%PDF- %PDF-
| Direktori : /backups/router/usr/lib/include/sys/ |
| Current File : //backups/router/usr/lib/include/sys/time.h |
/*-
* SPDX-License-Identifier: BSD-3-Clause
*
* Copyright (c) 1982, 1986, 1993
* The Regents of the University of California. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)time.h 8.5 (Berkeley) 5/4/95
*/
#ifndef _SYS_TIME_H_
#define _SYS_TIME_H_
#include <sys/_timeval.h>
#include <sys/types.h>
#include <sys/timespec.h>
#include <sys/_clock_id.h>
struct timezone {
int tz_minuteswest; /* minutes west of Greenwich */
int tz_dsttime; /* type of dst correction */
};
#define DST_NONE 0 /* not on dst */
#define DST_USA 1 /* USA style dst */
#define DST_AUST 2 /* Australian style dst */
#define DST_WET 3 /* Western European dst */
#define DST_MET 4 /* Middle European dst */
#define DST_EET 5 /* Eastern European dst */
#define DST_CAN 6 /* Canada */
#if __BSD_VISIBLE
struct bintime {
time_t sec;
uint64_t frac;
};
static __inline void
bintime_addx(struct bintime *_bt, uint64_t _x)
{
uint64_t _u;
_u = _bt->frac;
_bt->frac += _x;
if (_u > _bt->frac)
_bt->sec++;
}
static __inline void
bintime_add(struct bintime *_bt, const struct bintime *_bt2)
{
uint64_t _u;
_u = _bt->frac;
_bt->frac += _bt2->frac;
if (_u > _bt->frac)
_bt->sec++;
_bt->sec += _bt2->sec;
}
static __inline void
bintime_sub(struct bintime *_bt, const struct bintime *_bt2)
{
uint64_t _u;
_u = _bt->frac;
_bt->frac -= _bt2->frac;
if (_u < _bt->frac)
_bt->sec--;
_bt->sec -= _bt2->sec;
}
static __inline void
bintime_mul(struct bintime *_bt, u_int _x)
{
uint64_t _p1, _p2;
_p1 = (_bt->frac & 0xffffffffull) * _x;
_p2 = (_bt->frac >> 32) * _x + (_p1 >> 32);
_bt->sec *= _x;
_bt->sec += (_p2 >> 32);
_bt->frac = (_p2 << 32) | (_p1 & 0xffffffffull);
}
static __inline void
bintime_shift(struct bintime *_bt, int _exp)
{
if (_exp > 0) {
_bt->sec <<= _exp;
_bt->sec |= _bt->frac >> (64 - _exp);
_bt->frac <<= _exp;
} else if (_exp < 0) {
_bt->frac >>= -_exp;
_bt->frac |= (uint64_t)_bt->sec << (64 + _exp);
_bt->sec >>= -_exp;
}
}
#define bintime_clear(a) ((a)->sec = (a)->frac = 0)
#define bintime_isset(a) ((a)->sec || (a)->frac)
#define bintime_cmp(a, b, cmp) \
(((a)->sec == (b)->sec) ? \
((a)->frac cmp (b)->frac) : \
((a)->sec cmp (b)->sec))
#define SBT_1S ((sbintime_t)1 << 32)
#define SBT_1M (SBT_1S * 60)
#define SBT_1MS (SBT_1S / 1000)
#define SBT_1US (SBT_1S / 1000000)
#define SBT_1NS (SBT_1S / 1000000000) /* beware rounding, see nstosbt() */
#define SBT_MAX 0x7fffffffffffffffLL
static __inline int
sbintime_getsec(sbintime_t _sbt)
{
return (_sbt >> 32);
}
static __inline sbintime_t
bttosbt(const struct bintime _bt)
{
return (((sbintime_t)_bt.sec << 32) + (_bt.frac >> 32));
}
static __inline struct bintime
sbttobt(sbintime_t _sbt)
{
struct bintime _bt;
_bt.sec = _sbt >> 32;
_bt.frac = _sbt << 32;
return (_bt);
}
/*
* Scaling functions for signed and unsigned 64-bit time using any
* 32-bit fraction:
*/
static __inline int64_t
__stime64_scale32_ceil(int64_t x, int32_t factor, int32_t divisor)
{
const int64_t rem = x % divisor;
return (x / divisor * factor + (rem * factor + divisor - 1) / divisor);
}
static __inline int64_t
__stime64_scale32_floor(int64_t x, int32_t factor, int32_t divisor)
{
const int64_t rem = x % divisor;
return (x / divisor * factor + (rem * factor) / divisor);
}
static __inline uint64_t
__utime64_scale32_ceil(uint64_t x, uint32_t factor, uint32_t divisor)
{
const uint64_t rem = x % divisor;
return (x / divisor * factor + (rem * factor + divisor - 1) / divisor);
}
static __inline uint64_t
__utime64_scale32_floor(uint64_t x, uint32_t factor, uint32_t divisor)
{
const uint64_t rem = x % divisor;
return (x / divisor * factor + (rem * factor) / divisor);
}
/*
* This function finds the common divisor between the two arguments,
* in powers of two. Use a macro, so the compiler will output a
* warning if the value overflows!
*
* Detailed description:
*
* Create a variable with 1's at the positions of the leading 0's
* starting at the least significant bit, producing 0 if none (e.g.,
* 01011000 -> 0000 0111). Then these two variables are bitwise AND'ed
* together, to produce the greatest common power of two minus one. In
* the end add one to flip the value to the actual power of two (e.g.,
* 0000 0111 + 1 -> 0000 1000).
*/
#define __common_powers_of_two(a, b) \
((~(a) & ((a) - 1) & ~(b) & ((b) - 1)) + 1)
/*
* Scaling functions for signed and unsigned 64-bit time assuming
* reducable 64-bit fractions to 32-bit fractions:
*/
static __inline int64_t
__stime64_scale64_ceil(int64_t x, int64_t factor, int64_t divisor)
{
const int64_t gcd = __common_powers_of_two(factor, divisor);
return (__stime64_scale32_ceil(x, factor / gcd, divisor / gcd));
}
static __inline int64_t
__stime64_scale64_floor(int64_t x, int64_t factor, int64_t divisor)
{
const int64_t gcd = __common_powers_of_two(factor, divisor);
return (__stime64_scale32_floor(x, factor / gcd, divisor / gcd));
}
static __inline uint64_t
__utime64_scale64_ceil(uint64_t x, uint64_t factor, uint64_t divisor)
{
const uint64_t gcd = __common_powers_of_two(factor, divisor);
return (__utime64_scale32_ceil(x, factor / gcd, divisor / gcd));
}
static __inline uint64_t
__utime64_scale64_floor(uint64_t x, uint64_t factor, uint64_t divisor)
{
const uint64_t gcd = __common_powers_of_two(factor, divisor);
return (__utime64_scale32_floor(x, factor / gcd, divisor / gcd));
}
/*
* Decimal<->sbt conversions. Multiplying or dividing by SBT_1NS
* results in large roundoff errors which sbttons() and nstosbt()
* avoid. Millisecond and microsecond functions are also provided for
* completeness.
*
* When converting from sbt to another unit, the result is always
* rounded down. When converting back to sbt the result is always
* rounded up. This gives the property that sbttoX(Xtosbt(y)) == y .
*
* The conversion functions can also handle negative values.
*/
#define SBT_DECLARE_CONVERSION_PAIR(name, units_per_second) \
static __inline int64_t \
sbtto##name(sbintime_t sbt) \
{ \
return (__stime64_scale64_floor(sbt, units_per_second, SBT_1S)); \
} \
static __inline sbintime_t \
name##tosbt(int64_t name) \
{ \
return (__stime64_scale64_ceil(name, SBT_1S, units_per_second)); \
}
SBT_DECLARE_CONVERSION_PAIR(ns, 1000000000)
SBT_DECLARE_CONVERSION_PAIR(us, 1000000)
SBT_DECLARE_CONVERSION_PAIR(ms, 1000)
/*-
* Background information:
*
* When converting between timestamps on parallel timescales of differing
* resolutions it is historical and scientific practice to round down rather
* than doing 4/5 rounding.
*
* The date changes at midnight, not at noon.
*
* Even at 15:59:59.999999999 it's not four'o'clock.
*
* time_second ticks after N.999999999 not after N.4999999999
*/
static __inline void
bintime2timespec(const struct bintime *_bt, struct timespec *_ts)
{
_ts->tv_sec = _bt->sec;
_ts->tv_nsec = __utime64_scale64_floor(
_bt->frac, 1000000000, 1ULL << 32) >> 32;
}
static __inline uint64_t
bintime2ns(const struct bintime *_bt)
{
uint64_t ret;
ret = (uint64_t)(_bt->sec) * (uint64_t)1000000000;
ret += __utime64_scale64_floor(
_bt->frac, 1000000000, 1ULL << 32) >> 32;
return (ret);
}
static __inline void
timespec2bintime(const struct timespec *_ts, struct bintime *_bt)
{
_bt->sec = _ts->tv_sec;
_bt->frac = __utime64_scale64_floor(
(uint64_t)_ts->tv_nsec << 32, 1ULL << 32, 1000000000);
}
static __inline void
bintime2timeval(const struct bintime *_bt, struct timeval *_tv)
{
_tv->tv_sec = _bt->sec;
_tv->tv_usec = __utime64_scale64_floor(
_bt->frac, 1000000, 1ULL << 32) >> 32;
}
static __inline void
timeval2bintime(const struct timeval *_tv, struct bintime *_bt)
{
_bt->sec = _tv->tv_sec;
_bt->frac = __utime64_scale64_floor(
(uint64_t)_tv->tv_usec << 32, 1ULL << 32, 1000000);
}
static __inline struct timespec
sbttots(sbintime_t _sbt)
{
struct timespec _ts;
_ts.tv_sec = _sbt >> 32;
_ts.tv_nsec = sbttons((uint32_t)_sbt);
return (_ts);
}
static __inline sbintime_t
tstosbt(struct timespec _ts)
{
return (((sbintime_t)_ts.tv_sec << 32) + nstosbt(_ts.tv_nsec));
}
static __inline struct timeval
sbttotv(sbintime_t _sbt)
{
struct timeval _tv;
_tv.tv_sec = _sbt >> 32;
_tv.tv_usec = sbttous((uint32_t)_sbt);
return (_tv);
}
static __inline sbintime_t
tvtosbt(struct timeval _tv)
{
return (((sbintime_t)_tv.tv_sec << 32) + ustosbt(_tv.tv_usec));
}
#endif /* __BSD_VISIBLE */
#ifdef _KERNEL
/*
* Simple macros to convert ticks to milliseconds
* or microseconds and vice-versa. The answer
* will always be at least 1. Note the return
* value is a uint32_t however we step up the
* operations to 64 bit to avoid any overflow/underflow
* problems.
*/
#define TICKS_2_MSEC(t) max(1, (uint32_t)(hz == 1000) ? \
(t) : (((uint64_t)(t) * (uint64_t)1000)/(uint64_t)hz))
#define TICKS_2_USEC(t) max(1, (uint32_t)(hz == 1000) ? \
((t) * 1000) : (((uint64_t)(t) * (uint64_t)1000000)/(uint64_t)hz))
#define MSEC_2_TICKS(m) max(1, (uint32_t)((hz == 1000) ? \
(m) : ((uint64_t)(m) * (uint64_t)hz)/(uint64_t)1000))
#define USEC_2_TICKS(u) max(1, (uint32_t)((hz == 1000) ? \
((u) / 1000) : ((uint64_t)(u) * (uint64_t)hz)/(uint64_t)1000000))
#endif
/* Operations on timespecs */
#define timespecclear(tvp) ((tvp)->tv_sec = (tvp)->tv_nsec = 0)
#define timespecisset(tvp) ((tvp)->tv_sec || (tvp)->tv_nsec)
#define timespeccmp(tvp, uvp, cmp) \
(((tvp)->tv_sec == (uvp)->tv_sec) ? \
((tvp)->tv_nsec cmp (uvp)->tv_nsec) : \
((tvp)->tv_sec cmp (uvp)->tv_sec))
#define timespecadd(tsp, usp, vsp) \
do { \
(vsp)->tv_sec = (tsp)->tv_sec + (usp)->tv_sec; \
(vsp)->tv_nsec = (tsp)->tv_nsec + (usp)->tv_nsec; \
if ((vsp)->tv_nsec >= 1000000000L) { \
(vsp)->tv_sec++; \
(vsp)->tv_nsec -= 1000000000L; \
} \
} while (0)
#define timespecsub(tsp, usp, vsp) \
do { \
(vsp)->tv_sec = (tsp)->tv_sec - (usp)->tv_sec; \
(vsp)->tv_nsec = (tsp)->tv_nsec - (usp)->tv_nsec; \
if ((vsp)->tv_nsec < 0) { \
(vsp)->tv_sec--; \
(vsp)->tv_nsec += 1000000000L; \
} \
} while (0)
#define timespecvalid_interval(tsp) ((tsp)->tv_sec >= 0 && \
(tsp)->tv_nsec >= 0 && (tsp)->tv_nsec < 1000000000L)
#ifdef _KERNEL
/* Operations on timevals. */
#define timevalclear(tvp) ((tvp)->tv_sec = (tvp)->tv_usec = 0)
#define timevalisset(tvp) ((tvp)->tv_sec || (tvp)->tv_usec)
#define timevalcmp(tvp, uvp, cmp) \
(((tvp)->tv_sec == (uvp)->tv_sec) ? \
((tvp)->tv_usec cmp (uvp)->tv_usec) : \
((tvp)->tv_sec cmp (uvp)->tv_sec))
/* timevaladd and timevalsub are not inlined */
#endif /* _KERNEL */
#ifndef _KERNEL /* NetBSD/OpenBSD compatible interfaces */
#define timerclear(tvp) ((tvp)->tv_sec = (tvp)->tv_usec = 0)
#define timerisset(tvp) ((tvp)->tv_sec || (tvp)->tv_usec)
#define timercmp(tvp, uvp, cmp) \
(((tvp)->tv_sec == (uvp)->tv_sec) ? \
((tvp)->tv_usec cmp (uvp)->tv_usec) : \
((tvp)->tv_sec cmp (uvp)->tv_sec))
#define timeradd(tvp, uvp, vvp) \
do { \
(vvp)->tv_sec = (tvp)->tv_sec + (uvp)->tv_sec; \
(vvp)->tv_usec = (tvp)->tv_usec + (uvp)->tv_usec; \
if ((vvp)->tv_usec >= 1000000) { \
(vvp)->tv_sec++; \
(vvp)->tv_usec -= 1000000; \
} \
} while (0)
#define timersub(tvp, uvp, vvp) \
do { \
(vvp)->tv_sec = (tvp)->tv_sec - (uvp)->tv_sec; \
(vvp)->tv_usec = (tvp)->tv_usec - (uvp)->tv_usec; \
if ((vvp)->tv_usec < 0) { \
(vvp)->tv_sec--; \
(vvp)->tv_usec += 1000000; \
} \
} while (0)
#endif
/*
* Names of the interval timers, and structure
* defining a timer setting.
*/
#define ITIMER_REAL 0
#define ITIMER_VIRTUAL 1
#define ITIMER_PROF 2
struct itimerval {
struct timeval it_interval; /* timer interval */
struct timeval it_value; /* current value */
};
/*
* Getkerninfo clock information structure
*/
struct clockinfo {
int hz; /* clock frequency */
int tick; /* micro-seconds per hz tick */
int spare;
int stathz; /* statistics clock frequency */
int profhz; /* profiling clock frequency */
};
#if __BSD_VISIBLE
#define CPUCLOCK_WHICH_PID 0
#define CPUCLOCK_WHICH_TID 1
#endif
#if defined(_KERNEL) || defined(_STANDALONE)
/*
* Kernel to clock driver interface.
*/
void inittodr(time_t base);
void resettodr(void);
extern volatile time_t time_second;
extern volatile time_t time_uptime;
extern struct bintime tc_tick_bt;
extern sbintime_t tc_tick_sbt;
extern time_t tick_seconds_max;
extern struct bintime tick_bt;
extern sbintime_t tick_sbt;
extern int tc_precexp;
extern int tc_timepercentage;
extern struct bintime bt_timethreshold;
extern struct bintime bt_tickthreshold;
extern sbintime_t sbt_timethreshold;
extern sbintime_t sbt_tickthreshold;
extern volatile int rtc_generation;
/*
* Functions for looking at our clock: [get]{bin,nano,micro}[up]time()
*
* Functions without the "get" prefix returns the best timestamp
* we can produce in the given format.
*
* "bin" == struct bintime == seconds + 64 bit fraction of seconds.
* "nano" == struct timespec == seconds + nanoseconds.
* "micro" == struct timeval == seconds + microseconds.
*
* Functions containing "up" returns time relative to boot and
* should be used for calculating time intervals.
*
* Functions without "up" returns UTC time.
*
* Functions with the "get" prefix returns a less precise result
* much faster than the functions without "get" prefix and should
* be used where a precision of 1/hz seconds is acceptable or where
* performance is priority. (NB: "precision", _not_ "resolution" !)
*/
void binuptime(struct bintime *bt);
void nanouptime(struct timespec *tsp);
void microuptime(struct timeval *tvp);
static __inline sbintime_t
sbinuptime(void)
{
struct bintime _bt;
binuptime(&_bt);
return (bttosbt(_bt));
}
void bintime(struct bintime *bt);
void nanotime(struct timespec *tsp);
void microtime(struct timeval *tvp);
void getbinuptime(struct bintime *bt);
void getnanouptime(struct timespec *tsp);
void getmicrouptime(struct timeval *tvp);
static __inline sbintime_t
getsbinuptime(void)
{
struct bintime _bt;
getbinuptime(&_bt);
return (bttosbt(_bt));
}
void getbintime(struct bintime *bt);
void getnanotime(struct timespec *tsp);
void getmicrotime(struct timeval *tvp);
void getboottime(struct timeval *boottime);
void getboottimebin(struct bintime *boottimebin);
/* Other functions */
int itimerdecr(struct itimerval *itp, int usec);
int itimerfix(struct timeval *tv);
int eventratecheck(struct timeval *, int *, int);
#define ppsratecheck(t, c, m) eventratecheck(t, c, m)
int ratecheck(struct timeval *, const struct timeval *);
void timevaladd(struct timeval *t1, const struct timeval *t2);
void timevalsub(struct timeval *t1, const struct timeval *t2);
int tvtohz(struct timeval *tv);
/*
* The following HZ limits allow the tvtohz() function
* to only use integer computations.
*/
#define HZ_MAXIMUM (INT_MAX / (1000000 >> 6)) /* 137kHz */
#define HZ_MINIMUM 8 /* hz */
#define TC_DEFAULTPERC 5
#define BT2FREQ(bt) \
(((uint64_t)0x8000000000000000 + ((bt)->frac >> 2)) / \
((bt)->frac >> 1))
#define SBT2FREQ(sbt) ((SBT_1S + ((sbt) >> 1)) / (sbt))
#define FREQ2BT(freq, bt) \
{ \
(bt)->sec = 0; \
(bt)->frac = ((uint64_t)0x8000000000000000 / (freq)) << 1; \
}
#define TIMESEL(sbt, sbt2) \
(((sbt2) >= sbt_timethreshold) ? \
((*(sbt) = getsbinuptime()), 1) : ((*(sbt) = sbinuptime()), 0))
#else /* !_KERNEL && !_STANDALONE */
#include <time.h>
#include <sys/cdefs.h>
#include <sys/select.h>
__BEGIN_DECLS
int setitimer(int, const struct itimerval *, struct itimerval *);
int utimes(const char *, const struct timeval *);
#if __BSD_VISIBLE
int adjtime(const struct timeval *, struct timeval *);
int clock_getcpuclockid2(id_t, int, clockid_t *);
int futimes(int, const struct timeval *);
int futimesat(int, const char *, const struct timeval [2]);
int lutimes(const char *, const struct timeval *);
int settimeofday(const struct timeval *, const struct timezone *);
#endif
#if __XSI_VISIBLE
int getitimer(int, struct itimerval *);
int gettimeofday(struct timeval *, struct timezone *);
#endif
__END_DECLS
#endif /* !_KERNEL */
#endif /* !_SYS_TIME_H_ */