%PDF- %PDF-
| Direktori : /lib/python3/dist-packages/sympy/simplify/tests/ |
| Current File : //lib/python3/dist-packages/sympy/simplify/tests/test_cse.py |
from functools import reduce
import itertools
from operator import add
from sympy import (
Add, Mul, Pow, Symbol, exp, sqrt, symbols, sympify, cse,
Matrix, S, cos, sin, Eq, Function, Tuple, CRootOf,
IndexedBase, Idx, Piecewise, O, signsimp
)
from sympy.core.function import count_ops
from sympy.simplify.cse_opts import sub_pre, sub_post
from sympy.functions.special.hyper import meijerg
from sympy.simplify import cse_main, cse_opts
from sympy.utilities.iterables import subsets
from sympy.testing.pytest import XFAIL, raises
from sympy.matrices import (MutableDenseMatrix, MutableSparseMatrix,
ImmutableDenseMatrix, ImmutableSparseMatrix)
from sympy.matrices.expressions import MatrixSymbol
w, x, y, z = symbols('w,x,y,z')
x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12 = symbols('x:13')
def test_numbered_symbols():
ns = cse_main.numbered_symbols(prefix='y')
assert list(itertools.islice(
ns, 0, 10)) == [Symbol('y%s' % i) for i in range(0, 10)]
ns = cse_main.numbered_symbols(prefix='y')
assert list(itertools.islice(
ns, 10, 20)) == [Symbol('y%s' % i) for i in range(10, 20)]
ns = cse_main.numbered_symbols()
assert list(itertools.islice(
ns, 0, 10)) == [Symbol('x%s' % i) for i in range(0, 10)]
# Dummy "optimization" functions for testing.
def opt1(expr):
return expr + y
def opt2(expr):
return expr*z
def test_preprocess_for_cse():
assert cse_main.preprocess_for_cse(x, [(opt1, None)]) == x + y
assert cse_main.preprocess_for_cse(x, [(None, opt1)]) == x
assert cse_main.preprocess_for_cse(x, [(None, None)]) == x
assert cse_main.preprocess_for_cse(x, [(opt1, opt2)]) == x + y
assert cse_main.preprocess_for_cse(
x, [(opt1, None), (opt2, None)]) == (x + y)*z
def test_postprocess_for_cse():
assert cse_main.postprocess_for_cse(x, [(opt1, None)]) == x
assert cse_main.postprocess_for_cse(x, [(None, opt1)]) == x + y
assert cse_main.postprocess_for_cse(x, [(None, None)]) == x
assert cse_main.postprocess_for_cse(x, [(opt1, opt2)]) == x*z
# Note the reverse order of application.
assert cse_main.postprocess_for_cse(
x, [(None, opt1), (None, opt2)]) == x*z + y
def test_cse_single():
# Simple substitution.
e = Add(Pow(x + y, 2), sqrt(x + y))
substs, reduced = cse([e])
assert substs == [(x0, x + y)]
assert reduced == [sqrt(x0) + x0**2]
subst42, (red42,) = cse([42]) # issue_15082
assert len(subst42) == 0 and red42 == 42
subst_half, (red_half,) = cse([0.5])
assert len(subst_half) == 0 and red_half == 0.5
def test_cse_single2():
# Simple substitution, test for being able to pass the expression directly
e = Add(Pow(x + y, 2), sqrt(x + y))
substs, reduced = cse(e)
assert substs == [(x0, x + y)]
assert reduced == [sqrt(x0) + x0**2]
substs, reduced = cse(Matrix([[1]]))
assert isinstance(reduced[0], Matrix)
subst42, (red42,) = cse(42) # issue 15082
assert len(subst42) == 0 and red42 == 42
subst_half, (red_half,) = cse(0.5) # issue 15082
assert len(subst_half) == 0 and red_half == 0.5
def test_cse_not_possible():
# No substitution possible.
e = Add(x, y)
substs, reduced = cse([e])
assert substs == []
assert reduced == [x + y]
# issue 6329
eq = (meijerg((1, 2), (y, 4), (5,), [], x) +
meijerg((1, 3), (y, 4), (5,), [], x))
assert cse(eq) == ([], [eq])
def test_nested_substitution():
# Substitution within a substitution.
e = Add(Pow(w*x + y, 2), sqrt(w*x + y))
substs, reduced = cse([e])
assert substs == [(x0, w*x + y)]
assert reduced == [sqrt(x0) + x0**2]
def test_subtraction_opt():
# Make sure subtraction is optimized.
e = (x - y)*(z - y) + exp((x - y)*(z - y))
substs, reduced = cse(
[e], optimizations=[(cse_opts.sub_pre, cse_opts.sub_post)])
assert substs == [(x0, (x - y)*(y - z))]
assert reduced == [-x0 + exp(-x0)]
e = -(x - y)*(z - y) + exp(-(x - y)*(z - y))
substs, reduced = cse(
[e], optimizations=[(cse_opts.sub_pre, cse_opts.sub_post)])
assert substs == [(x0, (x - y)*(y - z))]
assert reduced == [x0 + exp(x0)]
# issue 4077
n = -1 + 1/x
e = n/x/(-n)**2 - 1/n/x
assert cse(e, optimizations=[(cse_opts.sub_pre, cse_opts.sub_post)]) == \
([], [0])
def test_multiple_expressions():
e1 = (x + y)*z
e2 = (x + y)*w
substs, reduced = cse([e1, e2])
assert substs == [(x0, x + y)]
assert reduced == [x0*z, x0*w]
l = [w*x*y + z, w*y]
substs, reduced = cse(l)
rsubsts, _ = cse(reversed(l))
assert substs == rsubsts
assert reduced == [z + x*x0, x0]
l = [w*x*y, w*x*y + z, w*y]
substs, reduced = cse(l)
rsubsts, _ = cse(reversed(l))
assert substs == rsubsts
assert reduced == [x1, x1 + z, x0]
l = [(x - z)*(y - z), x - z, y - z]
substs, reduced = cse(l)
rsubsts, _ = cse(reversed(l))
assert substs == [(x0, -z), (x1, x + x0), (x2, x0 + y)]
assert rsubsts == [(x0, -z), (x1, x0 + y), (x2, x + x0)]
assert reduced == [x1*x2, x1, x2]
l = [w*y + w + x + y + z, w*x*y]
assert cse(l) == ([(x0, w*y)], [w + x + x0 + y + z, x*x0])
assert cse([x + y, x + y + z]) == ([(x0, x + y)], [x0, z + x0])
assert cse([x + y, x + z]) == ([], [x + y, x + z])
assert cse([x*y, z + x*y, x*y*z + 3]) == \
([(x0, x*y)], [x0, z + x0, 3 + x0*z])
@XFAIL # CSE of non-commutative Mul terms is disabled
def test_non_commutative_cse():
A, B, C = symbols('A B C', commutative=False)
l = [A*B*C, A*C]
assert cse(l) == ([], l)
l = [A*B*C, A*B]
assert cse(l) == ([(x0, A*B)], [x0*C, x0])
# Test if CSE of non-commutative Mul terms is disabled
def test_bypass_non_commutatives():
A, B, C = symbols('A B C', commutative=False)
l = [A*B*C, A*C]
assert cse(l) == ([], l)
l = [A*B*C, A*B]
assert cse(l) == ([], l)
l = [B*C, A*B*C]
assert cse(l) == ([], l)
@XFAIL # CSE fails when replacing non-commutative sub-expressions
def test_non_commutative_order():
A, B, C = symbols('A B C', commutative=False)
x0 = symbols('x0', commutative=False)
l = [B+C, A*(B+C)]
assert cse(l) == ([(x0, B+C)], [x0, A*x0])
@XFAIL # Worked in gh-11232, but was reverted due to performance considerations
def test_issue_10228():
assert cse([x*y**2 + x*y]) == ([(x0, x*y)], [x0*y + x0])
assert cse([x + y, 2*x + y]) == ([(x0, x + y)], [x0, x + x0])
assert cse((w + 2*x + y + z, w + x + 1)) == (
[(x0, w + x)], [x0 + x + y + z, x0 + 1])
assert cse(((w + x + y + z)*(w - x))/(w + x)) == (
[(x0, w + x)], [(x0 + y + z)*(w - x)/x0])
a, b, c, d, f, g, j, m = symbols('a, b, c, d, f, g, j, m')
exprs = (d*g**2*j*m, 4*a*f*g*m, a*b*c*f**2)
assert cse(exprs) == (
[(x0, g*m), (x1, a*f)], [d*g*j*x0, 4*x0*x1, b*c*f*x1]
)
@XFAIL
def test_powers():
assert cse(x*y**2 + x*y) == ([(x0, x*y)], [x0*y + x0])
def test_issue_4498():
assert cse(w/(x - y) + z/(y - x), optimizations='basic') == \
([], [(w - z)/(x - y)])
def test_issue_4020():
assert cse(x**5 + x**4 + x**3 + x**2, optimizations='basic') \
== ([(x0, x**2)], [x0*(x**3 + x + x0 + 1)])
def test_issue_4203():
assert cse(sin(x**x)/x**x) == ([(x0, x**x)], [sin(x0)/x0])
def test_issue_6263():
e = Eq(x*(-x + 1) + x*(x - 1), 0)
assert cse(e, optimizations='basic') == ([], [True])
def test_dont_cse_tuples():
from sympy import Subs
f = Function("f")
g = Function("g")
name_val, (expr,) = cse(
Subs(f(x, y), (x, y), (0, 1))
+ Subs(g(x, y), (x, y), (0, 1)))
assert name_val == []
assert expr == (Subs(f(x, y), (x, y), (0, 1))
+ Subs(g(x, y), (x, y), (0, 1)))
name_val, (expr,) = cse(
Subs(f(x, y), (x, y), (0, x + y))
+ Subs(g(x, y), (x, y), (0, x + y)))
assert name_val == [(x0, x + y)]
assert expr == Subs(f(x, y), (x, y), (0, x0)) + \
Subs(g(x, y), (x, y), (0, x0))
def test_pow_invpow():
assert cse(1/x**2 + x**2) == \
([(x0, x**2)], [x0 + 1/x0])
assert cse(x**2 + (1 + 1/x**2)/x**2) == \
([(x0, x**2), (x1, 1/x0)], [x0 + x1*(x1 + 1)])
assert cse(1/x**2 + (1 + 1/x**2)*x**2) == \
([(x0, x**2), (x1, 1/x0)], [x0*(x1 + 1) + x1])
assert cse(cos(1/x**2) + sin(1/x**2)) == \
([(x0, x**(-2))], [sin(x0) + cos(x0)])
assert cse(cos(x**2) + sin(x**2)) == \
([(x0, x**2)], [sin(x0) + cos(x0)])
assert cse(y/(2 + x**2) + z/x**2/y) == \
([(x0, x**2)], [y/(x0 + 2) + z/(x0*y)])
assert cse(exp(x**2) + x**2*cos(1/x**2)) == \
([(x0, x**2)], [x0*cos(1/x0) + exp(x0)])
assert cse((1 + 1/x**2)/x**2) == \
([(x0, x**(-2))], [x0*(x0 + 1)])
assert cse(x**(2*y) + x**(-2*y)) == \
([(x0, x**(2*y))], [x0 + 1/x0])
def test_postprocess():
eq = (x + 1 + exp((x + 1)/(y + 1)) + cos(y + 1))
assert cse([eq, Eq(x, z + 1), z - 2, (z + 1)*(x + 1)],
postprocess=cse_main.cse_separate) == \
[[(x0, y + 1), (x2, z + 1), (x, x2), (x1, x + 1)],
[x1 + exp(x1/x0) + cos(x0), z - 2, x1*x2]]
def test_issue_4499():
# previously, this gave 16 constants
from sympy.abc import a, b
B = Function('B')
G = Function('G')
t = Tuple(*
(a, a + S.Half, 2*a, b, 2*a - b + 1, (sqrt(z)/2)**(-2*a + 1)*B(2*a -
b, sqrt(z))*B(b - 1, sqrt(z))*G(b)*G(2*a - b + 1),
sqrt(z)*(sqrt(z)/2)**(-2*a + 1)*B(b, sqrt(z))*B(2*a - b,
sqrt(z))*G(b)*G(2*a - b + 1), sqrt(z)*(sqrt(z)/2)**(-2*a + 1)*B(b - 1,
sqrt(z))*B(2*a - b + 1, sqrt(z))*G(b)*G(2*a - b + 1),
(sqrt(z)/2)**(-2*a + 1)*B(b, sqrt(z))*B(2*a - b + 1,
sqrt(z))*G(b)*G(2*a - b + 1), 1, 0, S.Half, z/2, -b + 1, -2*a + b,
-2*a))
c = cse(t)
ans = (
[(x0, 2*a), (x1, -b), (x2, x0 + x1), (x3, x2 + 1), (x4, sqrt(z)), (x5,
B(b - 1, x4)), (x6, -x0), (x7, (x4/2)**(x6 + 1)*G(b)*G(x3)), (x8,
x7*B(x2, x4)), (x9, B(b, x4)), (x10, x7*B(x3, x4))],
[(a, a + S.Half, x0, b, x3, x5*x8, x4*x8*x9, x10*x4*x5, x10*x9,
1, 0, S.Half, z/2, x1 + 1, b + x6, x6)])
assert ans == c
def test_issue_6169():
r = CRootOf(x**6 - 4*x**5 - 2, 1)
assert cse(r) == ([], [r])
# and a check that the right thing is done with the new
# mechanism
assert sub_post(sub_pre((-x - y)*z - x - y)) == -z*(x + y) - x - y
def test_cse_Indexed():
len_y = 5
y = IndexedBase('y', shape=(len_y,))
x = IndexedBase('x', shape=(len_y,))
i = Idx('i', len_y-1)
expr1 = (y[i+1]-y[i])/(x[i+1]-x[i])
expr2 = 1/(x[i+1]-x[i])
replacements, reduced_exprs = cse([expr1, expr2])
assert len(replacements) > 0
def test_cse_MatrixSymbol():
# MatrixSymbols have non-Basic args, so make sure that works
A = MatrixSymbol("A", 3, 3)
assert cse(A) == ([], [A])
n = symbols('n', integer=True)
B = MatrixSymbol("B", n, n)
assert cse(B) == ([], [B])
def test_cse_MatrixExpr():
from sympy import MatrixSymbol
A = MatrixSymbol('A', 3, 3)
y = MatrixSymbol('y', 3, 1)
expr1 = (A.T*A).I * A * y
expr2 = (A.T*A) * A * y
replacements, reduced_exprs = cse([expr1, expr2])
assert len(replacements) > 0
replacements, reduced_exprs = cse([expr1 + expr2, expr1])
assert replacements
replacements, reduced_exprs = cse([A**2, A + A**2])
assert replacements
def test_Piecewise():
f = Piecewise((-z + x*y, Eq(y, 0)), (-z - x*y, True))
ans = cse(f)
actual_ans = ([(x0, -z), (x1, x*y)],
[Piecewise((x0 + x1, Eq(y, 0)), (x0 - x1, True))])
assert ans == actual_ans
def test_ignore_order_terms():
eq = exp(x).series(x,0,3) + sin(y+x**3) - 1
assert cse(eq) == ([], [sin(x**3 + y) + x + x**2/2 + O(x**3)])
def test_name_conflict():
z1 = x0 + y
z2 = x2 + x3
l = [cos(z1) + z1, cos(z2) + z2, x0 + x2]
substs, reduced = cse(l)
assert [e.subs(reversed(substs)) for e in reduced] == l
def test_name_conflict_cust_symbols():
z1 = x0 + y
z2 = x2 + x3
l = [cos(z1) + z1, cos(z2) + z2, x0 + x2]
substs, reduced = cse(l, symbols("x:10"))
assert [e.subs(reversed(substs)) for e in reduced] == l
def test_symbols_exhausted_error():
l = cos(x+y)+x+y+cos(w+y)+sin(w+y)
sym = [x, y, z]
with raises(ValueError):
cse(l, symbols=sym)
def test_issue_7840():
# daveknippers' example
C393 = sympify( \
'Piecewise((C391 - 1.65, C390 < 0.5), (Piecewise((C391 - 1.65, \
C391 > 2.35), (C392, True)), True))'
)
C391 = sympify( \
'Piecewise((2.05*C390**(-1.03), C390 < 0.5), (2.5*C390**(-0.625), True))'
)
C393 = C393.subs('C391',C391)
# simple substitution
sub = {}
sub['C390'] = 0.703451854
sub['C392'] = 1.01417794
ss_answer = C393.subs(sub)
# cse
substitutions,new_eqn = cse(C393)
for pair in substitutions:
sub[pair[0].name] = pair[1].subs(sub)
cse_answer = new_eqn[0].subs(sub)
# both methods should be the same
assert ss_answer == cse_answer
# GitRay's example
expr = sympify(
"Piecewise((Symbol('ON'), Equality(Symbol('mode'), Symbol('ON'))), \
(Piecewise((Piecewise((Symbol('OFF'), StrictLessThan(Symbol('x'), \
Symbol('threshold'))), (Symbol('ON'), true)), Equality(Symbol('mode'), \
Symbol('AUTO'))), (Symbol('OFF'), true)), true))"
)
substitutions, new_eqn = cse(expr)
# this Piecewise should be exactly the same
assert new_eqn[0] == expr
# there should not be any replacements
assert len(substitutions) < 1
def test_issue_8891():
for cls in (MutableDenseMatrix, MutableSparseMatrix,
ImmutableDenseMatrix, ImmutableSparseMatrix):
m = cls(2, 2, [x + y, 0, 0, 0])
res = cse([x + y, m])
ans = ([(x0, x + y)], [x0, cls([[x0, 0], [0, 0]])])
assert res == ans
assert isinstance(res[1][-1], cls)
def test_issue_11230():
# a specific test that always failed
a, b, f, k, l, i = symbols('a b f k l i')
p = [a*b*f*k*l, a*i*k**2*l, f*i*k**2*l]
R, C = cse(p)
assert not any(i.is_Mul for a in C for i in a.args)
# random tests for the issue
from random import choice
from sympy.core.function import expand_mul
s = symbols('a:m')
# 35 Mul tests, none of which should ever fail
ex = [Mul(*[choice(s) for i in range(5)]) for i in range(7)]
for p in subsets(ex, 3):
p = list(p)
R, C = cse(p)
assert not any(i.is_Mul for a in C for i in a.args)
for ri in reversed(R):
for i in range(len(C)):
C[i] = C[i].subs(*ri)
assert p == C
# 35 Add tests, none of which should ever fail
ex = [Add(*[choice(s[:7]) for i in range(5)]) for i in range(7)]
for p in subsets(ex, 3):
p = list(p)
R, C = cse(p)
assert not any(i.is_Add for a in C for i in a.args)
for ri in reversed(R):
for i in range(len(C)):
C[i] = C[i].subs(*ri)
# use expand_mul to handle cases like this:
# p = [a + 2*b + 2*e, 2*b + c + 2*e, b + 2*c + 2*g]
# x0 = 2*(b + e) is identified giving a rebuilt p that
# is now `[a + 2*(b + e), c + 2*(b + e), b + 2*c + 2*g]`
assert p == [expand_mul(i) for i in C]
@XFAIL
def test_issue_11577():
def check(eq):
r, c = cse(eq)
assert eq.count_ops() >= \
len(r) + sum([i[1].count_ops() for i in r]) + \
count_ops(c)
eq = x**5*y**2 + x**5*y + x**5
assert cse(eq) == (
[(x0, x**4), (x1, x*y)], [x**5 + x0*x1*y + x0*x1])
# ([(x0, x**5*y)], [x0*y + x0 + x**5]) or
# ([(x0, x**5)], [x0*y**2 + x0*y + x0])
check(eq)
eq = x**2/(y + 1)**2 + x/(y + 1)
assert cse(eq) == (
[(x0, y + 1)], [x**2/x0**2 + x/x0])
# ([(x0, x/(y + 1))], [x0**2 + x0])
check(eq)
def test_hollow_rejection():
eq = [x + 3, x + 4]
assert cse(eq) == ([], eq)
def test_cse_ignore():
exprs = [exp(y)*(3*y + 3*sqrt(x+1)), exp(y)*(5*y + 5*sqrt(x+1))]
subst1, red1 = cse(exprs)
assert any(y in sub.free_symbols for _, sub in subst1), "cse failed to identify any term with y"
subst2, red2 = cse(exprs, ignore=(y,)) # y is not allowed in substitutions
assert not any(y in sub.free_symbols for _, sub in subst2), "Sub-expressions containing y must be ignored"
assert any(sub - sqrt(x + 1) == 0 for _, sub in subst2), "cse failed to identify sqrt(x + 1) as sub-expression"
def test_cse_ignore_issue_15002():
l = [
w*exp(x)*exp(-z),
exp(y)*exp(x)*exp(-z)
]
substs, reduced = cse(l, ignore=(x,))
rl = [e.subs(reversed(substs)) for e in reduced]
assert rl == l
def test_cse__performance():
nexprs, nterms = 3, 20
x = symbols('x:%d' % nterms)
exprs = [
reduce(add, [x[j]*(-1)**(i+j) for j in range(nterms)])
for i in range(nexprs)
]
assert (exprs[0] + exprs[1]).simplify() == 0
subst, red = cse(exprs)
assert len(subst) > 0, "exprs[0] == -exprs[2], i.e. a CSE"
for i, e in enumerate(red):
assert (e.subs(reversed(subst)) - exprs[i]).simplify() == 0
def test_issue_12070():
exprs = [x + y, 2 + x + y, x + y + z, 3 + x + y + z]
subst, red = cse(exprs)
assert 6 >= (len(subst) + sum([v.count_ops() for k, v in subst]) +
count_ops(red))
def test_issue_13000():
eq = x/(-4*x**2 + y**2)
cse_eq = cse(eq)[1][0]
assert cse_eq == eq
def test_issue_18203():
eq = CRootOf(x**5 + 11*x - 2, 0) + CRootOf(x**5 + 11*x - 2, 1)
assert cse(eq) == ([], [eq])
def test_unevaluated_mul():
eq = Mul(x + y, x + y, evaluate=False)
assert cse(eq) == ([(x0, x + y)], [x0**2])
def test_cse_release_variables():
from sympy.simplify.cse_main import cse_release_variables
_0, _1, _2, _3, _4 = symbols('_:5')
eqs = [(x + y - 1)**2, x,
x + y, (x + y)/(2*x + 1) + (x + y - 1)**2,
(2*x + 1)**(x + y)]
r, e = cse(eqs, postprocess=cse_release_variables)
# this can change in keeping with the intention of the function
assert r, e == ([
(x0, x + y), (x1, (x0 - 1)**2), (x2, 2*x + 1),
(_3, x0/x2 + x1), (_4, x2**x0), (x2, None), (_0, x1),
(x1, None), (_2, x0), (x0, None), (_1, x)], (_0, _1, _2, _3, _4))
r.reverse()
assert eqs == [i.subs(r) for i in e]
def test_cse_list():
_cse = lambda x: cse(x, list=False)
assert _cse(x) == ([], x)
assert _cse('x') == ([], 'x')
it = [x]
for c in (list, tuple, set, Tuple):
assert _cse(c(it)) == ([], c(it))
d = {x: 1}
assert _cse(d) == ([], d)
def test_issue_18991():
A = MatrixSymbol('A', 2, 2)
assert signsimp(-A * A - A) == -A * A - A
def test_unevaluated_Mul():
m = [Mul(1, 2, evaluate=False)]
assert cse(m) == ([], m)