonmises(0.0, kappa, size=size)
def _pdf(self, x, kappa):
# vonmises.pdf(x, kappa) = exp(kappa * cos(x)) / (2*pi*I[0](kappa))
# = exp(kappa * (cos(x) - 1)) /
# (2*pi*exp(-kappa)*I[0](kappa))
# = exp(kappa * cosm1(x)) / (2*pi*i0e(kappa))
return np.exp(kappa*sc.cosm1(x)) / (2*np.pi*sc.i0e(kappa))
def _cdf(self, x, kappa):
return _stats.von_mises_cdf(kappa, x)
def _stats_skip(self, kappa):
return 0, None, 0, None
def _entropy(self, kappa):
return (-kappa * sc.i1(kappa) / sc.i0(kappa) +
np.log(2 * np.pi * sc.i0(kappa)))
vonmises = vonmises_gen(name='vonmises')
vonmises_line = vonmises_gen(a=-np.pi, b=np.pi, name='vonmises_line')
class wald_gen(invgauss_gen):
r"""A Wald continuous random variable.
%(before_notes)s
Notes
-----
The probability density function for `wald` is:
.. math::
f(x) = \frac{1}{\sqrt{2\pi x^3}} \exp(- \frac{ (x-1)^2 }{ 2x })
for :math:`x >= 0`.
`wald` is a special case of `invgauss` with ``mu=1``.
%(after_notes)s
%(example)s
"""
_support_mask = rv_continuous._open_support_mask
def _rvs(self, size=None, random_state=None):
return random_state.wald(1.0, 1.0, size=size)
def _pdf(self, x):
# wald.pdf(x) = 1/sqrt(2*pi*x**3) * exp(-(x-1)**2/(2*x))
return invgauss._pdf(x, 1.0)
def _cdf(self, x):
return invgauss._cdf(x, 1.0)
def _sf(self, x):
return invgauss._sf(x, 1.0)
def _logpdf(self, x):
return invgauss._logpdf(x, 1.0)
def _logcdf(self, x):
return invgauss._logcdf(x, 1.0)
def _logsf(self, x):
return invgauss._logsf(x, 1.0)
def _stats(self):
return 1.0, 1.0, 3.0, 15.0
wald = wald_gen(a=0.0, name="wald")
class wrapcauchy_gen(rv_continuous):
r"""A wrapped Cauchy continuous random variable.
%(before_notes)s
Notes
-----
The probability density function for `wrapcauchy` is:
.. math::
f(x, c) = \frac{1-c^2}{2\pi (1+c^2 - 2c \cos(x))}
for :math:`0 \le x \le 2\pi`, :math:`0 < c < 1`.
`wrapcauchy` takes ``c`` as a shape parameter for :math:`c`.
%(after_notes)s
%(example)s
"""
def _argcheck(self, c):
return (c > 0) & (c < 1)
def _pdf(self, x, c):
# wrapcauchy.pdf(x, c) = (1-c**2) / (2*pi*(1+c**2-2*c*cos(x)))
return (1.0-c*c)/(2*np.pi*(1+c*c-2*c*np.cos(x)))
def _cdf(self, x, c):
def f1(x, cr):
# CDF for 0 <= x < pi
return 1/np.pi * np.arctan(cr*np.tan(x/2))
def f2(x, cr):
# CDF for pi <= x <= 2*pi
return 1 - 1/np.pi * np.arctan(cr*np.tan((2*np.pi - x)/2))
cr = (1 + c)/(1 - c)
return _lazywhere(x < np.pi, (x, cr), f=f1, f2=f2)
def _ppf(self, q, c):
val = (1.0-c)/(1.0+c)
rcq = 2*np.arctan(val*np.tan(np.pi*q))
rcmq = 2*np.pi-2*np.arctan(val*np.tan(np.pi*(1-q)))
return np.where(q < 1.0/2, rcq, rcmq)
def _entropy(self, c):
return np.log(2*np.pi*(1-c*c))
def _fitstart(self, data):
# Use 0.5 as the initial guess of the shape parameter.
# For the location and scale, use the minimum and
# peak-to-peak/(2*pi), respectively.
return 0.5, np.min(data), np.ptp(data)/(2*np.pi)
wrapcauchy = wrapcauchy_gen(a=0.0, b=2*np.pi, name='wrapcauchy')
class gennorm_gen(rv_continuous):
r"""A generalized normal continuous random variable.
%(before_notes)s
See Also
--------
laplace : Laplace distribution
norm : normal distribution
Notes
-----
The probability density function for `gennorm` is [1]_:
.. math::
f(x, \beta) = \frac{\beta}{2 \Gamma(1/\beta)} \exp(-|x|^\beta)
:math:`\Gamma` is the gamma function (`scipy.special.gamma`).
`gennorm` takes ``beta`` as a shape parameter for :math:`\beta`.
For :math:`\beta = 1`, it is identical to a Laplace distribution.
For :math:`\beta = 2`, it is identical to a normal distribution
(with ``scale=1/sqrt(2)``).
References
----------
.. [1] "Generalized normal distribution, Version 1",
https://en.wikipedia.org/wiki/Generalized_normal_distribution#Version_1
%(example)s
"""
def _pdf(self, x, beta):
return np.exp(self._logpdf(x, beta))
def _logpdf(self, x, beta):
return np.log(0.5*beta) - sc.gammaln(1.0/beta) - abs(x)**beta
def _cdf(self, x, beta):
c = 0.5 * np.sign(x)
# evaluating (.5 + c) first prevents numerical cancellation
return (0.5 + c) - c * sc.gammaincc(1.0/beta, abs(x)**beta)
def _ppf(self, x, beta):
c = np.sign(x - 0.5)
# evaluating (1. + c) first prevents numerical cancellation
return c * sc.gammainccinv(1.0/beta, (1.0 + c) - 2.0*c*x)**(1.0/beta)
def _sf(self, x, beta):
return self._cdf(-x, beta)
def _isf(self, x, beta):
return -self._ppf(x, beta)
def _stats(self, beta):
c1, c3, c5 = sc.gammaln([1.0/beta, 3.0/beta, 5.0/beta])
return 0., np.exp(c3 - c1), 0., np.exp(c5 + c1 - 2.0*c3) - 3.
def _entropy(self, beta):
return 1. / beta - np.log(.5 * beta) + sc.gammaln(1. / beta)
gennorm = gennorm_gen(name='gennorm')
class halfgennorm_gen(rv_continuous):
r"""The upper half of a generalized normal continuous random variable.
%(before_notes)s
See Also
--------
gennorm : generalized normal distribution
expon : exponential distribution
halfnorm : half normal distribution
Notes
-----
The probability density function for `halfgennorm` is:
.. math::
f(x, \beta) = \frac{\beta}{\Gamma(1/\beta)} \exp(-|x|^\beta)
for :math:`x > 0`. :math:`\Gamma` is the gamma function
(`scipy.special.gamma`).
`gennorm` takes ``beta`` as a shape parameter for :math:`\beta`.
For :math:`\beta = 1`, it is identical to an exponential distribution.
For :math:`\beta = 2`, it is identical to a half normal distribution
(with ``scale=1/sqrt(2)``).
References
----------
.. [1] "Generalized normal distribution, Version 1",
https://en.wikipedia.org/wiki/Generalized_normal_distribution#Version_1
%(example)s
"""
def _pdf(self, x, beta):
# beta
# halfgennorm.pdf(x, beta) = ------------- exp(-|x|**beta)
# gamma(1/beta)
return np.exp(self._logpdf(x, beta))
def _logpdf(self, x, beta):
return np.log(beta) - sc.gammaln(1.0/beta) - x**beta
def _cdf(self, x, beta):
return sc.gammainc(1.0/beta, x**beta)
def _ppf(self, x, beta):
return sc.gammaincinv(1.0/beta, x)**(1.0/beta)
def _sf(self, x, beta):
return sc.gammaincc(1.0/beta, x**beta)
def _isf(self, x, beta):
return sc.gammainccinv(1.0/beta, x)**(1.0/beta)
def _entropy(self, beta):
return 1.0/beta - np.log(beta) + sc.gammaln(1.0/beta)
halfgennorm = halfgennorm_gen(a=0, name='halfgennorm')
class crystalball_gen(rv_continuous):
r"""
Crystalball distribution
%(before_notes)s
Notes
-----
The probability density function for `crystalball` is:
.. math::
f(x, \beta, m) = \begin{cases}
N \exp(-x^2 / 2), &\text{for } x > -\beta\\
N A (B - x)^{-m} &\text{for } x \le -\beta
\end{cases}
where :math:`A = (m / |\beta|)^m \exp(-\beta^2 / 2)`,
:math:`B = m/|\beta| - |\beta|` and :math:`N` is a normalisation constant.
`crystalball` takes :math:`\beta > 0` and :math:`m > 1` as shape
parameters. :math:`\beta` defines the point where the pdf changes
from a power-law to a Gaussian distribution. :math:`m` is the power
of the power-law tail.
References
----------
.. [1] "Crystal Ball Function",
https://en.wikipedia.org/wiki/Crystal_Ball_function
%(after_notes)s
.. versionadded:: 0.19.0
%(example)s
"""
def _pdf(self, x, beta, m):
"""
Return PDF of the crystalball function.
--
| exp(-x**2 / 2), for x > -beta
crystalball.pdf(x, beta, m) = N * |
| A * (B - x)**(-m), for x <= -beta
--
"""
N = 1.0 / (m/beta / (m-1) * np.exp(-beta**2 / 2.0) +
_norm_pdf_C * _norm_cdf(beta))
def rhs(x, beta, m):
return np.exp(-x**2 / 2)
def lhs(x, beta, m):
return ((m/beta)**m * np.exp(-beta**2 / 2.0) *
(m/beta - beta - x)**(-m))
return N * _lazywhere(x > -beta, (x, beta, m), f=rhs, f2=lhs)
def _logpdf(self, x, beta, m):
"""
Return the log of the PDF of the crystalball function.
"""
N = 1.0 / (m/beta / (m-1) * np.exp(-beta**2 / 2.0) +
_norm_pdf_C * _norm_cdf(beta))
def rhs(x, beta, m):
return -x**2/2
def lhs(x, beta, m):
return m*np.log(m/beta) - beta**2/2 - m*np.log(m/beta - beta - x)
return np.log(N) + _lazywhere(x > -beta, (x, beta, m), f=rhs, f2=lhs)
def _cdf(self, x, beta, m):
"""
Return CDF of the crystalball function
"""
N = 1.0 / (m/beta / (m-1) * np.exp(-beta**2 / 2.0) +
_norm_pdf_C * _norm_cdf(beta))
def rhs(x, beta, m):
return ((m/beta) * np.exp(-beta**2 / 2.0) / (m-1) +
_norm_pdf_C * (_norm_cdf(x) - _norm_cdf(-beta)))
def lhs(x, beta, m):
return ((m/beta)**m * np.exp(-beta**2 / 2.0) *
(m/beta - beta - x)**(-m+1) / (m-1))
return N * _lazywhere(x > -beta, (x, beta, m), f=rhs, f2=lhs)
def _ppf(self, p, beta, m):
N = 1.0 / (m/beta / (m-1) * np.exp(-beta**2 / 2.0) +
_norm_pdf_C * _norm_cdf(beta))
pbeta = N * (m/beta) * np.exp(-beta**2/2) / (m - 1)
def ppf_less(p, beta, m):
eb2 = np.exp(-beta**2/2)
C = (m/beta) * eb2 / (m-1)
N = 1/(C + _norm_pdf_C * _norm_cdf(beta))
return (m/beta - beta -
((m - 1)*(m/beta)**(-m)/eb2*p/N)**(1/(1-m)))
def ppf_greater(p, beta, m):
eb2 = np.exp(-beta**2/2)
C = (m/beta) * eb2 / (m-1)
N = 1/(C + _norm_pdf_C * _norm_cdf(beta))
return _norm_ppf(_norm_cdf(-beta) + (1/_norm_pdf_C)*(p/N - C))
return _lazywhere(p < pbeta, (p, beta, m), f=ppf_less, f2=ppf_greater)
def _munp(self, n, beta, m):
"""
Returns the n-th non-central moment of the crystalball function.
"""
N = 1.0 / (m/beta / (m-1) * np.exp(-beta**2 / 2.0) +
_norm_pdf_C * _norm_cdf(beta))
def n_th_moment(n, beta, m):
"""
Returns n-th moment. Defined only if n+1 < m
Function cannot broadcast due to the loop over n
"""
A = (m/beta)**m * np.exp(-beta**2 / 2.0)
B = m/beta - beta
rhs = (2**((n-1)/2.0) * sc.gamma((n+1)/2) *
(1.0 + (-1)**n * sc.gammainc((n+1)/2, beta**2 / 2)))
lhs = np.zeros(rhs.shape)
for k in range(n + 1):
lhs += (sc.binom(n, k) * B**(n-k) * (-1)**k / (m - k - 1) *
(m/beta)**(-m + k + 1))
return A * lhs + rhs
return N * _lazywhere(n + 1 < m, (n, beta, m),
np.vectorize(n_th_moment, otypes=[np.float64]),
np.inf)
def _argcheck(self, beta, m):
"""
Shape parameter bounds are m > 1 and beta > 0.
"""
return (m > 1) & (beta > 0)
crystalball = crystalball_gen(name='crystalball', longname="A Crystalball Function")
def _argus_phi(chi):
"""
Utility function for the argus distribution used in the pdf, sf and
moment calculation.
Note that for all x > 0:
gammainc(1.5, x**2/2) = 2 * (_norm_cdf(x) - x * _norm_pdf(x) - 0.5).
This can be verified directly by noting that the cdf of Gamma(1.5) can
be written as erf(sqrt(x)) - 2*sqrt(x)*exp(-x)/sqrt(Pi).
We use gammainc instead of the usual definition because it is more precise
for small chi.
"""
return sc.gammainc(1.5, chi**2/2) / 2
class argus_gen(rv_continuous):
r"""
Argus distribution
%(before_notes)s
Notes
-----
The probability density function for `argus` is:
.. math::
f(x, \chi) = \frac{\chi^3}{\sqrt{2\pi} \Psi(\chi)} x \sqrt{1-x^2}
\exp(-\chi^2 (1 - x^2)/2)
for :math:`0 < x < 1` and :math:`\chi > 0`, where
.. math::
\Psi(\chi) = \Phi(\chi) - \chi \phi(\chi) - 1/2
with :math:`\Phi` and :math:`\phi` being the CDF and PDF of a standard
normal distribution, respectively.
`argus` takes :math:`\chi` as shape a parameter.
%(after_notes)s
References
----------
.. [1] "ARGUS distribution",
https://en.wikipedia.org/wiki/ARGUS_distribution
.. versionadded:: 0.19.0
%(example)s
"""
def _logpdf(self, x, chi):
# for x = 0 or 1, logpdf returns -np.inf
with np.errstate(divide='ignore'):
y = 1.0 - x*x
A = 3*np.log(chi) - _norm_pdf_logC - np.log(_argus_phi(chi))
return A + np.log(x) + 0.5*np.log1p(-x*x) - chi**2 * y / 2
def _pdf(self, x, chi):
return np.exp(self._logpdf(x, chi))
def _cdf(self, x, chi):
return 1.0 - self._sf(x, chi)
def _sf(self, x, chi):
return _argus_phi(chi * np.sqrt(1 - x**2)) / _argus_phi(chi)
def _rvs(self, chi, size=None, random_state=None):
chi = np.asarray(chi)
if chi.size == 1:
out = self._rvs_scalar(chi, numsamples=size,
random_state=random_state)
else:
shp, bc = _check_shape(chi.shape, size)
numsamples = int(np.prod(shp))
out = np.empty(size)
it = np.nditer([chi],
flags=['multi_index'],
op_flags=[['readonly']])
while not it.finished:
idx = tuple((it.multi_index[j] if not bc[j] else slice(None))
for j in range(-len(size), 0))
r = self._rvs_scalar(it[0], numsamples=numsamples,
random_state=random_state)
out[idx] = r.reshape(shp)
it.iternext()
if size == ():
out = out[()]
return out
def _rvs_scalar(self, chi, numsamples=None, random_state=None):
# if chi <= 1.8:
# use rejection method, see Devroye:
# Non-Uniform Random Variate Generation, 1986, section II.3.2.
# write: PDF f(x) = c * g(x) * h(x), where
# h is [0,1]-valued and g is a density
# we use two ways to write f
#
# Case 1:
# write g(x) = 3*x*sqrt(1-x**2), h(x) = exp(-chi**2 (1-x**2) / 2)
# If X has a distribution with density g its ppf G_inv is given by:
# G_inv(u) = np.sqrt(1 - u**(2/3))
#
# Case 2:
# g(x) = chi**2 * x * exp(-chi**2 * (1-x**2)/2) / (1 - exp(-chi**2 /2))
# h(x) = sqrt(1 - x**2), 0 <= x <= 1
# one can show that
# G_inv(u) = np.sqrt(2*np.log(u*(np.exp(chi**2/2)-1)+1))/chi
# = np.sqrt(1 + 2*np.log(np.exp(-chi**2/2)*(1-u)+u)/chi**2)
# the latter expression is used for precision with small chi
#
# In both cases, the inverse cdf of g can be written analytically, and
# we can apply the rejection method:
#
# REPEAT
# Generate U uniformly distributed on [0, 1]
# Generate X with density g (e.g. via inverse transform sampling:
# X = G_inv(V) with V uniformly distributed on [0, 1])
# UNTIL X <= h(X)
# RETURN X
#
# We use case 1 for chi <= 0.5 as it maintains precision for small chi
# and case 2 for 0.5 < chi <= 1.8 due to its speed for moderate chi.
#
# if chi > 1.8:
# use relation to the Gamma distribution: if X is ARGUS with parameter
# chi), then Y = chi**2 * (1 - X**2) / 2 has density proportional to
# sqrt(u) * exp(-u) on [0, chi**2 / 2], i.e. a Gamma(3/2) distribution
# conditioned on [0, chi**2 / 2]). Therefore, to sample X from the
# ARGUS distribution, we sample Y from the gamma distribution, keeping
# only samples on [0, chi**2 / 2], and apply the inverse
# transformation X = (1 - 2*Y/chi**2)**(1/2). Since we only
# look at chi > 1.8, gamma(1.5).cdf(chi**2/2) is large enough such
# Y falls in the inteval [0, chi**2 / 2] with a high probability:
# stats.gamma(1.5).cdf(1.8**2/2) = 0.644...
#
# The points to switch between the different methods are determined
# by a comparison of the runtime of the different methods. However,
# the runtime is platform-dependent. The implemented values should
# ensure a good overall performance and are supported by an analysis
# of the rejection constants of different methods.
size1d = tuple(np.atleast_1d(numsamples))
N = int(np.prod(size1d))
x = np.zeros(N)
simulated = 0
chi2 = chi * chi
if chi <= 0.5:
d = -chi2 / 2
while simulated < N:
k = N - simulated
u = random_state.uniform(size=k)
v = random_state.uniform(size=k)
z = v**(2/3)
# acceptance condition: u <= h(G_inv(v)). This simplifies to
accept = (np.log(u) <= d * z)
num_accept = np.sum(accept)
if num_accept > 0:
# we still need to transform z=v**(2/3) to X = G_inv(v)
rvs = np.sqrt(1 - z[accept])
x[simulated:(simulated + num_accept)] = rvs
simulated += num_accept
elif chi <= 1.8:
echi = np.exp(-chi2 / 2)
while simulated < N:
k = N - simulated
u = random_state.uniform(size=k)
v = random_state.uniform(size=k)
z = 2 * np.log(echi * (1 - v) + v) / chi2
# as in case one, simplify u <= h(G_inv(v)) and then transform
# z to the target distribution X = G_inv(v)
accept = (u**2 + z <= 0)
num_accept = np.sum(accept)
if num_accept > 0:
rvs = np.sqrt(1 + z[accept])
x[simulated:(simulated + num_accept)] = rvs
simulated += num_accept
else:
# conditional Gamma for chi > 1.8
while simulated < N:
k = N - simulated
g = random_state.standard_gamma(1.5, size=k)
accept = (g <= chi2 / 2)
num_accept = np.sum(accept)
if num_accept > 0:
x[simulated:(simulated + num_accept)] = g[accept]
simulated += num_accept
x = np.sqrt(1 - 2 * x / chi2)
return np.reshape(x, size1d)
def _stats(self, chi):
# need to ensure that dtype is float
# otherwise the mask below does not work for integers
chi = np.asarray(chi, dtype=float)
phi = _argus_phi(chi)
m = np.sqrt(np.pi/8) * chi * sc.ive(1, chi**2/4) / phi
# compute second moment, use Taylor expansion for small chi (<= 0.1)
mu2 = np.empty_like(chi)
mask = chi > 0.1
c = chi[mask]
mu2[mask] = 1 - 3 / c**2 + c * _norm_pdf(c) / phi[mask]
c = chi[~mask]
coef = [-358/65690625, 0, -94/1010625, 0, 2/2625, 0, 6/175, 0, 0.4]
mu2[~mask] = np.polyval(coef, c)
return m, mu2 - m**2, None, None
argus = argus_gen(name='argus', longname="An Argus Function", a=0.0, b=1.0)
class rv_histogram(rv_continuous):
"""
Generates a distribution given by a histogram.
This is useful to generate a template distribution from a binned
datasample.
As a subclass of the `rv_continuous` class, `rv_histogram` inherits from it
a collection of generic methods (see `rv_continuous` for the full list),
and implements them based on the properties of the provided binned
datasample.
Parameters
----------
histogram : tuple of array_like
Tuple containing two array_like objects
The first containing the content of n bins
The second containing the (n+1) bin boundaries
In particular the return value np.histogram is accepted
Notes
-----
There are no additional shape parameters except for the loc and scale.
The pdf is defined as a stepwise function from the provided histogram
The cdf is a linear interpolation of the pdf.
.. versionadded:: 0.19.0
Examples
--------
Create a scipy.stats distribution from a numpy histogram
>>> import scipy.stats
>>> import numpy as np
>>> data = scipy.stats.norm.rvs(size=100000, loc=0, scale=1.5, random_state=123)
>>> hist = np.histogram(data, bins=100)
>>> hist_dist = scipy.stats.rv_histogram(hist)
Behaves like an ordinary scipy rv_continuous distribution
>>> hist_dist.pdf(1.0)
0.20538577847618705
>>> hist_dist.cdf(2.0)
0.90818568543056499
PDF is zero above (below) the highest (lowest) bin of the histogram,
defined by the max (min) of the original dataset
>>> hist_dist.pdf(np.max(data))
0.0
>>> hist_dist.cdf(np.max(data))
1.0
>>> hist_dist.pdf(np.min(data))
7.7591907244498314e-05
>>> hist_dist.cdf(np.min(data))
0.0
PDF and CDF follow the histogram
>>> import matplotlib.pyplot as plt
>>> X = np.linspace(-5.0, 5.0, 100)
>>> plt.title("PDF from Template")
>>> plt.hist(data, density=True, bins=100)
>>> plt.plot(X, hist_dist.pdf(X), label='PDF')
>>> plt.plot(X, hist_dist.cdf(X), label='CDF')
>>> plt.show()
"""
_support_mask = rv_continuous._support_mask
def __init__(self, histogram, *args, **kwargs):
"""
Create a new distribution using the given histogram
Parameters
----------
histogram : tuple of array_like
Tuple containing two array_like objects
The first containing the content of n bins
The second containing the (n+1) bin boundaries
In particular the return value np.histogram is accepted
"""
self._histogram = histogram
if len(histogram) != 2:
raise ValueError("Expected length 2 for parameter histogram")
self._hpdf = np.asarray(histogram[0])
self._hbins = np.asarray(histogram[1])
if len(self._hpdf) + 1 != len(self._hbins):
raise ValueError("Number of elements in histogram content "
"and histogram boundaries do not match, "
"expected n and n+1.")
self._hbin_widths = self._hbins[1:] - self._hbins[:-1]
self._hpdf = self._hpdf / float(np.sum(self._hpdf * self._hbin_widths))
self._hcdf = np.cumsum(self._hpdf * self._hbin_widths)
self._hpdf = np.hstack([0.0, self._hpdf, 0.0])
self._hcdf = np.hstack([0.0, self._hcdf])
# Set support
kwargs['a'] = self.a = self._hbins[0]
kwargs['b'] = self.b = self._hbins[-1]
super().__init__(*args, **kwargs)
def _pdf(self, x):
"""
PDF of the histogram
"""
return self._hpdf[np.searchsorted(self._hbins, x, side='right')]
def _cdf(self, x):
"""
CDF calculated from the histogram
"""
return np.interp(x, self._hbins, self._hcdf)
def _ppf(self, x):
"""
Percentile function calculated from the histogram
"""
return np.interp(x, self._hcdf, self._hbins)
def _munp(self, n):
"""Compute the n-th non-central moment."""
integrals = (self._hbins[1:]**(n+1) - self._hbins[:-1]**(n+1)) / (n+1)
return np.sum(self._hpdf[1:-1] * integrals)
def _entropy(self):
"""Compute entropy of distribution"""
res = _lazywhere(self._hpdf[1:-1] > 0.0,
(self._hpdf[1:-1],),
np.log,
0.0)
return -np.sum(self._hpdf[1:-1] * res * self._hbin_widths)
def _updated_ctor_param(self):
"""
Set the histogram as additional constructor argument
"""
dct = super()._updated_ctor_param()
dct['histogram'] = self._histogram
return dct
class studentized_range_gen(rv_continuous):
r"""A studentized range continuous random variable.
%(before_notes)s
See Also
--------
t: Student's t distribution
Notes
-----
The probability density function for `studentized_range` is:
.. math::
f(x; k, \nu) = \frac{k(k-1)\nu^{\nu/2}}{\Gamma(\nu/2)
2^{\nu/2-1}} \int_{0}^{\infty} \int_{-\infty}^{\infty}
s^{\nu} e^{-\nu s^2/2} \phi(z) \phi(sx + z)
[\Phi(sx + z) - \Phi(z)]^{k-2} \,dz \,ds
for :math:`x ≥ 0`, :math:`k > 1`, and :math:`\nu > 0`.
`studentized_range` takes ``k`` for :math:`k` and ``df`` for :math:`\nu`
as shape parameters.
When :math:`\nu` exceeds 100,000, an asymptotic approximation (infinite
degrees of freedom) is used to compute the cumulative distribution
function [4]_.
%(after_notes)s
References
----------
.. [1] "Studentized range distribution",
https://en.wikipedia.org/wiki/Studentized_range_distribution
.. [2] Batista, Ben Dêivide, et al. "Externally Studentized Normal Midrange
Distribution." Ciência e Agrotecnologia, vol. 41, no. 4, 2017, pp.
378-389., doi:10.1590/1413-70542017414047716.
.. [3] Harter, H. Leon. "Tables of Range and Studentized Range." The Annals
of Mathematical Statistics, vol. 31, no. 4, 1960, pp. 1122-1147.
JSTOR, www.jstor.org/stable/2237810. Accessed 18 Feb. 2021.
.. [4] Lund, R. E., and J. R. Lund. "Algorithm AS 190: Probabilities and
Upper Quantiles for the Studentized Range." Journal of the Royal
Statistical Society. Series C (Applied Statistics), vol. 32, no. 2,
1983, pp. 204-210. JSTOR, www.jstor.org/stable/2347300. Accessed 18
Feb. 2021.
Examples
--------
>>> from scipy.stats import studentized_range
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)
Calculate the first four moments:
>>> k, df = 3, 10
>>> mean, var, skew, kurt = studentized_range.stats(k, df, moments='mvsk')
Display the probability density function (``pdf``):
>>> x = np.linspace(studentized_range.ppf(0.01, k, df),
... studentized_range.ppf(0.99, k, df), 100)
>>> ax.plot(x, studentized_range.pdf(x, k, df),
... 'r-', lw=5, alpha=0.6, label='studentized_range pdf')
Alternatively, the distribution object can be called (as a function)
to fix the shape, location and scale parameters. This returns a "frozen"
RV object holding the given parameters fixed.
Freeze the distribution and display the frozen ``pdf``:
>>> rv = studentized_range(k, df)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')
Check accuracy of ``cdf`` and ``ppf``:
>>> vals = studentized_range.ppf([0.001, 0.5, 0.999], k, df)
>>> np.allclose([0.001, 0.5, 0.999], studentized_range.cdf(vals, k, df))
True
Rather than using (``studentized_range.rvs``) to generate random variates,
which is very slow for this distribution, we can approximate the inverse
CDF using an interpolator, and then perform inverse transform sampling
with this approximate inverse CDF.
This distribution has an infinite but thin right tail, so we focus our
attention on the leftmost 99.9 percent.
>>> a, b = studentized_range.ppf([0, .999], k, df)
>>> a, b
0, 7.41058083802274
>>> from scipy.interpolate import interp1d
>>> rng = np.random.default_rng()
>>> xs = np.linspace(a, b, 50)
>>> cdf = studentized_range.cdf(xs, k, df)
# Create an interpolant of the inverse CDF
>>> ppf = interp1d(cdf, xs, fill_value='extrapolate')
# Perform inverse transform sampling using the interpolant
>>> r = ppf(rng.uniform(size=1000))
And compare the histogram:
>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
"""
def _argcheck(self, k, df):
return (k > 1) & (df > 0)
def _fitstart(self, data):
# Default is k=1, but that is not a valid value of the parameter.
return super(studentized_range_gen, self)._fitstart(data, args=(2, 1))
def _munp(self, K, k, df):
cython_symbol = '_studentized_range_moment'
_a, _b = self._get_support()
# all three of these are used to create a numpy array so they must
# be the same shape.
def _single_moment(K, k, df):
log_const = _stats._studentized_range_pdf_logconst(k, df)
arg = [K, k, df, log_const]
usr_data = np.array(arg, float).ctypes.data_as(ctypes.c_void_p)
llc = LowLevelCallable.from_cython(_stats, cython_symbol, usr_data)
ranges = [(-np.inf, np.inf), (0, np.inf), (_a, _b)]
opts = dict(epsabs=1e-11, epsrel=1e-12)
return integrate.nquad(llc, ranges=ranges, opts=opts)[0]
ufunc = np.frompyfunc(_single_moment, 3, 1)
return np.float64(ufunc(K, k, df))
def _pdf(self, x, k, df):
cython_symbol = '_studentized_range_pdf'
def _single_pdf(q, k, df):
log_const = _stats._studentized_range_pdf_logconst(k, df)
arg = [q, k, df, log_const]
usr_data = np.array(arg, float).ctypes.data_as(ctypes.c_void_p)
llc = LowLevelCallable.from_cython(_stats, cython_symbol, usr_data)
ranges = [(-np.inf, np.inf), (0, np.inf)]
opts = dict(epsabs=1e-11, epsrel=1e-12)
return integrate.nquad(llc, ranges=ranges, opts=opts)[0]
ufunc = np.frompyfunc(_single_pdf, 3, 1)
return np.float64(ufunc(x, k, df))
def _cdf(self, x, k, df):
def _single_cdf(q, k, df):
# "When the degrees of freedom V are infinite the probability
# integral takes [on a] simpler form," and a single asymptotic
# integral is evaluated rather than the standard double integral.
# (Lund, Lund, page 205)
if df < 100000:
cython_symbol = '_studentized_range_cdf'
log_const = _stats._studentized_range_cdf_logconst(k, df)
arg = [q, k, df, log_const]
usr_data = np.array(arg, float).ctypes.data_as(ctypes.c_void_p)
ranges = [(-np.inf, np.inf), (0, np.inf)]
else:
cython_symbol = '_studentized_range_cdf_asymptotic'
arg = [q, k]
usr_data = np.array(arg, float).ctypes.data_as(ctypes.c_void_p)
ranges = [(-np.inf, np.inf)]
llc = LowLevelCallable.from_cython(_stats, cython_symbol, usr_data)
opts = dict(epsabs=1e-11, epsrel=1e-12)
return integrate.nquad(llc, ranges=ranges, opts=opts)[0]
ufunc = np.frompyfunc(_single_cdf, 3, 1)
return np.float64(ufunc(x, k, df))
studentized_range = studentized_range_gen(name='studentized_range', a=0,
b=np.inf)
# Collect names of classes and objects in this module.
pairs = list(globals().copy().items())
_distn_names, _distn_gen_names = get_distribution_names(pairs, rv_continuous)
__all__ = _distn_names + _distn_gen_names + ['rv_histogram']