RGB to HSV (Travis)
Given RGB values, find the max and min.
V = max
S = (max-min) / max
If S = 0, H is undefined
else
R1 = (max-R) / (max-min)
G1 = (max-G) / (max-min)
G2 = (max-B) / (max-min)
if R = max and G = min, H = 5 + B1
else if R = max and G not= min, H = 1 - G1
else if G = max and B = min, H = R1 + 1
else if G = max and B not=main, H = 3 - B1
else if R = max, H = 3 + G1
else H = 5 - R1
H = H*60 (converts to degrees so S and V lie between 0
and 1, H between 0 and 360)
HSV to RGB (Travis)
Convert H degrees to a hexagon section
hex = H / 360
main_colour = int(hex)
sub_colour = hex - main_colour
var1 = (1-S)*V
var2 = (1 -(S * sub_colour)) * V
var3 = (1 -(S * (1 - sub_colour))) * V
then
if main_colour = 0, R = V, G = var3, B = var1
main_colour = 1, R = var2, G = V, B = var1
main_colour = 2, R = var1, G = V, B = var3
main_colour = 3, R = var1, G = var2, B = V
main_colour = 4, R = var3, G = var1, B = V
main_colour = 5, R = V, G = var1, B = var2
where int(x) converts x to an integer value.(N.B. I haven't implemented this transform.)
RGB to HSV (Foley and VanDam)
max = maximum of RGB
min = minimum of RGB
V = max
S = (max - min) / max
if S = 0, H is undefined, else
delta = max-min
if R = max, H = (G-b)/delta
if G = max, H = 2 + (B-R)/delta
if B = max, H = 4 + (R-G)/delta
H = H*60
if H < 0, H = H + 360
HSV to RGB (Foley and VanDam)
if S = 0 and H = undefined, R = G = B = V if H = 360, H = 0 H = H / 60 i = floor(H) f = H - i p = V*(1-S) q = V*(1-(S*f)) t = V*(1 - (S * (1-f))) if i = 0, R = v, G = t, B = p if i = 1, R = q, G = v, B = p if i = 2, R = p, G = v, B = t if i = 3, R = p, G = q, B = v if i = 4, R = t, G = p, B = v if i = 5, R = v, G = p, B = qwhere floor is the C floor function.