%PDF- %PDF-
| Direktori : /data/old/usr/include/hwloc/ |
| Current File : //data/old/usr/include/hwloc/helper.h |
/*
* Copyright © 2009 CNRS
* Copyright © 2009-2016 Inria. All rights reserved.
* Copyright © 2009-2012 Université Bordeaux
* Copyright © 2009-2010 Cisco Systems, Inc. All rights reserved.
* See COPYING in top-level directory.
*/
/** \file
* \brief High-level hwloc traversal helpers.
*/
#ifndef HWLOC_HELPER_H
#define HWLOC_HELPER_H
#ifndef HWLOC_H
#error Please include the main hwloc.h instead
#endif
#include <stdlib.h>
#include <errno.h>
#ifdef __cplusplus
extern "C" {
#endif
/** \defgroup hwlocality_helper_find_inside Finding Objects inside a CPU set
* @{
*/
/** \brief Get the first largest object included in the given cpuset \p set.
*
* \return the first object that is included in \p set and whose parent is not.
*
* This is convenient for iterating over all largest objects within a CPU set
* by doing a loop getting the first largest object and clearing its CPU set
* from the remaining CPU set.
*
* \note This function cannot work if the root object does not have a CPU set,
* e.g. if the topology is made of different machines.
*/
static __hwloc_inline hwloc_obj_t
hwloc_get_first_largest_obj_inside_cpuset(hwloc_topology_t topology, hwloc_const_cpuset_t set)
{
hwloc_obj_t obj = hwloc_get_root_obj(topology);
if (!obj->cpuset || !hwloc_bitmap_intersects(obj->cpuset, set))
return NULL;
while (!hwloc_bitmap_isincluded(obj->cpuset, set)) {
/* while the object intersects without being included, look at its children */
hwloc_obj_t child = obj->first_child;
while (child) {
if (child->cpuset && hwloc_bitmap_intersects(child->cpuset, set))
break;
child = child->next_sibling;
}
if (!child)
/* no child intersects, return their father */
return obj;
/* found one intersecting child, look at its children */
obj = child;
}
/* obj is included, return it */
return obj;
}
/** \brief Get the set of largest objects covering exactly a given cpuset \p set
*
* \return the number of objects returned in \p objs.
*
* \note This function cannot work if the root object does not have a CPU set,
* e.g. if the topology is made of different machines.
*/
HWLOC_DECLSPEC int hwloc_get_largest_objs_inside_cpuset (hwloc_topology_t topology, hwloc_const_cpuset_t set,
hwloc_obj_t * __hwloc_restrict objs, int max);
/** \brief Return the next object at depth \p depth included in CPU set \p set.
*
* If \p prev is \c NULL, return the first object at depth \p depth
* included in \p set. The next invokation should pass the previous
* return value in \p prev so as to obtain the next object in \p set.
*
* \note Objects with empty CPU sets are ignored
* (otherwise they would be considered included in any given set).
*
* \note This function cannot work if objects at the given depth do
* not have CPU sets or if the topology is made of different machines.
*/
static __hwloc_inline hwloc_obj_t
hwloc_get_next_obj_inside_cpuset_by_depth (hwloc_topology_t topology, hwloc_const_cpuset_t set,
unsigned depth, hwloc_obj_t prev)
{
hwloc_obj_t next = hwloc_get_next_obj_by_depth(topology, depth, prev);
if (!next || !next->cpuset)
return NULL;
while (next && (hwloc_bitmap_iszero(next->cpuset) || !hwloc_bitmap_isincluded(next->cpuset, set)))
next = next->next_cousin;
return next;
}
/** \brief Return the next object of type \p type included in CPU set \p set.
*
* If there are multiple or no depth for given type, return \c NULL
* and let the caller fallback to
* hwloc_get_next_obj_inside_cpuset_by_depth().
*
* \note Objects with empty CPU sets are ignored
* (otherwise they would be considered included in any given set).
*
* \note This function cannot work if objects of the given type do
* not have CPU sets or if the topology is made of different machines.
*/
static __hwloc_inline hwloc_obj_t
hwloc_get_next_obj_inside_cpuset_by_type (hwloc_topology_t topology, hwloc_const_cpuset_t set,
hwloc_obj_type_t type, hwloc_obj_t prev)
{
int depth = hwloc_get_type_depth(topology, type);
if (depth == HWLOC_TYPE_DEPTH_UNKNOWN || depth == HWLOC_TYPE_DEPTH_MULTIPLE)
return NULL;
return hwloc_get_next_obj_inside_cpuset_by_depth(topology, set, depth, prev);
}
/** \brief Return the (logically) \p idx -th object at depth \p depth included in CPU set \p set.
*
* \note Objects with empty CPU sets are ignored
* (otherwise they would be considered included in any given set).
*
* \note This function cannot work if objects at the given depth do
* not have CPU sets or if the topology is made of different machines.
*/
static __hwloc_inline hwloc_obj_t
hwloc_get_obj_inside_cpuset_by_depth (hwloc_topology_t topology, hwloc_const_cpuset_t set,
unsigned depth, unsigned idx) __hwloc_attribute_pure;
static __hwloc_inline hwloc_obj_t
hwloc_get_obj_inside_cpuset_by_depth (hwloc_topology_t topology, hwloc_const_cpuset_t set,
unsigned depth, unsigned idx)
{
hwloc_obj_t obj = hwloc_get_obj_by_depth (topology, depth, 0);
unsigned count = 0;
if (!obj || !obj->cpuset)
return NULL;
while (obj) {
if (!hwloc_bitmap_iszero(obj->cpuset) && hwloc_bitmap_isincluded(obj->cpuset, set)) {
if (count == idx)
return obj;
count++;
}
obj = obj->next_cousin;
}
return NULL;
}
/** \brief Return the \p idx -th object of type \p type included in CPU set \p set.
*
* If there are multiple or no depth for given type, return \c NULL
* and let the caller fallback to
* hwloc_get_obj_inside_cpuset_by_depth().
*
* \note Objects with empty CPU sets are ignored
* (otherwise they would be considered included in any given set).
*
* \note This function cannot work if objects of the given type do
* not have CPU sets or if the topology is made of different machines.
*/
static __hwloc_inline hwloc_obj_t
hwloc_get_obj_inside_cpuset_by_type (hwloc_topology_t topology, hwloc_const_cpuset_t set,
hwloc_obj_type_t type, unsigned idx) __hwloc_attribute_pure;
static __hwloc_inline hwloc_obj_t
hwloc_get_obj_inside_cpuset_by_type (hwloc_topology_t topology, hwloc_const_cpuset_t set,
hwloc_obj_type_t type, unsigned idx)
{
int depth = hwloc_get_type_depth(topology, type);
if (depth == HWLOC_TYPE_DEPTH_UNKNOWN || depth == HWLOC_TYPE_DEPTH_MULTIPLE)
return NULL;
return hwloc_get_obj_inside_cpuset_by_depth(topology, set, depth, idx);
}
/** \brief Return the number of objects at depth \p depth included in CPU set \p set.
*
* \note Objects with empty CPU sets are ignored
* (otherwise they would be considered included in any given set).
*
* \note This function cannot work if objects at the given depth do
* not have CPU sets or if the topology is made of different machines.
*/
static __hwloc_inline unsigned
hwloc_get_nbobjs_inside_cpuset_by_depth (hwloc_topology_t topology, hwloc_const_cpuset_t set,
unsigned depth) __hwloc_attribute_pure;
static __hwloc_inline unsigned
hwloc_get_nbobjs_inside_cpuset_by_depth (hwloc_topology_t topology, hwloc_const_cpuset_t set,
unsigned depth)
{
hwloc_obj_t obj = hwloc_get_obj_by_depth (topology, depth, 0);
unsigned count = 0;
if (!obj || !obj->cpuset)
return 0;
while (obj) {
if (!hwloc_bitmap_iszero(obj->cpuset) && hwloc_bitmap_isincluded(obj->cpuset, set))
count++;
obj = obj->next_cousin;
}
return count;
}
/** \brief Return the number of objects of type \p type included in CPU set \p set.
*
* If no object for that type exists inside CPU set \p set, 0 is
* returned. If there are several levels with objects of that type
* inside CPU set \p set, -1 is returned.
*
* \note Objects with empty CPU sets are ignored
* (otherwise they would be considered included in any given set).
*
* \note This function cannot work if objects of the given type do
* not have CPU sets or if the topology is made of different machines.
*/
static __hwloc_inline int
hwloc_get_nbobjs_inside_cpuset_by_type (hwloc_topology_t topology, hwloc_const_cpuset_t set,
hwloc_obj_type_t type) __hwloc_attribute_pure;
static __hwloc_inline int
hwloc_get_nbobjs_inside_cpuset_by_type (hwloc_topology_t topology, hwloc_const_cpuset_t set,
hwloc_obj_type_t type)
{
int depth = hwloc_get_type_depth(topology, type);
if (depth == HWLOC_TYPE_DEPTH_UNKNOWN)
return 0;
if (depth == HWLOC_TYPE_DEPTH_MULTIPLE)
return -1; /* FIXME: agregate nbobjs from different levels? */
return hwloc_get_nbobjs_inside_cpuset_by_depth(topology, set, depth);
}
/** \brief Return the logical index among the objects included in CPU set \p set.
*
* Consult all objects in the same level as \p obj and inside CPU set \p set
* in the logical order, and return the index of \p obj within them.
* If \p set covers the entire topology, this is the logical index of \p obj.
* Otherwise, this is similar to a logical index within the part of the topology
* defined by CPU set \p set.
*
* \note Objects with empty CPU sets are ignored
* (otherwise they would be considered included in any given set).
*/
static __hwloc_inline int
hwloc_get_obj_index_inside_cpuset (hwloc_topology_t topology __hwloc_attribute_unused, hwloc_const_cpuset_t set,
hwloc_obj_t obj) __hwloc_attribute_pure;
static __hwloc_inline int
hwloc_get_obj_index_inside_cpuset (hwloc_topology_t topology __hwloc_attribute_unused, hwloc_const_cpuset_t set,
hwloc_obj_t obj)
{
int idx = 0;
if (!hwloc_bitmap_isincluded(obj->cpuset, set))
return -1;
/* count how many objects are inside the cpuset on the way from us to the beginning of the level */
while ((obj = obj->prev_cousin) != NULL)
if (!hwloc_bitmap_iszero(obj->cpuset) && hwloc_bitmap_isincluded(obj->cpuset, set))
idx++;
return idx;
}
/** @} */
/** \defgroup hwlocality_helper_find_covering Finding Objects covering at least CPU set
* @{
*/
/** \brief Get the child covering at least CPU set \p set.
*
* \return \c NULL if no child matches or if \p set is empty.
*
* \note This function cannot work if parent does not have a CPU set.
*/
static __hwloc_inline hwloc_obj_t
hwloc_get_child_covering_cpuset (hwloc_topology_t topology __hwloc_attribute_unused, hwloc_const_cpuset_t set,
hwloc_obj_t parent) __hwloc_attribute_pure;
static __hwloc_inline hwloc_obj_t
hwloc_get_child_covering_cpuset (hwloc_topology_t topology __hwloc_attribute_unused, hwloc_const_cpuset_t set,
hwloc_obj_t parent)
{
hwloc_obj_t child;
if (!parent->cpuset || hwloc_bitmap_iszero(set))
return NULL;
child = parent->first_child;
while (child) {
if (child->cpuset && hwloc_bitmap_isincluded(set, child->cpuset))
return child;
child = child->next_sibling;
}
return NULL;
}
/** \brief Get the lowest object covering at least CPU set \p set
*
* \return \c NULL if no object matches or if \p set is empty.
*
* \note This function cannot work if the root object does not have a CPU set,
* e.g. if the topology is made of different machines.
*/
static __hwloc_inline hwloc_obj_t
hwloc_get_obj_covering_cpuset (hwloc_topology_t topology, hwloc_const_cpuset_t set) __hwloc_attribute_pure;
static __hwloc_inline hwloc_obj_t
hwloc_get_obj_covering_cpuset (hwloc_topology_t topology, hwloc_const_cpuset_t set)
{
struct hwloc_obj *current = hwloc_get_root_obj(topology);
if (hwloc_bitmap_iszero(set) || !current->cpuset || !hwloc_bitmap_isincluded(set, current->cpuset))
return NULL;
while (1) {
hwloc_obj_t child = hwloc_get_child_covering_cpuset(topology, set, current);
if (!child)
return current;
current = child;
}
}
/** \brief Iterate through same-depth objects covering at least CPU set \p set
*
* If object \p prev is \c NULL, return the first object at depth \p
* depth covering at least part of CPU set \p set. The next
* invokation should pass the previous return value in \p prev so as
* to obtain the next object covering at least another part of \p set.
*
* \note This function cannot work if objects at the given depth do
* not have CPU sets or if the topology is made of different machines.
*/
static __hwloc_inline hwloc_obj_t
hwloc_get_next_obj_covering_cpuset_by_depth(hwloc_topology_t topology, hwloc_const_cpuset_t set,
unsigned depth, hwloc_obj_t prev)
{
hwloc_obj_t next = hwloc_get_next_obj_by_depth(topology, depth, prev);
if (!next || !next->cpuset)
return NULL;
while (next && !hwloc_bitmap_intersects(set, next->cpuset))
next = next->next_cousin;
return next;
}
/** \brief Iterate through same-type objects covering at least CPU set \p set
*
* If object \p prev is \c NULL, return the first object of type \p
* type covering at least part of CPU set \p set. The next invokation
* should pass the previous return value in \p prev so as to obtain
* the next object of type \p type covering at least another part of
* \p set.
*
* If there are no or multiple depths for type \p type, \c NULL is returned.
* The caller may fallback to hwloc_get_next_obj_covering_cpuset_by_depth()
* for each depth.
*
* \note This function cannot work if objects of the given type do
* not have CPU sets or if the topology is made of different machines.
*/
static __hwloc_inline hwloc_obj_t
hwloc_get_next_obj_covering_cpuset_by_type(hwloc_topology_t topology, hwloc_const_cpuset_t set,
hwloc_obj_type_t type, hwloc_obj_t prev)
{
int depth = hwloc_get_type_depth(topology, type);
if (depth == HWLOC_TYPE_DEPTH_UNKNOWN || depth == HWLOC_TYPE_DEPTH_MULTIPLE)
return NULL;
return hwloc_get_next_obj_covering_cpuset_by_depth(topology, set, depth, prev);
}
/** @} */
/** \defgroup hwlocality_helper_ancestors Looking at Ancestor and Child Objects
* @{
*
* Be sure to see the figure in \ref termsanddefs that shows a
* complete topology tree, including depths, child/sibling/cousin
* relationships, and an example of an asymmetric topology where one
* package has fewer caches than its peers.
*/
/** \brief Returns the ancestor object of \p obj at depth \p depth. */
static __hwloc_inline hwloc_obj_t
hwloc_get_ancestor_obj_by_depth (hwloc_topology_t topology __hwloc_attribute_unused, unsigned depth, hwloc_obj_t obj) __hwloc_attribute_pure;
static __hwloc_inline hwloc_obj_t
hwloc_get_ancestor_obj_by_depth (hwloc_topology_t topology __hwloc_attribute_unused, unsigned depth, hwloc_obj_t obj)
{
hwloc_obj_t ancestor = obj;
if (obj->depth < depth)
return NULL;
while (ancestor && ancestor->depth > depth)
ancestor = ancestor->parent;
return ancestor;
}
/** \brief Returns the ancestor object of \p obj with type \p type. */
static __hwloc_inline hwloc_obj_t
hwloc_get_ancestor_obj_by_type (hwloc_topology_t topology __hwloc_attribute_unused, hwloc_obj_type_t type, hwloc_obj_t obj) __hwloc_attribute_pure;
static __hwloc_inline hwloc_obj_t
hwloc_get_ancestor_obj_by_type (hwloc_topology_t topology __hwloc_attribute_unused, hwloc_obj_type_t type, hwloc_obj_t obj)
{
hwloc_obj_t ancestor = obj->parent;
while (ancestor && ancestor->type != type)
ancestor = ancestor->parent;
return ancestor;
}
/** \brief Returns the common parent object to objects \p obj1 and \p obj2 */
static __hwloc_inline hwloc_obj_t
hwloc_get_common_ancestor_obj (hwloc_topology_t topology __hwloc_attribute_unused, hwloc_obj_t obj1, hwloc_obj_t obj2) __hwloc_attribute_pure;
static __hwloc_inline hwloc_obj_t
hwloc_get_common_ancestor_obj (hwloc_topology_t topology __hwloc_attribute_unused, hwloc_obj_t obj1, hwloc_obj_t obj2)
{
/* the loop isn't so easy since intermediate ancestors may have
* different depth, causing us to alternate between using obj1->parent
* and obj2->parent. Also, even if at some point we find ancestors of
* of the same depth, their ancestors may have different depth again.
*/
while (obj1 != obj2) {
while (obj1->depth > obj2->depth)
obj1 = obj1->parent;
while (obj2->depth > obj1->depth)
obj2 = obj2->parent;
if (obj1 != obj2 && obj1->depth == obj2->depth) {
obj1 = obj1->parent;
obj2 = obj2->parent;
}
}
return obj1;
}
/** \brief Returns true if \p obj is inside the subtree beginning with ancestor object \p subtree_root.
*
* \note This function assumes that both \p obj and \p subtree_root have a \p cpuset.
*/
static __hwloc_inline int
hwloc_obj_is_in_subtree (hwloc_topology_t topology __hwloc_attribute_unused, hwloc_obj_t obj, hwloc_obj_t subtree_root) __hwloc_attribute_pure;
static __hwloc_inline int
hwloc_obj_is_in_subtree (hwloc_topology_t topology __hwloc_attribute_unused, hwloc_obj_t obj, hwloc_obj_t subtree_root)
{
return hwloc_bitmap_isincluded(obj->cpuset, subtree_root->cpuset);
}
/** \brief Return the next child.
*
* If \p prev is \c NULL, return the first child.
*/
static __hwloc_inline hwloc_obj_t
hwloc_get_next_child (hwloc_topology_t topology __hwloc_attribute_unused, hwloc_obj_t parent, hwloc_obj_t prev)
{
if (!prev)
return parent->first_child;
if (prev->parent != parent)
return NULL;
return prev->next_sibling;
}
/** @} */
/** \defgroup hwlocality_helper_find_cache Looking at Cache Objects
* @{
*/
/** \brief Find the depth of cache objects matching cache depth and type.
*
* Return the depth of the topology level that contains cache objects
* whose attributes match \p cachedepth and \p cachetype. This function
* intends to disambiguate the case where hwloc_get_type_depth() returns
* ::HWLOC_TYPE_DEPTH_MULTIPLE.
*
* If no cache level matches, ::HWLOC_TYPE_DEPTH_UNKNOWN is returned.
*
* If \p cachetype is ::HWLOC_OBJ_CACHE_UNIFIED, the depth of the
* unique matching unified cache level is returned.
*
* If \p cachetype is ::HWLOC_OBJ_CACHE_DATA or ::HWLOC_OBJ_CACHE_INSTRUCTION,
* either a matching cache, or a unified cache is returned.
*
* If \p cachetype is \c -1, it is ignored and multiple levels may
* match. The function returns either the depth of a uniquely matching
* level or ::HWLOC_TYPE_DEPTH_MULTIPLE.
*/
static __hwloc_inline int
hwloc_get_cache_type_depth (hwloc_topology_t topology,
unsigned cachelevel, hwloc_obj_cache_type_t cachetype)
{
int depth;
int found = HWLOC_TYPE_DEPTH_UNKNOWN;
for (depth=0; ; depth++) {
hwloc_obj_t obj = hwloc_get_obj_by_depth(topology, depth, 0);
if (!obj)
break;
if (obj->type != HWLOC_OBJ_CACHE || obj->attr->cache.depth != cachelevel)
/* doesn't match, try next depth */
continue;
if (cachetype == (hwloc_obj_cache_type_t) -1) {
if (found != HWLOC_TYPE_DEPTH_UNKNOWN) {
/* second match, return MULTIPLE */
return HWLOC_TYPE_DEPTH_MULTIPLE;
}
/* first match, mark it as found */
found = depth;
continue;
}
if (obj->attr->cache.type == cachetype || obj->attr->cache.type == HWLOC_OBJ_CACHE_UNIFIED)
/* exact match (either unified is alone, or we match instruction or data), return immediately */
return depth;
}
/* went to the bottom, return what we found */
return found;
}
/** \brief Get the first cache covering a cpuset \p set
*
* \return \c NULL if no cache matches.
*
* \note This function cannot work if the root object does not have a CPU set,
* e.g. if the topology is made of different machines.
*/
static __hwloc_inline hwloc_obj_t
hwloc_get_cache_covering_cpuset (hwloc_topology_t topology, hwloc_const_cpuset_t set) __hwloc_attribute_pure;
static __hwloc_inline hwloc_obj_t
hwloc_get_cache_covering_cpuset (hwloc_topology_t topology, hwloc_const_cpuset_t set)
{
hwloc_obj_t current = hwloc_get_obj_covering_cpuset(topology, set);
while (current) {
if (current->type == HWLOC_OBJ_CACHE)
return current;
current = current->parent;
}
return NULL;
}
/** \brief Get the first cache shared between an object and somebody else.
*
* \return \c NULL if no cache matches or if an invalid object is given.
*/
static __hwloc_inline hwloc_obj_t
hwloc_get_shared_cache_covering_obj (hwloc_topology_t topology __hwloc_attribute_unused, hwloc_obj_t obj) __hwloc_attribute_pure;
static __hwloc_inline hwloc_obj_t
hwloc_get_shared_cache_covering_obj (hwloc_topology_t topology __hwloc_attribute_unused, hwloc_obj_t obj)
{
hwloc_obj_t current = obj->parent;
if (!obj->cpuset)
return NULL;
while (current && current->cpuset) {
if (!hwloc_bitmap_isequal(current->cpuset, obj->cpuset)
&& current->type == HWLOC_OBJ_CACHE)
return current;
current = current->parent;
}
return NULL;
}
/** @} */
/** \defgroup hwlocality_helper_find_misc Finding objects, miscellaneous helpers
* @{
*
* Be sure to see the figure in \ref termsanddefs that shows a
* complete topology tree, including depths, child/sibling/cousin
* relationships, and an example of an asymmetric topology where one
* package has fewer caches than its peers.
*/
/** \brief Returns the object of type ::HWLOC_OBJ_PU with \p os_index.
*
* This function is useful for converting a CPU set into the PU
* objects it contains.
* When retrieving the current binding (e.g. with hwloc_get_cpubind()),
* one may iterate over the bits of the resulting CPU set with
* hwloc_bitmap_foreach_begin(), and find the corresponding PUs
* with this function.
*/
static __hwloc_inline hwloc_obj_t
hwloc_get_pu_obj_by_os_index(hwloc_topology_t topology, unsigned os_index) __hwloc_attribute_pure;
static __hwloc_inline hwloc_obj_t
hwloc_get_pu_obj_by_os_index(hwloc_topology_t topology, unsigned os_index)
{
hwloc_obj_t obj = NULL;
while ((obj = hwloc_get_next_obj_by_type(topology, HWLOC_OBJ_PU, obj)) != NULL)
if (obj->os_index == os_index)
return obj;
return NULL;
}
/** \brief Returns the object of type ::HWLOC_OBJ_NUMANODE with \p os_index.
*
* This function is useful for converting a nodeset into the NUMA node
* objects it contains.
* When retrieving the current binding (e.g. with hwloc_get_membind_nodeset()),
* one may iterate over the bits of the resulting nodeset with
* hwloc_bitmap_foreach_begin(), and find the corresponding NUMA nodes
* with this function.
*/
static __hwloc_inline hwloc_obj_t
hwloc_get_numanode_obj_by_os_index(hwloc_topology_t topology, unsigned os_index) __hwloc_attribute_pure;
static __hwloc_inline hwloc_obj_t
hwloc_get_numanode_obj_by_os_index(hwloc_topology_t topology, unsigned os_index)
{
hwloc_obj_t obj = NULL;
while ((obj = hwloc_get_next_obj_by_type(topology, HWLOC_OBJ_NUMANODE, obj)) != NULL)
if (obj->os_index == os_index)
return obj;
return NULL;
}
/** \brief Do a depth-first traversal of the topology to find and sort
*
* all objects that are at the same depth than \p src.
* Report in \p objs up to \p max physically closest ones to \p src.
*
* \return the number of objects returned in \p objs.
*
* \return 0 if \p src is an I/O object.
*
* \note This function requires the \p src object to have a CPU set.
*/
/* TODO: rather provide an iterator? Provide a way to know how much should be allocated? By returning the total number of objects instead? */
HWLOC_DECLSPEC unsigned hwloc_get_closest_objs (hwloc_topology_t topology, hwloc_obj_t src, hwloc_obj_t * __hwloc_restrict objs, unsigned max);
/** \brief Find an object below another object, both specified by types and indexes.
*
* Start from the top system object and find object of type \p type1
* and logical index \p idx1. Then look below this object and find another
* object of type \p type2 and logical index \p idx2. Indexes are specified
* within the parent, not withing the entire system.
*
* For instance, if type1 is PACKAGE, idx1 is 2, type2 is CORE and idx2
* is 3, return the fourth core object below the third package.
*
* \note This function requires these objects to have a CPU set.
*/
static __hwloc_inline hwloc_obj_t
hwloc_get_obj_below_by_type (hwloc_topology_t topology,
hwloc_obj_type_t type1, unsigned idx1,
hwloc_obj_type_t type2, unsigned idx2) __hwloc_attribute_pure;
static __hwloc_inline hwloc_obj_t
hwloc_get_obj_below_by_type (hwloc_topology_t topology,
hwloc_obj_type_t type1, unsigned idx1,
hwloc_obj_type_t type2, unsigned idx2)
{
hwloc_obj_t obj;
obj = hwloc_get_obj_by_type (topology, type1, idx1);
if (!obj || !obj->cpuset)
return NULL;
return hwloc_get_obj_inside_cpuset_by_type(topology, obj->cpuset, type2, idx2);
}
/** \brief Find an object below a chain of objects specified by types and indexes.
*
* This is a generalized version of hwloc_get_obj_below_by_type().
*
* Arrays \p typev and \p idxv must contain \p nr types and indexes.
*
* Start from the top system object and walk the arrays \p typev and \p idxv.
* For each type and logical index couple in the arrays, look under the previously found
* object to find the index-th object of the given type.
* Indexes are specified within the parent, not withing the entire system.
*
* For instance, if nr is 3, typev contains NODE, PACKAGE and CORE,
* and idxv contains 0, 1 and 2, return the third core object below
* the second package below the first NUMA node.
*
* \note This function requires all these objects and the root object
* to have a CPU set.
*/
static __hwloc_inline hwloc_obj_t
hwloc_get_obj_below_array_by_type (hwloc_topology_t topology, int nr, hwloc_obj_type_t *typev, unsigned *idxv) __hwloc_attribute_pure;
static __hwloc_inline hwloc_obj_t
hwloc_get_obj_below_array_by_type (hwloc_topology_t topology, int nr, hwloc_obj_type_t *typev, unsigned *idxv)
{
hwloc_obj_t obj = hwloc_get_root_obj(topology);
int i;
for(i=0; i<nr; i++) {
if (!obj || !obj->cpuset)
return NULL;
obj = hwloc_get_obj_inside_cpuset_by_type(topology, obj->cpuset, typev[i], idxv[i]);
}
return obj;
}
/** @} */
/** \defgroup hwlocality_helper_distribute Distributing items over a topology
* @{
*/
/** \brief Flags to be given to hwloc_distrib().
*/
enum hwloc_distrib_flags_e {
/** \brief Distrib in reverse order, starting from the last objects.
* \hideinitializer
*/
HWLOC_DISTRIB_FLAG_REVERSE = (1UL<<0)
};
/** \brief Distribute \p n items over the topology under \p roots
*
* Array \p set will be filled with \p n cpusets recursively distributed
* linearly over the topology under objects \p roots, down to depth \p until
* (which can be INT_MAX to distribute down to the finest level).
*
* \p n_roots is usually 1 and \p roots only contains the topology root object
* so as to distribute over the entire topology.
*
* This is typically useful when an application wants to distribute \p n
* threads over a machine, giving each of them as much private cache as
* possible and keeping them locally in number order.
*
* The caller may typically want to also call hwloc_bitmap_singlify()
* before binding a thread so that it does not move at all.
*
* \p flags should be 0 or a OR'ed set of ::hwloc_distrib_flags_e.
*
* \note This function requires the \p roots objects to have a CPU set.
*
* \note This function replaces the now deprecated hwloc_distribute()
* and hwloc_distributev() functions.
*/
static __hwloc_inline int
hwloc_distrib(hwloc_topology_t topology,
hwloc_obj_t *roots, unsigned n_roots,
hwloc_cpuset_t *set,
unsigned n,
unsigned until, unsigned long flags)
{
unsigned i;
unsigned tot_weight;
unsigned given, givenweight;
hwloc_cpuset_t *cpusetp = set;
if (flags & ~HWLOC_DISTRIB_FLAG_REVERSE) {
errno = EINVAL;
return -1;
}
tot_weight = 0;
for (i = 0; i < n_roots; i++)
if (roots[i]->cpuset)
tot_weight += hwloc_bitmap_weight(roots[i]->cpuset);
for (i = 0, given = 0, givenweight = 0; i < n_roots; i++) {
unsigned chunk, weight;
hwloc_obj_t root = roots[flags & HWLOC_DISTRIB_FLAG_REVERSE ? n_roots-1-i : i];
hwloc_cpuset_t cpuset = root->cpuset;
if (!cpuset)
continue;
weight = hwloc_bitmap_weight(cpuset);
if (!weight)
continue;
/* Give to root a chunk proportional to its weight.
* If previous chunks got rounded-up, we may get a bit less. */
chunk = (( (givenweight+weight) * n + tot_weight-1) / tot_weight)
- (( givenweight * n + tot_weight-1) / tot_weight);
if (!root->arity || chunk <= 1 || root->depth >= until) {
/* We can't split any more, put everything there. */
if (chunk) {
/* Fill cpusets with ours */
unsigned j;
for (j=0; j < chunk; j++)
cpusetp[j] = hwloc_bitmap_dup(cpuset);
} else {
/* We got no chunk, just merge our cpuset to a previous one
* (the first chunk cannot be empty)
* so that this root doesn't get ignored.
*/
assert(given);
hwloc_bitmap_or(cpusetp[-1], cpusetp[-1], cpuset);
}
} else {
/* Still more to distribute, recurse into children */
hwloc_distrib(topology, root->children, root->arity, cpusetp, chunk, until, flags);
}
cpusetp += chunk;
given += chunk;
givenweight += weight;
}
return 0;
}
/** @} */
/** \defgroup hwlocality_helper_topology_sets CPU and node sets of entire topologies
* @{
*/
/** \brief Get complete CPU set
*
* \return the complete CPU set of logical processors of the system. If the
* topology is the result of a combination of several systems, NULL is
* returned.
*
* \note The returned cpuset is not newly allocated and should thus not be
* changed or freed; hwloc_bitmap_dup() must be used to obtain a local copy.
*/
static __hwloc_inline hwloc_const_cpuset_t
hwloc_topology_get_complete_cpuset(hwloc_topology_t topology) __hwloc_attribute_pure;
static __hwloc_inline hwloc_const_cpuset_t
hwloc_topology_get_complete_cpuset(hwloc_topology_t topology)
{
return hwloc_get_root_obj(topology)->complete_cpuset;
}
/** \brief Get topology CPU set
*
* \return the CPU set of logical processors of the system for which hwloc
* provides topology information. This is equivalent to the cpuset of the
* system object. If the topology is the result of a combination of several
* systems, NULL is returned.
*
* \note The returned cpuset is not newly allocated and should thus not be
* changed or freed; hwloc_bitmap_dup() must be used to obtain a local copy.
*/
static __hwloc_inline hwloc_const_cpuset_t
hwloc_topology_get_topology_cpuset(hwloc_topology_t topology) __hwloc_attribute_pure;
static __hwloc_inline hwloc_const_cpuset_t
hwloc_topology_get_topology_cpuset(hwloc_topology_t topology)
{
return hwloc_get_root_obj(topology)->cpuset;
}
/** \brief Get online CPU set
*
* \return the CPU set of online logical processors of the system. If the
* topology is the result of a combination of several systems, NULL is
* returned.
*
* \note The returned cpuset is not newly allocated and should thus not be
* changed or freed; hwloc_bitmap_dup() must be used to obtain a local copy.
*/
static __hwloc_inline hwloc_const_cpuset_t
hwloc_topology_get_online_cpuset(hwloc_topology_t topology) __hwloc_attribute_pure;
static __hwloc_inline hwloc_const_cpuset_t
hwloc_topology_get_online_cpuset(hwloc_topology_t topology)
{
return hwloc_get_root_obj(topology)->online_cpuset;
}
/** \brief Get allowed CPU set
*
* \return the CPU set of allowed logical processors of the system. If the
* topology is the result of a combination of several systems, NULL is
* returned.
*
* \note The returned cpuset is not newly allocated and should thus not be
* changed or freed, hwloc_bitmap_dup() must be used to obtain a local copy.
*/
static __hwloc_inline hwloc_const_cpuset_t
hwloc_topology_get_allowed_cpuset(hwloc_topology_t topology) __hwloc_attribute_pure;
static __hwloc_inline hwloc_const_cpuset_t
hwloc_topology_get_allowed_cpuset(hwloc_topology_t topology)
{
return hwloc_get_root_obj(topology)->allowed_cpuset;
}
/** \brief Get complete node set
*
* \return the complete node set of memory of the system. If the
* topology is the result of a combination of several systems, NULL is
* returned.
*
* \note The returned nodeset is not newly allocated and should thus not be
* changed or freed; hwloc_bitmap_dup() must be used to obtain a local copy.
*/
static __hwloc_inline hwloc_const_nodeset_t
hwloc_topology_get_complete_nodeset(hwloc_topology_t topology) __hwloc_attribute_pure;
static __hwloc_inline hwloc_const_nodeset_t
hwloc_topology_get_complete_nodeset(hwloc_topology_t topology)
{
return hwloc_get_root_obj(topology)->complete_nodeset;
}
/** \brief Get topology node set
*
* \return the node set of memory of the system for which hwloc
* provides topology information. This is equivalent to the nodeset of the
* system object. If the topology is the result of a combination of several
* systems, NULL is returned.
*
* \note The returned nodeset is not newly allocated and should thus not be
* changed or freed; hwloc_bitmap_dup() must be used to obtain a local copy.
*/
static __hwloc_inline hwloc_const_nodeset_t
hwloc_topology_get_topology_nodeset(hwloc_topology_t topology) __hwloc_attribute_pure;
static __hwloc_inline hwloc_const_nodeset_t
hwloc_topology_get_topology_nodeset(hwloc_topology_t topology)
{
return hwloc_get_root_obj(topology)->nodeset;
}
/** \brief Get allowed node set
*
* \return the node set of allowed memory of the system. If the
* topology is the result of a combination of several systems, NULL is
* returned.
*
* \note The returned nodeset is not newly allocated and should thus not be
* changed or freed, hwloc_bitmap_dup() must be used to obtain a local copy.
*/
static __hwloc_inline hwloc_const_nodeset_t
hwloc_topology_get_allowed_nodeset(hwloc_topology_t topology) __hwloc_attribute_pure;
static __hwloc_inline hwloc_const_nodeset_t
hwloc_topology_get_allowed_nodeset(hwloc_topology_t topology)
{
return hwloc_get_root_obj(topology)->allowed_nodeset;
}
/** @} */
/** \defgroup hwlocality_helper_nodeset_convert Converting between CPU sets and node sets
*
* There are two semantics for converting cpusets to nodesets depending on how
* non-NUMA machines are handled.
*
* When manipulating nodesets for memory binding, non-NUMA machines should be
* considered as having a single NUMA node. The standard conversion routines
* below should be used so that marking the first bit of the nodeset means
* that memory should be bound to a non-NUMA whole machine.
*
* When manipulating nodesets as an actual list of NUMA nodes without any
* need to handle memory binding on non-NUMA machines, the strict conversion
* routines may be used instead.
* @{
*/
/** \brief Convert a CPU set into a NUMA node set and handle non-NUMA cases
*
* If some NUMA nodes have no CPUs at all, this function never sets their
* indexes in the output node set, even if a full CPU set is given in input.
*
* If the topology contains no NUMA nodes, the machine is considered
* as a single memory node, and the following behavior is used:
* If \p cpuset is empty, \p nodeset will be emptied as well.
* Otherwise \p nodeset will be entirely filled.
*/
static __hwloc_inline void
hwloc_cpuset_to_nodeset(hwloc_topology_t topology, hwloc_const_cpuset_t _cpuset, hwloc_nodeset_t nodeset)
{
int depth = hwloc_get_type_depth(topology, HWLOC_OBJ_NUMANODE);
hwloc_obj_t obj;
if (depth == HWLOC_TYPE_DEPTH_UNKNOWN) {
if (hwloc_bitmap_iszero(_cpuset))
hwloc_bitmap_zero(nodeset);
else
/* Assume the whole system */
hwloc_bitmap_fill(nodeset);
return;
}
hwloc_bitmap_zero(nodeset);
obj = NULL;
while ((obj = hwloc_get_next_obj_covering_cpuset_by_depth(topology, _cpuset, depth, obj)) != NULL)
hwloc_bitmap_set(nodeset, obj->os_index);
}
/** \brief Convert a CPU set into a NUMA node set without handling non-NUMA cases
*
* This is the strict variant of hwloc_cpuset_to_nodeset(). It does not fix
* non-NUMA cases. If the topology contains some NUMA nodes, behave exactly
* the same. However, if the topology contains no NUMA nodes, return an empty
* nodeset.
*/
static __hwloc_inline void
hwloc_cpuset_to_nodeset_strict(struct hwloc_topology *topology, hwloc_const_cpuset_t _cpuset, hwloc_nodeset_t nodeset)
{
int depth = hwloc_get_type_depth(topology, HWLOC_OBJ_NUMANODE);
hwloc_obj_t obj;
if (depth == HWLOC_TYPE_DEPTH_UNKNOWN )
return;
hwloc_bitmap_zero(nodeset);
obj = NULL;
while ((obj = hwloc_get_next_obj_covering_cpuset_by_depth(topology, _cpuset, depth, obj)) != NULL)
hwloc_bitmap_set(nodeset, obj->os_index);
}
/** \brief Convert a NUMA node set into a CPU set and handle non-NUMA cases
*
* If the topology contains no NUMA nodes, the machine is considered
* as a single memory node, and the following behavior is used:
* If \p nodeset is empty, \p cpuset will be emptied as well.
* Otherwise \p cpuset will be entirely filled.
* This is useful for manipulating memory binding sets.
*/
static __hwloc_inline void
hwloc_cpuset_from_nodeset(hwloc_topology_t topology, hwloc_cpuset_t _cpuset, hwloc_const_nodeset_t nodeset)
{
int depth = hwloc_get_type_depth(topology, HWLOC_OBJ_NUMANODE);
hwloc_obj_t obj;
if (depth == HWLOC_TYPE_DEPTH_UNKNOWN ) {
if (hwloc_bitmap_iszero(nodeset))
hwloc_bitmap_zero(_cpuset);
else
/* Assume the whole system */
hwloc_bitmap_fill(_cpuset);
return;
}
hwloc_bitmap_zero(_cpuset);
obj = NULL;
while ((obj = hwloc_get_next_obj_by_depth(topology, depth, obj)) != NULL) {
if (hwloc_bitmap_isset(nodeset, obj->os_index))
/* no need to check obj->cpuset because objects in levels always have a cpuset */
hwloc_bitmap_or(_cpuset, _cpuset, obj->cpuset);
}
}
/** \brief Convert a NUMA node set into a CPU set without handling non-NUMA cases
*
* This is the strict variant of hwloc_cpuset_from_nodeset(). It does not fix
* non-NUMA cases. If the topology contains some NUMA nodes, behave exactly
* the same. However, if the topology contains no NUMA nodes, return an empty
* cpuset.
*/
static __hwloc_inline void
hwloc_cpuset_from_nodeset_strict(struct hwloc_topology *topology, hwloc_cpuset_t _cpuset, hwloc_const_nodeset_t nodeset)
{
int depth = hwloc_get_type_depth(topology, HWLOC_OBJ_NUMANODE);
hwloc_obj_t obj;
if (depth == HWLOC_TYPE_DEPTH_UNKNOWN )
return;
hwloc_bitmap_zero(_cpuset);
obj = NULL;
while ((obj = hwloc_get_next_obj_by_depth(topology, depth, obj)) != NULL)
if (hwloc_bitmap_isset(nodeset, obj->os_index))
/* no need to check obj->cpuset because objects in levels always have a cpuset */
hwloc_bitmap_or(_cpuset, _cpuset, obj->cpuset);
}
/** @} */
/** \defgroup hwlocality_distances Manipulating Distances
* @{
*/
/** \brief Get the distances between all objects at the given depth.
*
* \return a distances structure containing a matrix with all distances
* between all objects at the given depth.
*
* Slot i+nbobjs*j contains the distance from the object of logical index i
* the object of logical index j.
*
* \note This function only returns matrices covering the whole topology,
* without any unknown distance value. Those matrices are available in
* top-level object of the hierarchy. Matrices of lower objects are not
* reported here since they cover only part of the machine.
*
* The returned structure belongs to the hwloc library. The caller should
* not modify or free it.
*
* \return \c NULL if no such distance matrix exists.
*/
static __hwloc_inline const struct hwloc_distances_s *
hwloc_get_whole_distance_matrix_by_depth(hwloc_topology_t topology, unsigned depth)
{
hwloc_obj_t root = hwloc_get_root_obj(topology);
unsigned i;
for(i=0; i<root->distances_count; i++)
if (root->distances[i]->relative_depth == depth)
return root->distances[i];
return NULL;
}
/** \brief Get the distances between all objects of a given type.
*
* \return a distances structure containing a matrix with all distances
* between all objects of the given type.
*
* Slot i+nbobjs*j contains the distance from the object of logical index i
* the object of logical index j.
*
* \note This function only returns matrices covering the whole topology,
* without any unknown distance value. Those matrices are available in
* top-level object of the hierarchy. Matrices of lower objects are not
* reported here since they cover only part of the machine.
*
* The returned structure belongs to the hwloc library. The caller should
* not modify or free it.
*
* \return \c NULL if no such distance matrix exists.
*/
static __hwloc_inline const struct hwloc_distances_s *
hwloc_get_whole_distance_matrix_by_type(hwloc_topology_t topology, hwloc_obj_type_t type)
{
int depth = hwloc_get_type_depth(topology, type);
if (depth < 0)
return NULL;
return hwloc_get_whole_distance_matrix_by_depth(topology, depth);
}
/** \brief Get distances for the given depth and covering some objects
*
* Return a distance matrix that describes depth \p depth and covers at
* least object \p obj and all its children.
*
* When looking for the distance between some objects, a common ancestor should
* be passed in \p obj.
*
* \p firstp is set to logical index of the first object described by the matrix.
*
* The returned structure belongs to the hwloc library. The caller should
* not modify or free it.
*/
static __hwloc_inline const struct hwloc_distances_s *
hwloc_get_distance_matrix_covering_obj_by_depth(hwloc_topology_t topology,
hwloc_obj_t obj, unsigned depth,
unsigned *firstp)
{
while (obj && obj->cpuset) {
unsigned i;
for(i=0; i<obj->distances_count; i++)
if (obj->distances[i]->relative_depth == depth - obj->depth) {
if (!obj->distances[i]->nbobjs)
continue;
*firstp = hwloc_get_next_obj_inside_cpuset_by_depth(topology, obj->cpuset, depth, NULL)->logical_index;
return obj->distances[i];
}
obj = obj->parent;
}
return NULL;
}
/** \brief Get the latency in both directions between two objects.
*
* Look at ancestor objects from the bottom to the top until one of them
* contains a distance matrix that matches the objects exactly.
*
* \p latency gets the value from object \p obj1 to \p obj2, while
* \p reverse_latency gets the reverse-direction value, which
* may be different on some architectures.
*
* \return -1 if no ancestor contains a matching latency matrix.
*/
static __hwloc_inline int
hwloc_get_latency(hwloc_topology_t topology,
hwloc_obj_t obj1, hwloc_obj_t obj2,
float *latency, float *reverse_latency)
{
hwloc_obj_t ancestor;
const struct hwloc_distances_s * distances;
unsigned first_logical ;
if (obj1->depth != obj2->depth) {
errno = EINVAL;
return -1;
}
ancestor = hwloc_get_common_ancestor_obj(topology, obj1, obj2);
distances = hwloc_get_distance_matrix_covering_obj_by_depth(topology, ancestor, obj1->depth, &first_logical);
if (distances && distances->latency) {
const float * latency_matrix = distances->latency;
unsigned nbobjs = distances->nbobjs;
unsigned l1 = obj1->logical_index - first_logical;
unsigned l2 = obj2->logical_index - first_logical;
*latency = latency_matrix[l1*nbobjs+l2];
*reverse_latency = latency_matrix[l2*nbobjs+l1];
return 0;
}
errno = ENOSYS;
return -1;
}
/** @} */
/** \defgroup hwlocality_advanced_io Finding I/O objects
* @{
*/
/** \brief Get the first non-I/O ancestor object.
*
* Given the I/O object \p ioobj, find the smallest non-I/O ancestor
* object. This regular object may then be used for binding because
* its locality is the same as \p ioobj.
*/
static __hwloc_inline hwloc_obj_t
hwloc_get_non_io_ancestor_obj(hwloc_topology_t topology __hwloc_attribute_unused,
hwloc_obj_t ioobj)
{
hwloc_obj_t obj = ioobj;
while (obj && !obj->cpuset) {
obj = obj->parent;
}
return obj;
}
/** \brief Get the next PCI device in the system.
*
* \return the first PCI device if \p prev is \c NULL.
*/
static __hwloc_inline hwloc_obj_t
hwloc_get_next_pcidev(hwloc_topology_t topology, hwloc_obj_t prev)
{
return hwloc_get_next_obj_by_type(topology, HWLOC_OBJ_PCI_DEVICE, prev);
}
/** \brief Find the PCI device object matching the PCI bus id
* given domain, bus device and function PCI bus id.
*/
static __hwloc_inline hwloc_obj_t
hwloc_get_pcidev_by_busid(hwloc_topology_t topology,
unsigned domain, unsigned bus, unsigned dev, unsigned func)
{
hwloc_obj_t obj = NULL;
while ((obj = hwloc_get_next_pcidev(topology, obj)) != NULL) {
if (obj->attr->pcidev.domain == domain
&& obj->attr->pcidev.bus == bus
&& obj->attr->pcidev.dev == dev
&& obj->attr->pcidev.func == func)
return obj;
}
return NULL;
}
/** \brief Find the PCI device object matching the PCI bus id
* given as a string xxxx:yy:zz.t or yy:zz.t.
*/
static __hwloc_inline hwloc_obj_t
hwloc_get_pcidev_by_busidstring(hwloc_topology_t topology, const char *busid)
{
unsigned domain = 0; /* default */
unsigned bus, dev, func;
if (sscanf(busid, "%x:%x.%x", &bus, &dev, &func) != 3
&& sscanf(busid, "%x:%x:%x.%x", &domain, &bus, &dev, &func) != 4) {
errno = EINVAL;
return NULL;
}
return hwloc_get_pcidev_by_busid(topology, domain, bus, dev, func);
}
/** \brief Get the next OS device in the system.
*
* \return the first OS device if \p prev is \c NULL.
*/
static __hwloc_inline hwloc_obj_t
hwloc_get_next_osdev(hwloc_topology_t topology, hwloc_obj_t prev)
{
return hwloc_get_next_obj_by_type(topology, HWLOC_OBJ_OS_DEVICE, prev);
}
/** \brief Get the next bridge in the system.
*
* \return the first bridge if \p prev is \c NULL.
*/
static __hwloc_inline hwloc_obj_t
hwloc_get_next_bridge(hwloc_topology_t topology, hwloc_obj_t prev)
{
return hwloc_get_next_obj_by_type(topology, HWLOC_OBJ_BRIDGE, prev);
}
/* \brief Checks whether a given bridge covers a given PCI bus.
*/
static __hwloc_inline int
hwloc_bridge_covers_pcibus(hwloc_obj_t bridge,
unsigned domain, unsigned bus)
{
return bridge->type == HWLOC_OBJ_BRIDGE
&& bridge->attr->bridge.downstream_type == HWLOC_OBJ_BRIDGE_PCI
&& bridge->attr->bridge.downstream.pci.domain == domain
&& bridge->attr->bridge.downstream.pci.secondary_bus <= bus
&& bridge->attr->bridge.downstream.pci.subordinate_bus >= bus;
}
/** \brief Find the hostbridge that covers the given PCI bus.
*
* This is useful for finding the locality of a bus because
* it is the hostbridge parent cpuset.
*/
static __hwloc_inline hwloc_obj_t
hwloc_get_hostbridge_by_pcibus(hwloc_topology_t topology,
unsigned domain, unsigned bus)
{
hwloc_obj_t obj = NULL;
while ((obj = hwloc_get_next_bridge(topology, obj)) != NULL) {
if (hwloc_bridge_covers_pcibus(obj, domain, bus)) {
/* found bridge covering this pcibus, make sure it's a hostbridge */
assert(obj->attr->bridge.upstream_type == HWLOC_OBJ_BRIDGE_HOST);
assert(obj->parent->type != HWLOC_OBJ_BRIDGE);
assert(obj->parent->cpuset);
return obj;
}
}
return NULL;
}
/** @} */
#ifdef __cplusplus
} /* extern "C" */
#endif
#endif /* HWLOC_HELPER_H */