%PDF- %PDF-
| Direktori : /backups/router/usr/local/include/boost/geometry/algorithms/detail/relate/ |
| Current File : //backups/router/usr/local/include/boost/geometry/algorithms/detail/relate/multi_point_geometry.hpp |
// Boost.Geometry
// Copyright (c) 2014-2023, Oracle and/or its affiliates.
// Contributed and/or modified by Vissarion Fysikopoulos, on behalf of Oracle
// Contributed and/or modified by Adam Wulkiewicz, on behalf of Oracle
// Use, modification and distribution is subject to the Boost Software License,
// Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_GEOMETRY_ALGORITHMS_DETAIL_RELATE_MULTI_POINT_GEOMETRY_HPP
#define BOOST_GEOMETRY_ALGORITHMS_DETAIL_RELATE_MULTI_POINT_GEOMETRY_HPP
#include <boost/range/begin.hpp>
#include <boost/range/end.hpp>
#include <boost/range/size.hpp>
#include <boost/range/value_type.hpp>
#include <boost/geometry/algorithms/detail/disjoint/box_box.hpp>
#include <boost/geometry/algorithms/detail/disjoint/point_box.hpp>
#include <boost/geometry/algorithms/detail/expand_by_epsilon.hpp>
#include <boost/geometry/algorithms/detail/partition.hpp>
#include <boost/geometry/algorithms/detail/relate/result.hpp>
#include <boost/geometry/algorithms/detail/relate/topology_check.hpp>
#include <boost/geometry/algorithms/detail/within/point_in_geometry.hpp>
#include <boost/geometry/algorithms/envelope.hpp>
#include <boost/geometry/core/point_type.hpp>
#include <boost/geometry/geometries/box.hpp>
#include <boost/geometry/index/rtree.hpp>
// TEMP
#include <boost/geometry/strategies/envelope/cartesian.hpp>
#include <boost/geometry/strategies/envelope/geographic.hpp>
#include <boost/geometry/strategies/envelope/spherical.hpp>
#include <boost/geometry/util/type_traits.hpp>
namespace boost { namespace geometry
{
#ifndef DOXYGEN_NO_DETAIL
namespace detail { namespace relate
{
template
<
typename Geometry,
typename Tag = typename tag<Geometry>::type
>
struct multi_point_geometry_eb
{
template <typename MultiPoint, typename Strategy>
static inline bool apply(MultiPoint const& ,
detail::relate::topology_check<Geometry, Strategy> const& )
{
return true;
}
};
template <typename Geometry>
struct multi_point_geometry_eb<Geometry, linestring_tag>
{
template <typename Points>
struct boundary_visitor
{
boundary_visitor(Points const& points)
: m_points(points)
, m_boundary_found(false)
{}
template <typename Point, typename Strategy>
struct find_pred
{
find_pred(Point const& point, Strategy const& strategy)
: m_point(point)
, m_strategy(strategy)
{}
template <typename Pt>
bool operator()(Pt const& pt) const
{
return detail::equals::equals_point_point(pt, m_point, m_strategy);
}
Point const& m_point;
Strategy const& m_strategy;
};
template <typename Point, typename Strategy>
bool apply(Point const& boundary_point, Strategy const& strategy)
{
if ( std::none_of(m_points.begin(), m_points.end(),
find_pred<Point, Strategy>(boundary_point, strategy)))
{
m_boundary_found = true;
return false;
}
return true;
}
bool result() const { return m_boundary_found; }
private:
Points const& m_points;
bool m_boundary_found;
};
template <typename MultiPoint, typename Strategy>
static inline bool apply(MultiPoint const& multi_point,
detail::relate::topology_check<Geometry, Strategy> const& tc)
{
boundary_visitor<MultiPoint> visitor(multi_point);
tc.for_each_boundary_point(visitor);
return visitor.result();
}
};
template <typename Geometry>
struct multi_point_geometry_eb<Geometry, multi_linestring_tag>
{
template <typename Points>
struct boundary_visitor
{
boundary_visitor(Points const& points)
: m_points(points)
, m_boundary_found(false)
{}
template <typename Point, typename Strategy>
bool apply(Point const& boundary_point, Strategy const&)
{
typedef geometry::less<void, -1, Strategy> less_type;
if (! std::binary_search(m_points.begin(), m_points.end(),
boundary_point, less_type()) )
{
m_boundary_found = true;
return false;
}
return true;
}
bool result() const { return m_boundary_found; }
private:
Points const& m_points;
bool m_boundary_found;
};
template <typename MultiPoint, typename Strategy>
static inline bool apply(MultiPoint const& multi_point,
detail::relate::topology_check<Geometry, Strategy> const& tc)
{
typedef typename boost::range_value<MultiPoint>::type point_type;
typedef std::vector<point_type> points_type;
typedef geometry::less<void, -1, Strategy> less_type;
points_type points(boost::begin(multi_point), boost::end(multi_point));
std::sort(points.begin(), points.end(), less_type());
boundary_visitor<points_type> visitor(points);
tc.for_each_boundary_point(visitor);
return visitor.result();
}
};
// SingleGeometry - Linear or Areal
template <typename MultiPoint, typename SingleGeometry, bool Transpose = false>
struct multi_point_single_geometry
{
static const bool interruption_enabled = true;
template <typename Result, typename Strategy>
static inline void apply(MultiPoint const& multi_point,
SingleGeometry const& single_geometry,
Result & result,
Strategy const& strategy)
{
typedef typename point_type<SingleGeometry>::type point2_type;
typedef model::box<point2_type> box2_type;
box2_type box2;
geometry::envelope(single_geometry, box2, strategy);
geometry::detail::expand_by_epsilon(box2);
for (auto it = boost::begin(multi_point); it != boost::end(multi_point); ++it)
{
if (! (relate::may_update<interior, interior, '0', Transpose>(result)
|| relate::may_update<interior, boundary, '0', Transpose>(result)
|| relate::may_update<interior, exterior, '0', Transpose>(result) ) )
{
break;
}
// The default strategy is enough for Point/Box
if (detail::disjoint::disjoint_point_box(*it, box2, strategy))
{
update<interior, exterior, '0', Transpose>(result);
}
else
{
int in_val = detail::within::point_in_geometry(*it, single_geometry, strategy);
if (in_val > 0) // within
{
update<interior, interior, '0', Transpose>(result);
}
else if (in_val == 0)
{
update<interior, boundary, '0', Transpose>(result);
}
else // in_val < 0 - not within
{
update<interior, exterior, '0', Transpose>(result);
}
}
if ( BOOST_GEOMETRY_CONDITION(result.interrupt) )
{
return;
}
}
typedef detail::relate::topology_check<SingleGeometry, Strategy> tc_t;
if ( relate::may_update<exterior, interior, tc_t::interior, Transpose>(result)
|| relate::may_update<exterior, boundary, tc_t::boundary, Transpose>(result) )
{
tc_t tc(single_geometry, strategy);
if ( relate::may_update<exterior, interior, tc_t::interior, Transpose>(result)
&& tc.has_interior() )
{
// TODO: this is not true if a linestring is degenerated to a point
// then the interior has topological dimension = 0, not 1
update<exterior, interior, tc_t::interior, Transpose>(result);
}
if ( relate::may_update<exterior, boundary, tc_t::boundary, Transpose>(result)
&& tc.has_boundary() )
{
if (multi_point_geometry_eb<SingleGeometry>::apply(multi_point, tc))
{
update<exterior, boundary, tc_t::boundary, Transpose>(result);
}
}
}
update<exterior, exterior, result_dimension<MultiPoint>::value, Transpose>(result);
}
};
// MultiGeometry - Linear or Areal
// part of the algorithm calculating II and IB when no IE has to be calculated
// using partition()
template <typename MultiPoint, typename MultiGeometry, bool Transpose>
class multi_point_multi_geometry_ii_ib
{
template <typename Strategy>
struct expand_box_point
{
expand_box_point(Strategy const& strategy)
: m_strategy(strategy)
{}
template <typename Box, typename Point>
inline void apply(Box& total, Point const& point) const
{
geometry::expand(total, point, m_strategy);
}
private:
Strategy const& m_strategy;
};
template <typename Strategy>
struct expand_box_box_pair
{
expand_box_box_pair(Strategy const& strategy)
: m_strategy(strategy)
{}
template <typename Box, typename BoxPair>
inline void apply(Box& total, BoxPair const& box_pair) const
{
geometry::expand(total, box_pair.first, m_strategy);
}
private:
Strategy const& m_strategy;
};
template <typename Strategy>
struct overlaps_box_point
{
overlaps_box_point(Strategy const& strategy)
: m_strategy(strategy)
{}
template <typename Box, typename Point>
inline bool apply(Box const& box, Point const& point) const
{
// The default strategy is enough for Point/Box
return ! detail::disjoint::disjoint_point_box(point, box,
m_strategy);
}
private:
Strategy const& m_strategy;
};
template <typename Strategy>
struct overlaps_box_box_pair
{
overlaps_box_box_pair(Strategy const& strategy)
: m_strategy(strategy)
{}
template <typename Box, typename BoxPair>
inline bool apply(Box const& box, BoxPair const& box_pair) const
{
// The default strategy is enough for Box/Box
return ! detail::disjoint::disjoint_box_box(box_pair.first, box,
m_strategy);
}
private:
Strategy const& m_strategy;
};
template <typename Result, typename Strategy>
class item_visitor_type
{
typedef detail::relate::topology_check<MultiGeometry, Strategy> topology_check_type;
public:
item_visitor_type(MultiGeometry const& multi_geometry,
topology_check_type const& tc,
Result & result,
Strategy const& strategy)
: m_multi_geometry(multi_geometry)
, m_tc(tc)
, m_result(result)
, m_strategy(strategy)
{}
template <typename Point, typename BoxPair>
inline bool apply(Point const& point, BoxPair const& box_pair)
{
// The default strategy is enough for Point/Box
if (! detail::disjoint::disjoint_point_box(point, box_pair.first, m_strategy) )
{
typename boost::range_value<MultiGeometry>::type const&
single = range::at(m_multi_geometry, box_pair.second);
int in_val = detail::within::point_in_geometry(point, single, m_strategy);
if (in_val > 0) // within
{
update<interior, interior, '0', Transpose>(m_result);
}
else if (in_val == 0)
{
if (m_tc.check_boundary_point(point))
{
update<interior, boundary, '0', Transpose>(m_result);
}
else
{
update<interior, interior, '0', Transpose>(m_result);
}
}
}
if ( BOOST_GEOMETRY_CONDITION(m_result.interrupt) )
{
return false;
}
if (! (relate::may_update<interior, interior, '0', Transpose>(m_result)
|| relate::may_update<interior, boundary, '0', Transpose>(m_result) ) )
{
return false;
}
return true;
}
private:
MultiGeometry const& m_multi_geometry;
topology_check_type const& m_tc;
Result & m_result;
Strategy const& m_strategy;
};
public:
typedef typename point_type<MultiPoint>::type point1_type;
typedef typename point_type<MultiGeometry>::type point2_type;
typedef model::box<point1_type> box1_type;
typedef model::box<point2_type> box2_type;
typedef std::pair<box2_type, std::size_t> box_pair_type;
template <typename Result, typename Strategy>
static inline void apply(MultiPoint const& multi_point,
MultiGeometry const& multi_geometry,
std::vector<box_pair_type> const& boxes,
detail::relate::topology_check
<
MultiGeometry, Strategy
> const& tc,
Result & result,
Strategy const& strategy)
{
item_visitor_type<Result, Strategy> visitor(multi_geometry, tc, result, strategy);
geometry::partition
<
box1_type
>::apply(multi_point, boxes, visitor,
expand_box_point<Strategy>(strategy),
overlaps_box_point<Strategy>(strategy),
expand_box_box_pair<Strategy>(strategy),
overlaps_box_box_pair<Strategy>(strategy));
}
};
// MultiGeometry - Linear or Areal
// part of the algorithm calculating II, IB and IE
// using rtree
template <typename MultiPoint, typename MultiGeometry, bool Transpose>
struct multi_point_multi_geometry_ii_ib_ie
{
typedef typename point_type<MultiPoint>::type point1_type;
typedef typename point_type<MultiGeometry>::type point2_type;
typedef model::box<point1_type> box1_type;
typedef model::box<point2_type> box2_type;
typedef std::pair<box2_type, std::size_t> box_pair_type;
typedef std::vector<box_pair_type> boxes_type;
template <typename Result, typename Strategy>
static inline void apply(MultiPoint const& multi_point,
MultiGeometry const& multi_geometry,
std::vector<box_pair_type> const& boxes,
detail::relate::topology_check
<
MultiGeometry, Strategy
> const& tc,
Result & result,
Strategy const& strategy)
{
typedef index::parameters
<
index::rstar<4>, Strategy
> index_parameters_type;
index::rtree<box_pair_type, index_parameters_type>
rtree(boxes.begin(), boxes.end(),
index_parameters_type(index::rstar<4>(), strategy));
for (auto it = boost::begin(multi_point); it != boost::end(multi_point); ++it)
{
if (! (relate::may_update<interior, interior, '0', Transpose>(result)
|| relate::may_update<interior, boundary, '0', Transpose>(result)
|| relate::may_update<interior, exterior, '0', Transpose>(result) ) )
{
return;
}
typename boost::range_value<MultiPoint>::type const& point = *it;
boxes_type boxes_found;
rtree.query(index::intersects(point), std::back_inserter(boxes_found));
bool found_ii_or_ib = false;
for (auto const& box_found : boxes_found)
{
typename boost::range_value<MultiGeometry>::type const&
single = range::at(multi_geometry, box_found.second);
int in_val = detail::within::point_in_geometry(point, single, strategy);
if (in_val > 0) // within
{
update<interior, interior, '0', Transpose>(result);
found_ii_or_ib = true;
}
else if (in_val == 0) // on boundary of single
{
if (tc.check_boundary_point(point))
{
update<interior, boundary, '0', Transpose>(result);
}
else
{
update<interior, interior, '0', Transpose>(result);
}
found_ii_or_ib = true;
}
}
// neither interior nor boundary found -> exterior
if (found_ii_or_ib == false)
{
update<interior, exterior, '0', Transpose>(result);
}
if ( BOOST_GEOMETRY_CONDITION(result.interrupt) )
{
return;
}
}
}
};
// MultiGeometry - Linear or Areal
template <typename MultiPoint, typename MultiGeometry, bool Transpose = false>
struct multi_point_multi_geometry
{
static const bool interruption_enabled = true;
template <typename Result, typename Strategy>
static inline void apply(MultiPoint const& multi_point,
MultiGeometry const& multi_geometry,
Result & result,
Strategy const& strategy)
{
typedef typename point_type<MultiGeometry>::type point2_type;
typedef model::box<point2_type> box2_type;
typedef std::pair<box2_type, std::size_t> box_pair_type;
std::size_t count2 = boost::size(multi_geometry);
std::vector<box_pair_type> boxes(count2);
for (std::size_t i = 0 ; i < count2 ; ++i)
{
geometry::envelope(range::at(multi_geometry, i), boxes[i].first, strategy);
geometry::detail::expand_by_epsilon(boxes[i].first);
boxes[i].second = i;
}
typedef detail::relate::topology_check<MultiGeometry, Strategy> tc_t;
tc_t tc(multi_geometry, strategy);
if ( relate::may_update<interior, interior, '0', Transpose>(result)
|| relate::may_update<interior, boundary, '0', Transpose>(result)
|| relate::may_update<interior, exterior, '0', Transpose>(result) )
{
// If there is no need to calculate IE, use partition
if (! relate::may_update<interior, exterior, '0', Transpose>(result) )
{
multi_point_multi_geometry_ii_ib<MultiPoint, MultiGeometry, Transpose>
::apply(multi_point, multi_geometry, boxes, tc, result, strategy);
}
else // otherwise use rtree
{
multi_point_multi_geometry_ii_ib_ie<MultiPoint, MultiGeometry, Transpose>
::apply(multi_point, multi_geometry, boxes, tc, result, strategy);
}
}
if ( BOOST_GEOMETRY_CONDITION(result.interrupt) )
{
return;
}
if ( relate::may_update<exterior, interior, tc_t::interior, Transpose>(result)
|| relate::may_update<exterior, boundary, tc_t::boundary, Transpose>(result) )
{
if ( relate::may_update<exterior, interior, tc_t::interior, Transpose>(result)
&& tc.has_interior() )
{
// TODO: this is not true if a linestring is degenerated to a point
// then the interior has topological dimension = 0, not 1
update<exterior, interior, tc_t::interior, Transpose>(result);
}
if ( relate::may_update<exterior, boundary, tc_t::boundary, Transpose>(result)
&& tc.has_boundary() )
{
if (multi_point_geometry_eb<MultiGeometry>::apply(multi_point, tc))
{
update<exterior, boundary, tc_t::boundary, Transpose>(result);
}
}
}
update<exterior, exterior, result_dimension<MultiPoint>::value, Transpose>(result);
}
};
template
<
typename MultiPoint, typename Geometry,
bool Transpose = false,
bool isMulti = util::is_multi<Geometry>::value
>
struct multi_point_geometry
: multi_point_single_geometry<MultiPoint, Geometry, Transpose>
{};
template <typename MultiPoint, typename Geometry, bool Transpose>
struct multi_point_geometry<MultiPoint, Geometry, Transpose, true>
: multi_point_multi_geometry<MultiPoint, Geometry, Transpose>
{};
// transposed result of multi_point_geometry
template <typename Geometry, typename MultiPoint>
struct geometry_multi_point
{
static const bool interruption_enabled = true;
template <typename Result, typename Strategy>
static inline void apply(Geometry const& geometry, MultiPoint const& multi_point,
Result & result, Strategy const& strategy)
{
multi_point_geometry<MultiPoint, Geometry, true>::apply(multi_point, geometry, result, strategy);
}
};
}} // namespace detail::relate
#endif // DOXYGEN_NO_DETAIL
}} // namespace boost::geometry
#endif // BOOST_GEOMETRY_ALGORITHMS_DETAIL_RELATE_MULTI_POINT_GEOMETRY_HPP