%PDF- %PDF-
| Direktori : /proc/self/root/lib/python3/dist-packages/pythran/pythonic/numpy/linalg/ |
| Current File : //proc/self/root/lib/python3/dist-packages/pythran/pythonic/numpy/linalg/norm.hpp |
#ifndef PYTHONIC_NUMPY_LINALG_NORM_HPP
#define PYTHONIC_NUMPY_LINALG_NORM_HPP
#include "pythonic/include/numpy/linalg/norm.hpp"
#include "pythonic/numpy/abs.hpp"
#include "pythonic/numpy/conj.hpp"
#include "pythonic/numpy/asfarray.hpp"
#include "pythonic/numpy/inf.hpp"
#include "pythonic/numpy/max.hpp"
#include "pythonic/numpy/min.hpp"
#include "pythonic/numpy/power.hpp"
#include "pythonic/numpy/real.hpp"
#include "pythonic/numpy/sqrt.hpp"
#include "pythonic/builtins/pythran/abssqr.hpp"
#include "pythonic/numpy/sum.hpp"
#include "pythonic/builtins/NotImplementedError.hpp"
PYTHONIC_NS_BEGIN
namespace numpy
{
namespace linalg
{
template <class Array>
auto norm(Array &&array, types::none_type ord, types::none_type axis)
-> decltype(
pythonic::numpy::functor::sqrt{}(pythonic::numpy::functor::sum{}(
pythonic::builtins::pythran::functor::abssqr{}(
std::forward<Array>(array)))))
{
return pythonic::numpy::functor::sqrt{}(pythonic::numpy::functor::sum{}(
pythonic::builtins::pythran::functor::abssqr{}(
std::forward<Array>(array))));
}
template <class Array>
norm_t<Array> norm(Array &&x, double ord, types::none_type)
{
switch (std::decay<Array>::type::value) {
case 1:
return norm(std::forward<Array>(x), ord, 0L);
case 2:
return norm(std::forward<Array>(x), ord,
types::array<long, 2>{{0L, 1L}});
default:
throw pythonic::builtins::NotImplementedError(
"Invalid norm order for matrices.");
}
}
template <class Array>
norm_t<Array> norm(Array &&x, double ord, long axis)
{
auto &&y = pythonic::numpy::functor::asfarray{}(x);
if (ord == inf)
return pythonic::numpy::functor::max{}(
pythonic::numpy::functor::abs{}(y), axis);
else if (ord == -inf)
return pythonic::numpy::functor::min{}(
pythonic::numpy::functor::abs{}(y), axis);
else if (ord == 0.)
return pythonic::numpy::functor::sum{}(y != 0., axis);
else if (ord == 1.)
return pythonic::numpy::functor::sum{}(
pythonic::numpy::functor::abs{}(y), axis);
else if (ord == 2.)
return pythonic::numpy::functor::sqrt{}(pythonic::numpy::functor::sum{}(
pythonic::numpy::functor::real{}(
pythonic::numpy::functor::conj{}(y)*y),
axis));
else {
return pythonic::numpy::functor::power{}(
pythonic::numpy::functor::sum{}(
pythonic::numpy::functor::power{}(
pythonic::numpy::functor::abs{}(y), ord),
axis),
1. / ord);
}
}
template <class Array>
norm_t<Array> norm(Array &&x, types::none_type ord, double axis)
{
return norm(std::forward<Array>(x), 2., axis);
}
template <class Array>
norm_t<Array> norm(Array &&x, double ord, types::array<long, 1> axis)
{
return norm(std::forward<Array>(x), ord, axis[0]);
}
template <class Array>
norm_t<Array> norm(Array &&array, double ord, types::array<long, 2> axis)
{
throw pythonic::builtins::NotImplementedError("We need more dev!");
}
}
}
PYTHONIC_NS_END
#endif