%PDF- %PDF-
| Direktori : /proc/self/root/backups/router/usr/local/lib/python3.11/site-packages/bottleneck/slow/ |
| Current File : //proc/self/root/backups/router/usr/local/lib/python3.11/site-packages/bottleneck/slow/move.py |
"Alternative methods of calculating moving window statistics."
import warnings
import numpy as np
__all__ = [
"move_sum",
"move_mean",
"move_std",
"move_var",
"move_min",
"move_max",
"move_argmin",
"move_argmax",
"move_median",
"move_rank",
]
def move_sum(a, window, min_count=None, axis=-1):
"Slow move_sum for unaccelerated dtype"
return move_func(np.nansum, a, window, min_count, axis=axis)
def move_mean(a, window, min_count=None, axis=-1):
"Slow move_mean for unaccelerated dtype"
return move_func(np.nanmean, a, window, min_count, axis=axis)
def move_std(a, window, min_count=None, axis=-1, ddof=0):
"Slow move_std for unaccelerated dtype"
return move_func(np.nanstd, a, window, min_count, axis=axis, ddof=ddof)
def move_var(a, window, min_count=None, axis=-1, ddof=0):
"Slow move_var for unaccelerated dtype"
return move_func(np.nanvar, a, window, min_count, axis=axis, ddof=ddof)
def move_min(a, window, min_count=None, axis=-1):
"Slow move_min for unaccelerated dtype"
return move_func(np.nanmin, a, window, min_count, axis=axis)
def move_max(a, window, min_count=None, axis=-1):
"Slow move_max for unaccelerated dtype"
return move_func(np.nanmax, a, window, min_count, axis=axis)
def move_argmin(a, window, min_count=None, axis=-1):
"Slow move_argmin for unaccelerated dtype"
def argmin(a, axis):
a = np.array(a, copy=False)
flip = [slice(None)] * a.ndim
flip[axis] = slice(None, None, -1)
a = a[tuple(flip)] # if tie, pick index of rightmost tie
try:
idx = np.nanargmin(a, axis=axis)
except ValueError:
# an all nan slice encountered
a = a.copy()
mask = np.isnan(a)
np.copyto(a, np.inf, where=mask)
idx = np.argmin(a, axis=axis).astype(np.float64)
if idx.ndim == 0:
idx = np.nan
else:
mask = np.all(mask, axis=axis)
idx[mask] = np.nan
return idx
return move_func(argmin, a, window, min_count, axis=axis)
def move_argmax(a, window, min_count=None, axis=-1):
"Slow move_argmax for unaccelerated dtype"
def argmax(a, axis):
a = np.array(a, copy=False)
flip = [slice(None)] * a.ndim
flip[axis] = slice(None, None, -1)
a = a[tuple(flip)] # if tie, pick index of rightmost tie
try:
idx = np.nanargmax(a, axis=axis)
except ValueError:
# an all nan slice encountered
a = a.copy()
mask = np.isnan(a)
np.copyto(a, -np.inf, where=mask)
idx = np.argmax(a, axis=axis).astype(np.float64)
if idx.ndim == 0:
idx = np.nan
else:
mask = np.all(mask, axis=axis)
idx[mask] = np.nan
return idx
return move_func(argmax, a, window, min_count, axis=axis)
def move_median(a, window, min_count=None, axis=-1):
"Slow move_median for unaccelerated dtype"
return move_func(np.nanmedian, a, window, min_count, axis=axis)
def move_rank(a, window, min_count=None, axis=-1):
"Slow move_rank for unaccelerated dtype"
return move_func(lastrank, a, window, min_count, axis=axis)
# magic utility functions ---------------------------------------------------
def move_func(func, a, window, min_count=None, axis=-1, **kwargs):
"Generic moving window function implemented with a python loop."
a = np.array(a, copy=False)
if min_count is None:
mc = window
else:
mc = min_count
if mc > window:
msg = "min_count (%d) cannot be greater than window (%d)"
raise ValueError(msg % (mc, window))
elif mc <= 0:
raise ValueError("`min_count` must be greater than zero.")
if a.ndim == 0:
raise ValueError("moving window functions require ndim > 0")
if axis is None:
raise ValueError("An `axis` value of None is not supported.")
if window < 1:
raise ValueError("`window` must be at least 1.")
if window > a.shape[axis]:
raise ValueError("`window` is too long.")
if issubclass(a.dtype.type, np.inexact):
y = np.empty_like(a)
else:
y = np.empty(a.shape)
idx1 = [slice(None)] * a.ndim
idx2 = list(idx1)
with warnings.catch_warnings():
warnings.simplefilter("ignore")
for i in range(a.shape[axis]):
win = min(window, i + 1)
idx1[axis] = slice(i + 1 - win, i + 1)
idx2[axis] = i
y[tuple(idx2)] = func(a[tuple(idx1)], axis=axis, **kwargs)
idx = _mask(a, window, mc, axis)
y[idx] = np.nan
return y
def _mask(a, window, min_count, axis):
n = (a == a).cumsum(axis)
idx1 = [slice(None)] * a.ndim
idx2 = [slice(None)] * a.ndim
idx3 = [slice(None)] * a.ndim
idx1[axis] = slice(window, None)
idx2[axis] = slice(None, -window)
idx3[axis] = slice(None, window)
idx1 = tuple(idx1)
idx2 = tuple(idx2)
idx3 = tuple(idx3)
nidx1 = n[idx1]
nidx1 = nidx1 - n[idx2]
idx = np.empty(a.shape, dtype=np.bool_)
idx[idx1] = nidx1 < min_count
idx[idx3] = n[idx3] < min_count
return idx
# ---------------------------------------------------------------------------
def lastrank(a, axis=-1):
"""
The ranking of the last element along the axis, ignoring NaNs.
The ranking is normalized to be between -1 and 1 instead of the more
common 1 and N. The results are adjusted for ties.
Parameters
----------
a : ndarray
Input array. If `a` is not an array, a conversion is attempted.
axis : int, optional
The axis over which to rank. By default (axis=-1) the ranking
(and reducing) is performed over the last axis.
Returns
-------
d : array
In the case of, for example, a 2d array of shape (n, m) and
axis=1, the output will contain the rank (normalized to be between
-1 and 1 and adjusted for ties) of the the last element of each row.
The output in this example will have shape (n,).
Examples
--------
Create an array:
>>> y1 = larry([1, 2, 3])
What is the rank of the last element (the value 3 in this example)?
It is the largest element so the rank is 1.0:
>>> import numpy as np
>>> from la.afunc import lastrank
>>> x1 = np.array([1, 2, 3])
>>> lastrank(x1)
1.0
Now let's try an example where the last element has the smallest
value:
>>> x2 = np.array([3, 2, 1])
>>> lastrank(x2)
-1.0
Here's an example where the last element is not the minimum or maximum
value:
>>> x3 = np.array([1, 3, 4, 5, 2])
>>> lastrank(x3)
-0.5
"""
a = np.array(a, copy=False)
ndim = a.ndim
if a.size == 0:
# At least one dimension has length 0
shape = list(a.shape)
shape.pop(axis)
r = np.empty(shape, dtype=float)
r.fill(np.nan)
r = r.astype(a.dtype)
if (r.ndim == 0) and (r.size == 1):
r = np.nan
return r
indlast = [slice(None)] * ndim
indlast[axis] = slice(-1, None)
indlast = tuple(indlast)
indlast2 = [slice(None)] * ndim
indlast2[axis] = -1
indlast2 = tuple(indlast2)
n = (~np.isnan(a)).sum(axis)
a_indlast = a[indlast]
g = (a_indlast > a).sum(axis)
e = (a_indlast == a).sum(axis)
r = (g + g + e - 1.0) / 2.0
r = r / (n - 1.0)
r = 2.0 * (r - 0.5)
if ndim == 1:
if n == 1:
r = 0
if np.isnan(a[indlast2]): # elif?
r = np.nan
else:
np.putmask(r, n == 1, 0)
np.putmask(r, np.isnan(a[indlast2]), np.nan)
return r