%PDF- %PDF-
| Direktori : /lib/python3/dist-packages/sympy/functions/combinatorial/tests/ |
| Current File : //lib/python3/dist-packages/sympy/functions/combinatorial/tests/test_comb_numbers.py |
import string
from sympy import (
Symbol, symbols, Dummy, S, Sum, Rational, oo, pi, I, floor, limit,
expand_func, diff, EulerGamma, cancel, re, im, Product, carmichael,
TribonacciConstant)
from sympy.functions import (
bernoulli, harmonic, bell, fibonacci, tribonacci, lucas, euler, catalan,
genocchi, partition, motzkin, binomial, gamma, sqrt, cbrt, hyper, log, digamma,
trigamma, polygamma, factorial, sin, cos, cot, zeta)
from sympy.functions.combinatorial.numbers import _nT
from sympy.core.expr import unchanged
from sympy.core.numbers import GoldenRatio, Integer
from sympy.testing.pytest import XFAIL, raises, nocache_fail
x = Symbol('x')
def test_carmichael():
assert carmichael.find_carmichael_numbers_in_range(0, 561) == []
assert carmichael.find_carmichael_numbers_in_range(561, 562) == [561]
assert carmichael.find_carmichael_numbers_in_range(561, 1105) == carmichael.find_carmichael_numbers_in_range(561,
562)
assert carmichael.find_first_n_carmichaels(5) == [561, 1105, 1729, 2465, 2821]
assert carmichael.is_prime(2821) == False
assert carmichael.is_prime(2465) == False
assert carmichael.is_prime(1729) == False
assert carmichael.is_prime(1105) == False
assert carmichael.is_prime(561) == False
raises(ValueError, lambda: carmichael.is_carmichael(-2))
raises(ValueError, lambda: carmichael.find_carmichael_numbers_in_range(-2, 2))
raises(ValueError, lambda: carmichael.find_carmichael_numbers_in_range(22, 2))
def test_bernoulli():
assert bernoulli(0) == 1
assert bernoulli(1) == Rational(-1, 2)
assert bernoulli(2) == Rational(1, 6)
assert bernoulli(3) == 0
assert bernoulli(4) == Rational(-1, 30)
assert bernoulli(5) == 0
assert bernoulli(6) == Rational(1, 42)
assert bernoulli(7) == 0
assert bernoulli(8) == Rational(-1, 30)
assert bernoulli(10) == Rational(5, 66)
assert bernoulli(1000001) == 0
assert bernoulli(0, x) == 1
assert bernoulli(1, x) == x - S.Half
assert bernoulli(2, x) == x**2 - x + Rational(1, 6)
assert bernoulli(3, x) == x**3 - (3*x**2)/2 + x/2
# Should be fast; computed with mpmath
b = bernoulli(1000)
assert b.p % 10**10 == 7950421099
assert b.q == 342999030
b = bernoulli(10**6, evaluate=False).evalf()
assert str(b) == '-2.23799235765713e+4767529'
# Issue #8527
l = Symbol('l', integer=True)
m = Symbol('m', integer=True, nonnegative=True)
n = Symbol('n', integer=True, positive=True)
assert isinstance(bernoulli(2 * l + 1), bernoulli)
assert isinstance(bernoulli(2 * m + 1), bernoulli)
assert bernoulli(2 * n + 1) == 0
raises(ValueError, lambda: bernoulli(-2))
def test_fibonacci():
assert [fibonacci(n) for n in range(-3, 5)] == [2, -1, 1, 0, 1, 1, 2, 3]
assert fibonacci(100) == 354224848179261915075
assert [lucas(n) for n in range(-3, 5)] == [-4, 3, -1, 2, 1, 3, 4, 7]
assert lucas(100) == 792070839848372253127
assert fibonacci(1, x) == 1
assert fibonacci(2, x) == x
assert fibonacci(3, x) == x**2 + 1
assert fibonacci(4, x) == x**3 + 2*x
# issue #8800
n = Dummy('n')
assert fibonacci(n).limit(n, S.Infinity) is S.Infinity
assert lucas(n).limit(n, S.Infinity) is S.Infinity
assert fibonacci(n).rewrite(sqrt) == \
2**(-n)*sqrt(5)*((1 + sqrt(5))**n - (-sqrt(5) + 1)**n) / 5
assert fibonacci(n).rewrite(sqrt).subs(n, 10).expand() == fibonacci(10)
assert fibonacci(n).rewrite(GoldenRatio).subs(n,10).evalf() == \
fibonacci(10)
assert lucas(n).rewrite(sqrt) == \
(fibonacci(n-1).rewrite(sqrt) + fibonacci(n+1).rewrite(sqrt)).simplify()
assert lucas(n).rewrite(sqrt).subs(n, 10).expand() == lucas(10)
raises(ValueError, lambda: fibonacci(-3, x))
def test_tribonacci():
assert [tribonacci(n) for n in range(8)] == [0, 1, 1, 2, 4, 7, 13, 24]
assert tribonacci(100) == 98079530178586034536500564
assert tribonacci(0, x) == 0
assert tribonacci(1, x) == 1
assert tribonacci(2, x) == x**2
assert tribonacci(3, x) == x**4 + x
assert tribonacci(4, x) == x**6 + 2*x**3 + 1
assert tribonacci(5, x) == x**8 + 3*x**5 + 3*x**2
n = Dummy('n')
assert tribonacci(n).limit(n, S.Infinity) is S.Infinity
w = (-1 + S.ImaginaryUnit * sqrt(3)) / 2
a = (1 + cbrt(19 + 3*sqrt(33)) + cbrt(19 - 3*sqrt(33))) / 3
b = (1 + w*cbrt(19 + 3*sqrt(33)) + w**2*cbrt(19 - 3*sqrt(33))) / 3
c = (1 + w**2*cbrt(19 + 3*sqrt(33)) + w*cbrt(19 - 3*sqrt(33))) / 3
assert tribonacci(n).rewrite(sqrt) == \
(a**(n + 1)/((a - b)*(a - c))
+ b**(n + 1)/((b - a)*(b - c))
+ c**(n + 1)/((c - a)*(c - b)))
assert tribonacci(n).rewrite(sqrt).subs(n, 4).simplify() == tribonacci(4)
assert tribonacci(n).rewrite(GoldenRatio).subs(n,10).evalf() == \
tribonacci(10)
assert tribonacci(n).rewrite(TribonacciConstant) == floor(
3*TribonacciConstant**n*(102*sqrt(33) + 586)**Rational(1, 3)/
(-2*(102*sqrt(33) + 586)**Rational(1, 3) + 4 + (102*sqrt(33)
+ 586)**Rational(2, 3)) + S.Half)
raises(ValueError, lambda: tribonacci(-1, x))
@nocache_fail
def test_bell():
assert [bell(n) for n in range(8)] == [1, 1, 2, 5, 15, 52, 203, 877]
assert bell(0, x) == 1
assert bell(1, x) == x
assert bell(2, x) == x**2 + x
assert bell(5, x) == x**5 + 10*x**4 + 25*x**3 + 15*x**2 + x
assert bell(oo) is S.Infinity
raises(ValueError, lambda: bell(oo, x))
raises(ValueError, lambda: bell(-1))
raises(ValueError, lambda: bell(S.Half))
X = symbols('x:6')
# X = (x0, x1, .. x5)
# at the same time: X[1] = x1, X[2] = x2 for standard readablity.
# but we must supply zero-based indexed object X[1:] = (x1, .. x5)
assert bell(6, 2, X[1:]) == 6*X[5]*X[1] + 15*X[4]*X[2] + 10*X[3]**2
assert bell(
6, 3, X[1:]) == 15*X[4]*X[1]**2 + 60*X[3]*X[2]*X[1] + 15*X[2]**3
X = (1, 10, 100, 1000, 10000)
assert bell(6, 2, X) == (6 + 15 + 10)*10000
X = (1, 2, 3, 3, 5)
assert bell(6, 2, X) == 6*5 + 15*3*2 + 10*3**2
X = (1, 2, 3, 5)
assert bell(6, 3, X) == 15*5 + 60*3*2 + 15*2**3
# Dobinski's formula
n = Symbol('n', integer=True, nonnegative=True)
# For large numbers, this is too slow
# For nonintegers, there are significant precision errors
for i in [0, 2, 3, 7, 13, 42, 55]:
# Running without the cache this is either very slow or goes into an
# infinite loop.
assert bell(i).evalf() == bell(n).rewrite(Sum).evalf(subs={n: i})
m = Symbol("m")
assert bell(m).rewrite(Sum) == bell(m)
assert bell(n, m).rewrite(Sum) == bell(n, m)
# issue 9184
n = Dummy('n')
assert bell(n).limit(n, S.Infinity) is S.Infinity
def test_harmonic():
n = Symbol("n")
m = Symbol("m")
assert harmonic(n, 0) == n
assert harmonic(n).evalf() == harmonic(n)
assert harmonic(n, 1) == harmonic(n)
assert harmonic(1, n).evalf() == harmonic(1, n)
assert harmonic(0, 1) == 0
assert harmonic(1, 1) == 1
assert harmonic(2, 1) == Rational(3, 2)
assert harmonic(3, 1) == Rational(11, 6)
assert harmonic(4, 1) == Rational(25, 12)
assert harmonic(0, 2) == 0
assert harmonic(1, 2) == 1
assert harmonic(2, 2) == Rational(5, 4)
assert harmonic(3, 2) == Rational(49, 36)
assert harmonic(4, 2) == Rational(205, 144)
assert harmonic(0, 3) == 0
assert harmonic(1, 3) == 1
assert harmonic(2, 3) == Rational(9, 8)
assert harmonic(3, 3) == Rational(251, 216)
assert harmonic(4, 3) == Rational(2035, 1728)
assert harmonic(oo, -1) is S.NaN
assert harmonic(oo, 0) is oo
assert harmonic(oo, S.Half) is oo
assert harmonic(oo, 1) is oo
assert harmonic(oo, 2) == (pi**2)/6
assert harmonic(oo, 3) == zeta(3)
assert harmonic(0, m) == 0
def test_harmonic_rational():
ne = S(6)
no = S(5)
pe = S(8)
po = S(9)
qe = S(10)
qo = S(13)
Heee = harmonic(ne + pe/qe)
Aeee = (-log(10) + 2*(Rational(-1, 4) + sqrt(5)/4)*log(sqrt(-sqrt(5)/8 + Rational(5, 8)))
+ 2*(-sqrt(5)/4 - Rational(1, 4))*log(sqrt(sqrt(5)/8 + Rational(5, 8)))
+ pi*sqrt(2*sqrt(5)/5 + 1)/2 + Rational(13944145, 4720968))
Heeo = harmonic(ne + pe/qo)
Aeeo = (-log(26) + 2*log(sin(pi*Rational(3, 13)))*cos(pi*Rational(4, 13)) + 2*log(sin(pi*Rational(2, 13)))*cos(pi*Rational(32, 13))
+ 2*log(sin(pi*Rational(5, 13)))*cos(pi*Rational(80, 13)) - 2*log(sin(pi*Rational(6, 13)))*cos(pi*Rational(5, 13))
- 2*log(sin(pi*Rational(4, 13)))*cos(pi/13) + pi*cot(pi*Rational(5, 13))/2 - 2*log(sin(pi/13))*cos(pi*Rational(3, 13))
+ Rational(2422020029, 702257080))
Heoe = harmonic(ne + po/qe)
Aeoe = (-log(20) + 2*(Rational(1, 4) + sqrt(5)/4)*log(Rational(-1, 4) + sqrt(5)/4)
+ 2*(Rational(-1, 4) + sqrt(5)/4)*log(sqrt(-sqrt(5)/8 + Rational(5, 8)))
+ 2*(-sqrt(5)/4 - Rational(1, 4))*log(sqrt(sqrt(5)/8 + Rational(5, 8)))
+ 2*(-sqrt(5)/4 + Rational(1, 4))*log(Rational(1, 4) + sqrt(5)/4)
+ Rational(11818877030, 4286604231) + pi*sqrt(2*sqrt(5) + 5)/2)
Heoo = harmonic(ne + po/qo)
Aeoo = (-log(26) + 2*log(sin(pi*Rational(3, 13)))*cos(pi*Rational(54, 13)) + 2*log(sin(pi*Rational(4, 13)))*cos(pi*Rational(6, 13))
+ 2*log(sin(pi*Rational(6, 13)))*cos(pi*Rational(108, 13)) - 2*log(sin(pi*Rational(5, 13)))*cos(pi/13)
- 2*log(sin(pi/13))*cos(pi*Rational(5, 13)) + pi*cot(pi*Rational(4, 13))/2
- 2*log(sin(pi*Rational(2, 13)))*cos(pi*Rational(3, 13)) + Rational(11669332571, 3628714320))
Hoee = harmonic(no + pe/qe)
Aoee = (-log(10) + 2*(Rational(-1, 4) + sqrt(5)/4)*log(sqrt(-sqrt(5)/8 + Rational(5, 8)))
+ 2*(-sqrt(5)/4 - Rational(1, 4))*log(sqrt(sqrt(5)/8 + Rational(5, 8)))
+ pi*sqrt(2*sqrt(5)/5 + 1)/2 + Rational(779405, 277704))
Hoeo = harmonic(no + pe/qo)
Aoeo = (-log(26) + 2*log(sin(pi*Rational(3, 13)))*cos(pi*Rational(4, 13)) + 2*log(sin(pi*Rational(2, 13)))*cos(pi*Rational(32, 13))
+ 2*log(sin(pi*Rational(5, 13)))*cos(pi*Rational(80, 13)) - 2*log(sin(pi*Rational(6, 13)))*cos(pi*Rational(5, 13))
- 2*log(sin(pi*Rational(4, 13)))*cos(pi/13) + pi*cot(pi*Rational(5, 13))/2
- 2*log(sin(pi/13))*cos(pi*Rational(3, 13)) + Rational(53857323, 16331560))
Hooe = harmonic(no + po/qe)
Aooe = (-log(20) + 2*(Rational(1, 4) + sqrt(5)/4)*log(Rational(-1, 4) + sqrt(5)/4)
+ 2*(Rational(-1, 4) + sqrt(5)/4)*log(sqrt(-sqrt(5)/8 + Rational(5, 8)))
+ 2*(-sqrt(5)/4 - Rational(1, 4))*log(sqrt(sqrt(5)/8 + Rational(5, 8)))
+ 2*(-sqrt(5)/4 + Rational(1, 4))*log(Rational(1, 4) + sqrt(5)/4)
+ Rational(486853480, 186374097) + pi*sqrt(2*sqrt(5) + 5)/2)
Hooo = harmonic(no + po/qo)
Aooo = (-log(26) + 2*log(sin(pi*Rational(3, 13)))*cos(pi*Rational(54, 13)) + 2*log(sin(pi*Rational(4, 13)))*cos(pi*Rational(6, 13))
+ 2*log(sin(pi*Rational(6, 13)))*cos(pi*Rational(108, 13)) - 2*log(sin(pi*Rational(5, 13)))*cos(pi/13)
- 2*log(sin(pi/13))*cos(pi*Rational(5, 13)) + pi*cot(pi*Rational(4, 13))/2
- 2*log(sin(pi*Rational(2, 13)))*cos(3*pi/13) + Rational(383693479, 125128080))
H = [Heee, Heeo, Heoe, Heoo, Hoee, Hoeo, Hooe, Hooo]
A = [Aeee, Aeeo, Aeoe, Aeoo, Aoee, Aoeo, Aooe, Aooo]
for h, a in zip(H, A):
e = expand_func(h).doit()
assert cancel(e/a) == 1
assert abs(h.n() - a.n()) < 1e-12
def test_harmonic_evalf():
assert str(harmonic(1.5).evalf(n=10)) == '1.280372306'
assert str(harmonic(1.5, 2).evalf(n=10)) == '1.154576311' # issue 7443
def test_harmonic_rewrite():
n = Symbol("n")
m = Symbol("m")
assert harmonic(n).rewrite(digamma) == polygamma(0, n + 1) + EulerGamma
assert harmonic(n).rewrite(trigamma) == polygamma(0, n + 1) + EulerGamma
assert harmonic(n).rewrite(polygamma) == polygamma(0, n + 1) + EulerGamma
assert harmonic(n,3).rewrite(polygamma) == polygamma(2, n + 1)/2 - polygamma(2, 1)/2
assert harmonic(n,m).rewrite(polygamma) == (-1)**m*(polygamma(m - 1, 1) - polygamma(m - 1, n + 1))/factorial(m - 1)
assert expand_func(harmonic(n+4)) == harmonic(n) + 1/(n + 4) + 1/(n + 3) + 1/(n + 2) + 1/(n + 1)
assert expand_func(harmonic(n-4)) == harmonic(n) - 1/(n - 1) - 1/(n - 2) - 1/(n - 3) - 1/n
assert harmonic(n, m).rewrite("tractable") == harmonic(n, m).rewrite(polygamma)
_k = Dummy("k")
assert harmonic(n).rewrite(Sum).dummy_eq(Sum(1/_k, (_k, 1, n)))
assert harmonic(n, m).rewrite(Sum).dummy_eq(Sum(_k**(-m), (_k, 1, n)))
@XFAIL
def test_harmonic_limit_fail():
n = Symbol("n")
m = Symbol("m")
# For m > 1:
assert limit(harmonic(n, m), n, oo) == zeta(m)
def test_euler():
assert euler(0) == 1
assert euler(1) == 0
assert euler(2) == -1
assert euler(3) == 0
assert euler(4) == 5
assert euler(6) == -61
assert euler(8) == 1385
assert euler(20, evaluate=False) != 370371188237525
n = Symbol('n', integer=True)
assert euler(n) != -1
assert euler(n).subs(n, 2) == -1
raises(ValueError, lambda: euler(-2))
raises(ValueError, lambda: euler(-3))
raises(ValueError, lambda: euler(2.3))
assert euler(20).evalf() == 370371188237525.0
assert euler(20, evaluate=False).evalf() == 370371188237525.0
assert euler(n).rewrite(Sum) == euler(n)
n = Symbol('n', integer=True, nonnegative=True)
assert euler(2*n + 1).rewrite(Sum) == 0
_j = Dummy('j')
_k = Dummy('k')
assert euler(2*n).rewrite(Sum).dummy_eq(
I*Sum((-1)**_j*2**(-_k)*I**(-_k)*(-2*_j + _k)**(2*n + 1)*
binomial(_k, _j)/_k, (_j, 0, _k), (_k, 1, 2*n + 1)))
def test_euler_odd():
n = Symbol('n', odd=True, positive=True)
assert euler(n) == 0
n = Symbol('n', odd=True)
assert euler(n) != 0
def test_euler_polynomials():
assert euler(0, x) == 1
assert euler(1, x) == x - S.Half
assert euler(2, x) == x**2 - x
assert euler(3, x) == x**3 - (3*x**2)/2 + Rational(1, 4)
m = Symbol('m')
assert isinstance(euler(m, x), euler)
from sympy import Float
A = Float('-0.46237208575048694923364757452876131e8') # from Maple
B = euler(19, S.Pi.evalf(32))
assert abs((A - B)/A) < 1e-31 # expect low relative error
C = euler(19, S.Pi, evaluate=False).evalf(32)
assert abs((A - C)/A) < 1e-31
def test_euler_polynomial_rewrite():
m = Symbol('m')
A = euler(m, x).rewrite('Sum');
assert A.subs({m:3, x:5}).doit() == euler(3, 5)
def test_catalan():
n = Symbol('n', integer=True)
m = Symbol('m', integer=True, positive=True)
k = Symbol('k', integer=True, nonnegative=True)
p = Symbol('p', nonnegative=True)
catalans = [1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786]
for i, c in enumerate(catalans):
assert catalan(i) == c
assert catalan(n).rewrite(factorial).subs(n, i) == c
assert catalan(n).rewrite(Product).subs(n, i).doit() == c
assert unchanged(catalan, x)
assert catalan(2*x).rewrite(binomial) == binomial(4*x, 2*x)/(2*x + 1)
assert catalan(S.Half).rewrite(gamma) == 8/(3*pi)
assert catalan(S.Half).rewrite(factorial).rewrite(gamma) ==\
8 / (3 * pi)
assert catalan(3*x).rewrite(gamma) == 4**(
3*x)*gamma(3*x + S.Half)/(sqrt(pi)*gamma(3*x + 2))
assert catalan(x).rewrite(hyper) == hyper((-x + 1, -x), (2,), 1)
assert catalan(n).rewrite(factorial) == factorial(2*n) / (factorial(n + 1)
* factorial(n))
assert isinstance(catalan(n).rewrite(Product), catalan)
assert isinstance(catalan(m).rewrite(Product), Product)
assert diff(catalan(x), x) == (polygamma(
0, x + S.Half) - polygamma(0, x + 2) + log(4))*catalan(x)
assert catalan(x).evalf() == catalan(x)
c = catalan(S.Half).evalf()
assert str(c) == '0.848826363156775'
c = catalan(I).evalf(3)
assert str((re(c), im(c))) == '(0.398, -0.0209)'
# Assumptions
assert catalan(p).is_positive is True
assert catalan(k).is_integer is True
assert catalan(m+3).is_composite is True
def test_genocchi():
genocchis = [1, -1, 0, 1, 0, -3, 0, 17]
for n, g in enumerate(genocchis):
assert genocchi(n + 1) == g
m = Symbol('m', integer=True)
n = Symbol('n', integer=True, positive=True)
assert unchanged(genocchi, m)
assert genocchi(2*n + 1) == 0
assert genocchi(n).rewrite(bernoulli) == (1 - 2 ** n) * bernoulli(n) * 2
assert genocchi(2 * n).is_odd
assert genocchi(2 * n).is_even is False
assert genocchi(2 * n + 1).is_even
assert genocchi(n).is_integer
assert genocchi(4 * n).is_positive
# these are the only 2 prime Genocchi numbers
assert genocchi(6, evaluate=False).is_prime == S(-3).is_prime
assert genocchi(8, evaluate=False).is_prime
assert genocchi(4 * n + 2).is_negative
assert genocchi(4 * n + 1).is_negative is False
assert genocchi(4 * n - 2).is_negative
raises(ValueError, lambda: genocchi(Rational(5, 4)))
raises(ValueError, lambda: genocchi(-2))
@nocache_fail
def test_partition():
partition_nums = [1, 1, 2, 3, 5, 7, 11, 15, 22]
for n, p in enumerate(partition_nums):
assert partition(n) == p
x = Symbol('x')
y = Symbol('y', real=True)
m = Symbol('m', integer=True)
n = Symbol('n', integer=True, negative=True)
p = Symbol('p', integer=True, nonnegative=True)
assert partition(m).is_integer
assert not partition(m).is_negative
assert partition(m).is_nonnegative
assert partition(n).is_zero
assert partition(p).is_positive
assert partition(x).subs(x, 7) == 15
assert partition(y).subs(y, 8) == 22
raises(ValueError, lambda: partition(Rational(5, 4)))
def test__nT():
assert [_nT(i, j) for i in range(5) for j in range(i + 2)] == [
1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 2, 1, 1, 0]
check = [_nT(10, i) for i in range(11)]
assert check == [0, 1, 5, 8, 9, 7, 5, 3, 2, 1, 1]
assert all(type(i) is int for i in check)
assert _nT(10, 5) == 7
assert _nT(100, 98) == 2
assert _nT(100, 100) == 1
assert _nT(10, 3) == 8
def test_nC_nP_nT():
from sympy.utilities.iterables import (
multiset_permutations, multiset_combinations, multiset_partitions,
partitions, subsets, permutations)
from sympy.functions.combinatorial.numbers import (
nP, nC, nT, stirling, _stirling1, _stirling2, _multiset_histogram, _AOP_product)
from sympy.combinatorics.permutations import Permutation
from sympy.core.numbers import oo
from random import choice
c = string.ascii_lowercase
for i in range(100):
s = ''.join(choice(c) for i in range(7))
u = len(s) == len(set(s))
try:
tot = 0
for i in range(8):
check = nP(s, i)
tot += check
assert len(list(multiset_permutations(s, i))) == check
if u:
assert nP(len(s), i) == check
assert nP(s) == tot
except AssertionError:
print(s, i, 'failed perm test')
raise ValueError()
for i in range(100):
s = ''.join(choice(c) for i in range(7))
u = len(s) == len(set(s))
try:
tot = 0
for i in range(8):
check = nC(s, i)
tot += check
assert len(list(multiset_combinations(s, i))) == check
if u:
assert nC(len(s), i) == check
assert nC(s) == tot
if u:
assert nC(len(s)) == tot
except AssertionError:
print(s, i, 'failed combo test')
raise ValueError()
for i in range(1, 10):
tot = 0
for j in range(1, i + 2):
check = nT(i, j)
assert check.is_Integer
tot += check
assert sum(1 for p in partitions(i, j, size=True) if p[0] == j) == check
assert nT(i) == tot
for i in range(1, 10):
tot = 0
for j in range(1, i + 2):
check = nT(range(i), j)
tot += check
assert len(list(multiset_partitions(list(range(i)), j))) == check
assert nT(range(i)) == tot
for i in range(100):
s = ''.join(choice(c) for i in range(7))
u = len(s) == len(set(s))
try:
tot = 0
for i in range(1, 8):
check = nT(s, i)
tot += check
assert len(list(multiset_partitions(s, i))) == check
if u:
assert nT(range(len(s)), i) == check
if u:
assert nT(range(len(s))) == tot
assert nT(s) == tot
except AssertionError:
print(s, i, 'failed partition test')
raise ValueError()
# tests for Stirling numbers of the first kind that are not tested in the
# above
assert [stirling(9, i, kind=1) for i in range(11)] == [
0, 40320, 109584, 118124, 67284, 22449, 4536, 546, 36, 1, 0]
perms = list(permutations(range(4)))
assert [sum(1 for p in perms if Permutation(p).cycles == i)
for i in range(5)] == [0, 6, 11, 6, 1] == [
stirling(4, i, kind=1) for i in range(5)]
# http://oeis.org/A008275
assert [stirling(n, k, signed=1)
for n in range(10) for k in range(1, n + 1)] == [
1, -1,
1, 2, -3,
1, -6, 11, -6,
1, 24, -50, 35, -10,
1, -120, 274, -225, 85, -15,
1, 720, -1764, 1624, -735, 175, -21,
1, -5040, 13068, -13132, 6769, -1960, 322, -28,
1, 40320, -109584, 118124, -67284, 22449, -4536, 546, -36, 1]
# https://en.wikipedia.org/wiki/Stirling_numbers_of_the_first_kind
assert [stirling(n, k, kind=1)
for n in range(10) for k in range(n+1)] == [
1,
0, 1,
0, 1, 1,
0, 2, 3, 1,
0, 6, 11, 6, 1,
0, 24, 50, 35, 10, 1,
0, 120, 274, 225, 85, 15, 1,
0, 720, 1764, 1624, 735, 175, 21, 1,
0, 5040, 13068, 13132, 6769, 1960, 322, 28, 1,
0, 40320, 109584, 118124, 67284, 22449, 4536, 546, 36, 1]
# https://en.wikipedia.org/wiki/Stirling_numbers_of_the_second_kind
assert [stirling(n, k, kind=2)
for n in range(10) for k in range(n+1)] == [
1,
0, 1,
0, 1, 1,
0, 1, 3, 1,
0, 1, 7, 6, 1,
0, 1, 15, 25, 10, 1,
0, 1, 31, 90, 65, 15, 1,
0, 1, 63, 301, 350, 140, 21, 1,
0, 1, 127, 966, 1701, 1050, 266, 28, 1,
0, 1, 255, 3025, 7770, 6951, 2646, 462, 36, 1]
assert stirling(3, 4, kind=1) == stirling(3, 4, kind=1) == 0
raises(ValueError, lambda: stirling(-2, 2))
# Assertion that the return type is SymPy Integer.
assert isinstance(_stirling1(6, 3), Integer)
assert isinstance(_stirling2(6, 3), Integer)
def delta(p):
if len(p) == 1:
return oo
return min(abs(i[0] - i[1]) for i in subsets(p, 2))
parts = multiset_partitions(range(5), 3)
d = 2
assert (sum(1 for p in parts if all(delta(i) >= d for i in p)) ==
stirling(5, 3, d=d) == 7)
# other coverage tests
assert nC('abb', 2) == nC('aab', 2) == 2
assert nP(3, 3, replacement=True) == nP('aabc', 3, replacement=True) == 27
assert nP(3, 4) == 0
assert nP('aabc', 5) == 0
assert nC(4, 2, replacement=True) == nC('abcdd', 2, replacement=True) == \
len(list(multiset_combinations('aabbccdd', 2))) == 10
assert nC('abcdd') == sum(nC('abcdd', i) for i in range(6)) == 24
assert nC(list('abcdd'), 4) == 4
assert nT('aaaa') == nT(4) == len(list(partitions(4))) == 5
assert nT('aaab') == len(list(multiset_partitions('aaab'))) == 7
assert nC('aabb'*3, 3) == 4 # aaa, bbb, abb, baa
assert dict(_AOP_product((4,1,1,1))) == {
0: 1, 1: 4, 2: 7, 3: 8, 4: 8, 5: 7, 6: 4, 7: 1}
# the following was the first t that showed a problem in a previous form of
# the function, so it's not as random as it may appear
t = (3, 9, 4, 6, 6, 5, 5, 2, 10, 4)
assert sum(_AOP_product(t)[i] for i in range(55)) == 58212000
raises(ValueError, lambda: _multiset_histogram({1:'a'}))
def test_PR_14617():
from sympy.functions.combinatorial.numbers import nT
for n in (0, []):
for k in (-1, 0, 1):
if k == 0:
assert nT(n, k) == 1
else:
assert nT(n, k) == 0
def test_issue_8496():
n = Symbol("n")
k = Symbol("k")
raises(TypeError, lambda: catalan(n, k))
def test_issue_8601():
n = Symbol('n', integer=True, negative=True)
assert catalan(n - 1) is S.Zero
assert catalan(Rational(-1, 2)) is S.ComplexInfinity
assert catalan(-S.One) == Rational(-1, 2)
c1 = catalan(-5.6).evalf()
assert str(c1) == '6.93334070531408e-5'
c2 = catalan(-35.4).evalf()
assert str(c2) == '-4.14189164517449e-24'
def test_motzkin():
assert motzkin.is_motzkin(4) == True
assert motzkin.is_motzkin(9) == True
assert motzkin.is_motzkin(10) == False
assert motzkin.find_motzkin_numbers_in_range(10,200) == [21, 51, 127]
assert motzkin.find_motzkin_numbers_in_range(10,400) == [21, 51, 127, 323]
assert motzkin.find_motzkin_numbers_in_range(10,1600) == [21, 51, 127, 323, 835]
assert motzkin.find_first_n_motzkins(5) == [1, 1, 2, 4, 9]
assert motzkin.find_first_n_motzkins(7) == [1, 1, 2, 4, 9, 21, 51]
assert motzkin.find_first_n_motzkins(10) == [1, 1, 2, 4, 9, 21, 51, 127, 323, 835]
raises(ValueError, lambda: motzkin.eval(77.58))
raises(ValueError, lambda: motzkin.eval(-8))
raises(ValueError, lambda: motzkin.find_motzkin_numbers_in_range(-2,7))
raises(ValueError, lambda: motzkin.find_motzkin_numbers_in_range(13,7))
raises(ValueError, lambda: motzkin.find_first_n_motzkins(112.8))